Algorithms and Data Structures

Exercise Session 4

https://n.ethz.ch/~ahmala/and

Common Mistake

n^3 ≤ n^3 + n

 $\Rightarrow \log(n^3) \le \log(n^3 + n)$

 $n^{3} \le n^{3} + n$ => log(n^{3}) \le log(n^{3} + n)

| log is a monotone increasing function

Prove or disprove: $\Omega(n^2) \cap \mathcal{O}(n^3) = \Theta(n^2) \cup \Theta(n^3)$

Prove or disprove: $\Omega(n^2) \cap \mathcal{O}(n^3) = \Theta(n^2) \cup \Theta(n^3)$

Solution: We disprove with the following counterexample. Let $f = n^2 \log n$. Then $f \in \Omega(n^2)$, $f \in \mathcal{O}(n^3)$, but $f \notin \Theta(n^2)$, and $f \notin \Theta(n^3)$.

Prove or disprove: Let $f, g \in \Theta(h)$, then $|f - g| \in \mathcal{O}(1)$.

Prove or disprove: Let $f, g \in \Theta(h)$, then $|f - g| \in \mathcal{O}(1)$.

Solution: We disprove with the following counterexample: $f(n) = n^2 + n$, $g(n) = n^2$, $h(n) = n^2$.

Is there a function $f : \mathbb{N} \to \mathbb{R}^+$ that is neither in $\mathcal{O}(n^2)$ nor in $\Omega(n^2)$? If no, prove, if yes, give an example.

Is there a function $f : \mathbb{N} \to \mathbb{R}^+$ that is neither in $\mathcal{O}(n^2)$ nor in $\Omega(n^2)$? If no, prove, if yes, give an example.

$$f(n) = \begin{cases} n & \text{ if } n \text{ is even,} \\ n^3 & \text{ if } n \text{ is odd.} \end{cases}$$

Exercise Sheet 4

Exercise 4.1 *Applying the master theorem.*

For this exercise, assume that n is a power of two (that is, $n = 2^k$, where $k \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$).

(a) Let T(1) = 1, T(n) = 4T(n/2) + 100n for n > 1. Using the master theorem, show that

 $T(n) \le O(n^2).$

(b) Let T(1) = 5, $T(n) = T(n/2) + \frac{3}{2}n$ for n > 1. Using the master theorem, show that

 $T(n) \le O(n).$

¹For this asymptotic bound we assume $n \ge 2$ so that $n^{\log_2 a} \cdot \log n > 0$.

(c) Let T(1) = 4, $T(n) = 4T(n/2) + \frac{7}{2}n^2$ for n > 1. Using the master theorem, show that

 $T(n) \le O(n^2 \log n).$

Exercise 4.2 Asymptotic notations.

(a) **(This subtask is from January 2019 exam).** For each of the following claims, state whether it is true or false. You don't need to justify your answers.

claim	true	false
$\frac{n}{\log n} \le O(\sqrt{n})$		
$\log(n!) \geq \Omega(n^2)$		
$n^k \geq \Omega(k^n),$ if $1 < k \leq O(1)$		
$\log_3 n^4 = \Theta(\log_7 n^8)$		

(b) **(This subtask is from August 2019 exam).** For each of the following claims, state whether it is true or false. You don't need to justify your answers.

claim	true	false
$\frac{n}{\log n} \ge \Omega(n^{1/2})$		
$\log_7(n^8) = \Theta(\log_3(n^{\sqrt{n}}))$		
$3n^4 + n^2 + n \ge \Omega(n^2)$		
$(*) n! \le O(n^{n/2})$		

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6 grade, you should be able to solve such exercises.

 $(*) \quad n! \le O(n^{n/2})$

Exercise 4.3 Formal proof of correctness for Bubble Sort (1 point).Recall the bubble sort algorithm that was introduced in the lecture.

Algorithm 1 Bubble Sort (input: array $A[1 \dots n]$).

```
for j = 1, ..., n do
for i = 1, ..., n - 1 do
if A[i] > A[i + 1] then
Swap A[i] and A[i + 1]
```

Prove correctness of this algorithm by mathematical induction.

Hint: Use the invariant I(j) that was introduced in the lecture: "After j iterations the j largest elements are at the correct place."

Exercise 4.4 *Exponential search* (1 point).

Suppose we are given a positive integer $N \in \mathbb{N}$, and a *monotonously increasing* function $f : \mathbb{N} \to \mathbb{N}$, meaning that $f(i) \ge f(j)$ for all $i, j \in \mathbb{N}$ with $i \ge j$. Assume that $\lim_{n\to\infty} f(n) = \infty$. We are tasked to determine the *smallest* integer $T \in \mathbb{N}$ such that $f(T) \ge N$.

- (a) Describe an algorithm that finds an *upper bound* $T_{ub} \in \mathbb{N}$ on T, such that $f(T_{ub}) \ge N$ and $T_{ub} \le 2T$, making $O(\log T)$ function calls to f^2 . Prove that your algorithm is correct, and uses at most the desired number of function calls.
- (b) Describe an algorithm that determines the *smallest* integer $T \in \mathbb{N}$ such that $f(T) \ge N$, making $O(\log T)$ function calls to f. Prove that your algorithm is correct, and uses at most the desired number of function calls.

Hint: Consider using a two-step approach. In the first step, apply the algorithm of part (a). For the second step, modify the binary search algorithm and apply it to the array $\{1, 2, ..., T_{ub}\}$. Use helper variables $i_{low}, i_{high} \in \mathbb{N}$, that satisfy $i_{low} \leq T \leq i_{high}$ at all times during the algorithm. In each iteration, update i_{low} and/or i_{high} so that the number of remaining options for T is halved.

Counting function calls in loops (cont'd) (1 point). **Exercise 4.5**

For each of the following code snippets, compute the number of calls to f as a function of $n \in \mathbb{N}$. We denote this number by T(n), i.e. T(n) is the number of calls the algorithm makes to f depending on the input n. Then T is a function from \mathbb{N} to \mathbb{R}^+ . For part (a), provide **both** the exact number of calls and a maximally simplified asymptotic bound in Θ notation. For part (b), it is enough to give a maximally simplified asymptotic bound in Θ notation. For the asymptotic bounds, you may assume that $n \ge 10$.

Algorithm 2

 $i \leftarrow 1$ while $i \leq n$ do $j \leftarrow i$ while $2^j \le n$ do f() $j \leftarrow j + 1$ $i \leftarrow i + 1$

²For the asymptotic bounds here and also in the following we assume $T \ge 2$ such that $\log(T) > 0$.

(a)

Algorithm 3

function A(n) (b) $i \leftarrow 0$ while $i < n^2$ do $j \leftarrow n$ while j > 0 do f()f() $j \leftarrow j - 1$ $i \leftarrow i + 1$ $k \leftarrow \lfloor \frac{n}{2} \rfloor$ for l = 0...3 do if k > 0 then A(k)A(k)

You may assume that the function $T : \mathbb{N} \to \mathbb{R}^+$ denoting the number of calls of the algorithm to f is increasing.

Hint: To deal with the recursion in the algorithm, you can use the master theorem.

(c)* Prove that the function $T : \mathbb{N} \to \mathbb{R}^+$ from the code snippet in part (b) is indeed increasing.

Hint: You can show the following statement by mathematical induction: "For all $n' \in \mathbb{N}$ with $n' \leq n$ we have $T(n'+1) \geq T(n')$ ".

For the following code fragments count how many times the function f is called. Report the number of calls as nested sum, and then simplify your expression in Θ -notation and prove your result.

Hint: Note that in order to justify your Θ -notation you are required to show two parts: an upper bound on your nested sum as well as a lower bound.

a) Consider the snippet:

Algorithm 1

```
for j = 1, ..., n do

k \leftarrow 1

while k \leq j do

m \leftarrow 1

while m \leq j do

f()

m \leftarrow 2 \cdot m

k \leftarrow 2 \cdot k
```

$$\sum_{j=1}^{n} \sum_{l=0}^{\lfloor \log_2 j \rfloor} \sum_{i=0}^{\lfloor \log_2 j \rfloor} 1 = \sum_{j=1}^{n} (\lfloor \log_2 j \rfloor + 1)^2 \le \sum_{j=1}^{n} (\lfloor \log_2 n \rfloor + 1)^2 \le O(n \log^2 n)$$

times. Notice that, when $n \ge 4$, then $\log_2(n/2) = \log_2 n - 1 \ge (\log_2 n)/2$. Therefore, for all $n \ge 4$ we have

$$\sum_{j=1}^{n} \sum_{l=0}^{\lfloor \log_2 j \rfloor} \sum_{i=0}^{\lfloor \log_2 j \rfloor} 1 = \sum_{j=1}^{n} (\lfloor \log_2 j \rfloor + 1)^2 \ge \sum_{j=\lceil n/2 \rceil}^{n} (\lfloor \log_2 (n/2) \rfloor + 1)^2$$
$$\ge \sum_{j=\lceil n/2 \rceil}^{n} \log_2 (n/2)^2 \ge n/2 \cdot ((\log_2 n)/2)^2 \ge \Omega(n \log^2 n),$$

How many times will f() be called?

```
1 int i,j;
2
3
  for(i = 0; i < N; i++)</pre>
4
5
       f()
6
  for(i = 0; i < M; i++)</pre>
7
        f()
8
```


BEFORE AND AFTER...

COCAIN

ALCOHOL

CRACK

A class Kahoot

Peer Grading

Exercise 4.4

While sending to me please include the group you received their work in cc.

<u>https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjK</u> <u>Cc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing</u>