Algorithms and Data Structures

Exercise Session 8




Definition 1. Let G = (V, F) be a graph.

« A sequence of vertices (vg, v1,...,v;) (with v; € V for all i) is a walk (german “Weg”) if
{v;,vi11} is an edge for each 0 < i < k — 1. We say that vy and vy, are the endpoints (german
“Startknoten” and “Endknoten”) of the walk.

« A sequence of vertices (vg, v1,...,vx) is a closed walk (german “Zyklus”) if it is a walk, k > 2
and vg = V.

« A sequence of vertices (vg, v1,...,v) is a path (german “Pfad”) if it is a walk and all vertices
are distinct (i.e., v; # v; for 0 <17 < j < k).

« A sequence of vertices (vg,v1,...,v;) is a cycle (german “Kreis”) if it is a closed walk, &k > 3
and all vertices (except vy and vy) are distinct.



Hamilton paths and
Verstappen paths visualized

* A Eulerian walk (german “Eulerweg”) is a walk that
contains every edge exactly once.

» A Hamiltonian path (german “Hamiltonweg”) is a path that
contains every vertex.

« A Hamiltonian cycle (german “Hamiltonkreis™) is a cycle
that contains every vertex.







Do they have Hamiltonian Cycle?




e Agraph G is connected (german “zusammenhangend”) if for every two
vertices u, v € V there exists a path with endpoints u and
e Agraph Gis atree (german “Baum”) if it is connected and has no cycles.



No multigraphs and self loops in AnD



G = (V,E) is a graph with |V| >= 1 Nodes.
Following Expressions are equivalent!

a)
b)

Gis atree

G is connected with no cycles

G is connected with |E| = [V] - 1

G has no cycles and |E| = |V] - 1

For all x,y in V: G has exactly one x-y-Path



More Terminology-1

Incident: connected(vertex&edge)
Adjacent: neighboring(vertex&vertex)
connected/undirected

Acyclic: no cycles



More Terminology-2

DAG(this week’s exercise sheet)
Indegree

Outdegree

Forest

reachable



Exercise 8.1  Introduction to graphs (1 point).

In this exercise, we want to prove the following statement: Among any six people, there are either
three that all know each other or three that all do not know each other (or both). We assume that this
relation is symmetric, so if person A knows person B, then also B knows A. We model the problem as
a graph. We define G = (V, F) to be a graph on 6 vertices, where the vertices correspond to the six
people and two people are connected by an edge if they know each other.

(a) Prove the above statement, i.e. that in every possible graph on 6 vertices, there are three vertices
that are all pairwise adjacent or there are three vertices that are all pairwise not adjacent.

Hint: Start with one vertex and notice that this vertex is either adjacent to (at least) three vertices or
not adjacent to (at least) three vertices.
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Distinguish two cases deg(v)>=3 and deg(v)<=2



(b) Is the statement also true for five people? In other words, does the following hold: For any graph
G = (V, E) with 5 vertices, there are either three vertices that are all pairwise adjacent or there
are three vertices that are all pairwise not adjacent (or both). Provide a proof or a counterexample.



(a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [z|y|, where x and y
are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|x]| is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide.




(a) A domino set consists of all possible (g) + 6 = 21 different tiles of the form [z|y|, where x and y

are numbers from {1,2,3,4,5,6}. The tiles are symmetric, so [z|y] and [y|x]| is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any
consecutive tiles coincide.

(b) What happens if we replace 6 by an arbitrary n > 2? For which n is it possible to line up all (72") +n

different tiles along a line?




Exercise 8.3  Star search, reloaded.

A star in an undirected graph G = (V, E) is a vertex that is adjacent to all other vertices. More formally,
v € Visastar if and only if {{v,w} |w e V \ {v}} C E.

In this exercise, we want to find a star in a graph GG by walking through it. Initially, we are located at
some vertex vy € V. Each vertex has an associated flag (a Boolean) that is initially set to False. We
have access to the following constant-time operations:

« countNeighbors() returns the number of neighbors of the current vertex

moveTo (i) moves us to the ith neighbor of the current vertex, where i € {1..countNeighbors()}

setFlag() sets the flag of the current vertex to True

isSet () returns the value of the flag of the current vertex

undo () undoes the latest action performed (the movement or the setting of last flag)

Assume that G has exactly one star and |G| = n. Give the pseudocode of an algorithm that finds
the star, i.e., your algorithm should always terminate in a configuration where the current vertex is a
star in G. Your algorithm must have complexity O(|V| + |E|), and must not introduce any additional
datastructures (no sets, no lists etc.). Show that your algorithm is correct and prove its complexity.
The behavior of your algorithm on graphs that do not contain a star or contain several stars can be

disregarded.




Example Algorithm

In each iteration:

1. Algorithm terminates
2. Number of vertices to be explored decreases by exactly one
3. current vertex has no unmarked neighbors and we loop forever on this vertex

Algorithm 1 Star-finding algorithm

while countNeighbors() # n — 1 do
setFlag()
for : = 1 to countNeighbors() do
moveTo (7)
if isSet () then
undo ()

else
break




Exercise 8.4  Introduction to Trees.
In this exercise the goal is to prove a few basic properties of trees.

(a) Aleaf is a vertex with degree 1. Prove that in every tree G with at least two vertices there exists a
leaf.

Hint: Consider the longest path in GG. Prove that its endpoint is a leaf.



(b) Prove that every tree with n vertices has exactly n — 1 edges.
Hint: Prove the statement by using induction on n. In the induction step, use part (a) to find a leaf.

Disconnect the leaf from the tree and argue that the remaining subgraph is also a tree. Apply the
induction hypothesis and conclude.



(c) Prove that a graph with n vertices is a tree if and only if it has n — 1 edges and is connected.

Hint: One direction is immediate by part (b). For the other direction (every connected graph withn — 1
edges is a tree), use induction on n. First, prove there always exists a leaf by considering the average

degree. Then, disconnect the leaf from the graph and argue that the remaining graph is still connected
and has exactly one edge less. Apply the induction hypothesis and conclude.



(d) Write the pseudocode of an algorithm that is given a graph G as input and checks whether G is a
tree.

As input, you can assume that the algorithm has access to the number of vertices n, the number
of edges m, and to the edges {a1,b1}, {a2,b2}, ..., {am,bm} (i.e., the algorithm has access to 2m
integers ay, ..., Gm, b1, ..., by, where each edge of GG is given by its endpoints a; and b;). You can
assume that the graph is valid (specifically, 1 < a;,b; < n and a; # b;). The algorithm outputs
“YES” or “NO”, corresponding to whether G is a tree or not. Your algorithm must always complete
in time polynomial in n (e.g., even O(n'%m!?) suffices). You do not have to show the correctness

of your algorithm or what the running time of your algorithm is.

Hint: Use part (c). There exists a (relatively) simple O(n + m) solution. However, the official solution
is O(n - m) for brevity and uses recursion to check if G is connected.



Algorithm 2

1: Input: integers n, m. Collection of integers a1, by, az, ba, ..., am, by.

2:

3: Let visited[l ... n] be a global variable, initialized to False.

4:

5. function walk(u) > Find all neighbors of u that have not been visited and walk there.
6 visited[u] < True

7 fori < 1...mdo > Iterate over all edges.
8 if a; = w and not visited|[b;] then

9 walk(b;)
10: if b; = u and not visited|a;] then
11: walk(a;)
12:
13: walk(1) > Find all vertices connected to 1.
14: connected < True if visited[-] = [True, True, ..., True| and connected <— False otherwise
15: if connected = True and m = n — 1 then > Use the characterization from part (c).
16:  Print(“YES”)
17: else

18: Print(“NO”)




Exercise 8.5  Short questions about graphs (2 points).
In the following, let G = (V, F/) be a graph, n = |V| and m = |E)|.

(a) Let v # w € V. Prove that if there is a walk with endpoints v and w, then there is a path with
endpoints v and w.



For each of the following statements, decide whether the statement is true or false. If the statement is
true, provide a proof; if it is false, provide a counterexample.

(b) Every graph with m > n is connected.



(c) If G contains a Hamiltonian path, then G contains a Eulerian walk.



(d) If every vertex of a non-empty graph G has degree at least 2, then G contains a cycle.



(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (i.e., for all distinct
vertices v, w, there is a vertex = such that {v,z} and {w, z} are both edges). Then there exists a
vertex p in G which is a neighbour of every other vertex in GG (i.e., p has degree n — 1).



(f) Let GG be a connected graph with at least 3 vertices. Suppose there exists a vertex vq,¢ in G so that
after deleting v, G is no longer connected. Then GG does not have a Hamiltonian cycle. (Deleting
a vertex v means that we remove v and any edge containing v from the graph).



Peer Grading(change of the rules this week)

Exercise 8.1
You will find the file to peergrade in your polybox folder

While emailing your peer grading to me please include the group
you corrected their work in cc.

https://docs.google.com/spreadsheets/d/1owPs]sd9THBWInwFcVjK

CcOf _rén4pGwwDKMDdwaCjM/edit?usp=sharing



https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing

