Algorithms and Data Structures

Exercise Session 6

Tree Terminology-1

Node
Root
Edge
Size
Depth
Height

Tree Terminology-2

Ancestor
Descendant
Degree
Subtree
Rank

https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology

https://en.wikipedia.org/wiki/Tree_(data_structure)#Terminology

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < k2 < ... < k;, be the keys
of A, in ascending order. For a given 1 < ¢ < n, our goal is to find k;, the i-th smallest key of A.

(a) Suppose ¢ = 1. Describe an algorithm that finds k; in O(logn) time.
Hint: An AVL tree is a BST (binary search tree).
(b) Describe an algorithm that finds k; in O(i - log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k1 < k2 < ... < k;, be the keys
of A, in ascending order. For a given 1 < ¢ < n, our goal is to find k;, the i-th smallest key of A.

(a) Suppose ¢ = 1. Describe an algorithm that finds k; in O(logn) time.
Hint: An AVL tree is a BST (binary search tree).
(b) Describe an algorithm that finds k; in O(i - log n) time.

Hint: You are allowed to make changes to A while executing your algorithm.

Exercise 6.1 Finding the i-th smallest key in an AVL tree (1 point).

Let A be an AVL tree (as described in the lecture) with n nodes. Let k; < ko < ... < k,, be the keys
of A, in ascending order. For a given 1 < ¢ < n, our goal is to find k;, the i-th smallest key of A.

(a) Suppose i = 1. Describe an algorithm that finds k1 in O(log n) time.
Hint: An AVL tree is a BST (binary search tree).
(b) Describe an algorithm that finds k; in O(i - log n) time.
Hint: You are allowed to make changes to A while executing your algorithm.
It turns out that we can find k; in time O(log n), if we modify the definition of an AVL tree a bit.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds

k; in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(logn) time, but you are not required to prove that this is the case.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O (log n) time, but you are not required to prove that this is the case.

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(logn) time, but you are not required to prove that this is the case.

1 s 1(v): number of nodes in the left subtree of v
2 s r(v): number of nodes in the right subtree of v
3

4 node = root

5

6 g(node):

7 if s 1(node) + 1 == 1

8 return node

9 if i > s l(node) + 1

10 return g(node.right)
11 if 1 < s 1(node) + 1

12 return g(node.left)

13

(c) Modify the definition of an AVL tree by storing two additional integers s;(v), s, (v) € N in each
node v. Assuming now that A satisfies your modified definition, describe an algorithm that finds
k; in O(log n) time.

Remark. Your modified definition should still allow for the search, insert and remove operations to
be performed in O(logn) time, but you are not required to prove that this is the case.

1 s 1(v): number of nodes in the left subtree of v
2 s r(v): number of nodes in the right subtree of v

3

4 node = root

5

6 g(node):

74 if s 1(node) + 1 == 1

8 return node

9 if i > s 1(node) + 1

10 i=1-s 1l(node) -1
15| return g(node.right)
12 if 1 < s l(node) + 1

13 return g(node.left)
14

Exercise 6.2 Round and square brackets.
A string of characters on the alphabet {A,...,Z, (,), [,1} is called well-formed if either
1. It does not contain any round or square brackets, or

2. It can be obtained from an empty string by performing a sequence of the following operations,
in any order and with an arbitrary number of repetitions:

(a) Take two non-empty well-formed strings @ and b and concatenate them to obtain ab,
(b) Take a well-formed string a and add a pair of round brackets around it to obtain (a),

(c) Take a well-formed string @ and add a pair of square brackets around it to obtain [a].

The above reflects the intuitive definition that all brackets in the string are ‘matched’ by a bracket of the
same type. For example, s = FOO(BAR[A]), is well-formed, since it is the concatenation of s; = FOO,
which is well-formed by 1., and s, = (BAR[A]), which is also well-formed. String ss is well-formed
because it is obtained by operation 2(b) from s3 = BAR[A], which is well-formed as the concatenation
of well-formed strings s4 = BAR (by 1.) and s5 = [A] (by 2(c) and 1.). String ¢ = FOO[(BAR]) is not
well-formed, since there is no way to obtain it from the above rules. Indeed, to be able to insert the
only pair of square brackets according to the rules, its content £, = (BAR must be well-formed, but this
is impossible since ¢; contains only one bracket.

Provide an algorithm that determines whether a string of characters is well-formed. Justify briefly why
your algorithm is correct, and provide a precise analysis of its complexity.

Hint: Use a data structure from the last exercise sheet.

Algorithm 1 Detecting well-formed strings

function ISWELLFORMED(s)
S < EMPTYSTACK()
fori € {0,....|s| — 1} do
if s[i] = “(” then
S.pusH(“(”)
else if s[i| = “[” then
S.pusu(“[")
else if s[i] = “)” then
if S.ror() # “(” then
return False
else if s[i] = “]” then
if S.pop() # “[” then
return False
return S.1SEMPTY()

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

A1 =1
Ay =2
Az =3
Ay=1

A, =Ap 1+ Ap_3+2A, 4forn > 5.

(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to
argue correctness.

(b) Lower bound the run time of your recursion from (a) by 2(C"™) for some constant C' > 1.

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

A1 =1
Ay =2
Az =3
Ay =1

Ap=Ap 1+ Ap_3+2A, 4forn > 5.

(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to
argue correctness.

Algorithm 2 A(n)
if n < 4 then
return n

else
return A(n — 1) + A(n — 3) + 2A(n — 4)

Exercise 6.3 Introduction to dynamic programming (1 point).

Consider the recurrence

A1 =1
Ay =2
Az =3
Ay=1

A, =Ap 1+ Ap_3+2A, 4forn > 5.

(a) Provide a recursive function (using pseudo code) that computes A,, for n € N. You do not have to
argue correctness.

(b) Lower bound the run time of your recursion from (a) by 2(C"™) for some constant C' > 1.

We now continue with the proof and want to show 7'(n) > -1; - 3"/4 by induction.

« Base Case.
Forn € Nwithn <4, we have T'(n) =1 > % . 3"/4 since n/4 < 1 implies 3™/4 < 3.

« Induction Hypothesis.
Assume that for some integer & > 5 the statement holds for all £’ < k.

« Induction Step.
We compute

T(k) =T(k—1) +T(k —3) + T(k — 4) +d

g-1/a L ak-3a L ak-2)a
3 3

. (3(k—4)/4 4 g(k—4)/4 | 3(k—4)/4)

>

>

— QO | = QI = QO =

— i gk

|

Thus, the statement also holds for k.
By the principle of mathematical induction, 7'(n) > % . 3"/4 holds for every n € N.

Hence, the run time of the algorithm in (a) is 7'(n) > 1 - 34 > Q(C™) for C = 31/4 > 1.
Remark: With a bit more care, it can be shown by induction that T'(n) = O(¢"), where ¢ ~ 1.618 is
the unique positive solution of x* = x> + x + 1.

Algorithm 2 A(n)

if n < 4 then
return n

else
return A(n — 1)+ A(n — 3) + 2A(n — 4)

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

Algorithm 2 A(n)

if n < 4 then
return n

else
return A(n — 1)+ A(n — 3) + 2A(n — 4)

(c) Improve the run time of your algorithm using memoization. Provide pseudo code of the improved
algorithm and analyze its run time.

Algorithm 3 Compute A;, using memoization

memory<— n-dimensional array filled with (—1)s
function A_MEM(n)
if memory [n] # —1 then > If A,, is already computed.
return memory [n]

if n < 4 then
memory [n] < n
returnn
else
A, < AMem(n — 1)+ AMem(n — 3) + 2A Mem(n — 4)
memory [n] < A,
return A4,

Consider the recurrence

A =1
Ay =
A3 =3
Ay =

(d) Compute A,, using bottom-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the table D P[. ..]? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

(5) Run time: What is the run time of your solution?

Exercise 6.4 Jumping game (1 point).
We consider the jumping game from the lecture for the following array of length n = 10:
Allan) = [2;42/2, 1; 1, 1, 1, 5:2].

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M k] := ‘largest position reachable in at most k jumps’.
In this exercise, we compare two different methods for computing the M [k].

(a) Consider the recursive relation:

M][o0] =1, ®
M k] = the maximum element of the array Ry,
where Rj. is the array with indices i in the range 1 < i < M[k — 1] and Ry[i] := Ali] + .

Compute M|[k] for k = 1,2,..., K using relation (R), where K is the smallest integer for which
M[K] > n = 10. Foreach 1 < k < K, write down the array R}, used in the recursion. Finally,
compute Z{;l | Ri|.

We consider the jumping game from the lecture for the following array of length n = 10:
Al = [2:4,2.2.1.:1,3,1.5:2|.

We start at position 1. From our current position i, we may jump a distance of at most A[i] forwards.
Our goal is to reach the end of the array in as few jumps as possible. Recall the dynamic programming
solution given for the problem in the lecture, revolving around the numbers:

M [k] := ‘largest position reachable in at most k jumps’.
In this exercise, we compare two different methods for computing the M [£].
(b) Now consider the recursive relation:
M'[0] =1,
M'[1] =1+ A[1], (R")
M'[k] = the maximum element of the array R,

were R} is the array with indices 7 in the range M'[k — 2] < i < M'[k — 1] and R} [i] := A[i] + 1.
Compute M'[k] for k = 1,2,..., K using relation (R’), where K is the smallest integer for which
M'[K] > n = 10. For each 2 < k < K, write down the array R; used in the recursion. Finally,
compute S |R}|.

(c*) Now let A be an arbitrary array of size n > 2 containing positive, non-repeating' integers.

Let M[k|, M'[k] be the numbers computed using relations (R) and (R’), respectively. Prove that
M{[k] = M'[k] for all k > 0.

Hint: Use induction. First show that M [0] = M'[0] and that M [1] = M'[1]. Then, use the induction
hypothesis ‘M [k — 2] = M'[k — 2] and M [k — 1] = M'[k — 1]’ to show that max R), = max R)_for
allk > 2.

(a) Given are the two arrays

A=1[7,6,3,2,8,4,5,1]

and

B =[3,9,10,8,7,1,2,6,4,5].

Use the dynamic programming algorithm from the lecture to find the length of a longest common
subsequence and the subsequence itself. Show all necessary tables and information you used to
obtain the solution.

Dynamic Programming on Trees

https://atcoder.jp/contests/dp/tasks/dp_p

Tree Coloring

Given a rooted tree with n nodes.

We paint each node in white or black. Here, it is not allowed to paint two adjacent node both in

black.

Find the number of ways in which the nodes can be painted

Answer: 5 Answer: 5 Answer: 14 Answer: 24

https://atcoder.jp/contests/dp/tasks/dp_p

Answer: 41

Peer Grading(with the former groups)

Exercise 6.1

While sending to me please include the group you received their
work in cc.

https://docs.google.com/spreadsheets/d/1owPs]sd9THBWInwFcVjK
CcOf _réndpGwwDKMDdwaCjM/edit?usp=sharing

New groups will be published later on Monday(today)

https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing

