Algorithms and Data Structures

Exercise Session 9
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Terminology Recheck

Can a graph be cyclic or a cycle?






Eulerian ----> Hamiltonian



Eulerian ----> Hamiltonian

Bipartite GraphK_{2,4}



Topological Sorting/Ordering (only in ?)

V (u,v) in E, u comes before v in the ordering




Topological Sorting/Ordering (only in directed acyclic graphs)

V (u,v) in E, u comes before v in the ordering




Topological Sorting/Ordering (only in directed acyclic graphs)

V (u,v) in E, u comes before v in the ordering
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Exercise 9.1  Transitive graphs.

Let G = (V, E) be an undirected graph. We say that G is
« transitive when, for any two edges {u, v} and {v,w} in E, the edge {u, w} is also in F;
« complete when its set of edges is {{u,v} | u,v € V,u # v};

« the disjoint sum of G, = (V1, Ey), ..., Gk = (Vi, E) it V=V U-- - UV, E = F4U---UFE},
and the (V;)1<;<j are pairwise disjoint.

Show that a undirected graph G is transitive if, and only if, it is a disjoint sum of complete graphs.

Graphs drawn in https://cs


https://csacademy.com/app/graph_editor/

Exercise 9.2  Short statements about graphs (cont'd) (1 point).

In the following, let G = (V, E) be a directed graph. For each of the following statements, decide
whether the statement is true or false. If the statement is true, provide a proof; if it is false, provide a

counterexample.
(a) If for every vertex v € V its in-degree deg;, (v) is even, then | E| is even.
(b) For alongest directed path P : v, ..., v in G, the endpoint has to be a sink.

(c) The following graph has a topological sorting. If so, give a topological sorting; if not, prove why no
topological sorting can exist.




Exercise 9.3  Data structures for graphs.
Consider three types of data structures for storing an undirected graph GG with n vertices and m edges:
1) Adjacency matrix.

2) Adjacency lists:
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3) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).

5 ]

For each of the above data structures, what is the required memory (in ©-Notation)?

Which runtime (worst case, in ©-Notation) do we have for the following queries? Give your answer
depending on n, m, and/or deg(u) and deg(v) (if applicable).



(a) Input: A vertex v € V. Find deg(v).

(b) Input: A vertex v € V. Find a neighbor of v (if a neighbor exists).

(c) Input: Two vertices u, v € V. Decide whether u and v are adjacent.

(d) Input: Two adjacent vertices u, v € V. Delete the edge ¢ = {u, v} from the graph.

(e) Input: A vertex u € V. Find a neighbor v € V' of u and delete the edge {u, v} from the graph.

(f) Input: Two vertices u, v € V with u # v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

(g) Input: A vertex v € V. Delete v and all incident edges from the graph.

For the last two queries, describe your algorithm.



Exercise 9.4  Number of paths in DAGs (1 point).

Let G = (V,E) be a directed graph without directed cycles’ (i.e., a directed acyclic graph or short
DAG). Assume that V' = {vy,...,v,} (for n = |V| € N). Further assume that v, is a source and v,, is

a sink. The goal of this exercise is to find the number of paths from v; to v,,.

(a) Prove that there exists a topological sorting of & that has v as first and v,, as last vertex.



Using part (a), we assume from now on that the sorting vy, v9, ..., v, of the vertices is a topological
sorting. We can achieve this by renaming the vertices. Part (a) tells us then that we do not need to
rename v and vy,.

(b) Prove that for any directed vy-v,,-path P : vy = v;,,vi,,...,vi, = vp we haveig < i3 < -+ < iy

(c) Describe a bottom-up dynamic programming algorithm that, given a graph (G with the property
that vq,...,v, is a topological sorting, returns the number of v;-v,, paths in G in O(|V| + |E|)
time. You can assume that the graph is provided to you as a pair (n, Adj) of the integer n = |V/|
and the adjacency lists Adj. Your algorithm can access Adj[u|, which is a list of vertices to which
u has a direct edge, in constant time. Formally, Adj[u] := {v € V | (u,v) € E}.

Hint: Define the entry of the DP table as D P[i] = number of paths in G from v; to v,,.



(d)* What happens if the vertices v; and v, are not a source respectively a sink? Can we still find the
number of v;-v,, paths using a similar approach as above?



Exercise 9.5  Strongly connected vertices (1 point).

Let G = (V, E) be adirected graph with n vertices and m edges. We say two distinct vertices v, w € V
are strongly connected if there exists both a directed path from v to w, and from w to v.

Describe an algorithm which find a pair v, w € V of strongly connected vertices in G, or decides that
no such pair exists. The runtime of your algorithm should be at most O(n + m). You are provided with
the number of vertices n, and the adjacency list Adj of G.

Hint: Use DFS to traverse the graph. Maintain a global array status|l ...n| which keeps track for each
vertex whether (1) it has not been reached yet; (2) it has been reached, but some of its descendants have
not; or (3) it, and all of its descendants, have been reached. What should the initial status of each vertex

be? What can you say when the DFS reaches a vertex with status (2)? What can you say when all vertices
have status (3)?

Hint: Make sure your DFS reaches every vertex at some point before terminating!



Algorithm 1

: Input: integer n. Adjacency list Adj[1...n].

. Let status[1...n] be a global array, with all entries initialized to UNVISITED.

1
2
3
4
5: function visit(u)
6 status[u] <— VISITING
7
8
9

for each v in Adj[u| do > Iterate over all neighbours v.
if status[v] = VISITING then > There is a directed cycle containing u and v.
: Output (u,v) and terminate
10: if status[v] = UNVISITED then
11: visit(v)
12: status(u] <— VISITED.
13: foru=1,2,...,ndo
14: if status[u] = UNVISITED then
15: visit[u]

16: Output "no strongly connected vertices exist”




Peer Grading

Exercise 9.4
You will find the file to peergrade in your polybox folder

While emailing your peer grading to me please include the group
you corrected their work in cc.

https://docs.google.com/spreadsheets/d/1owPs]sd9THBWInwFcVjK

CcOf _rén4pGwwDKMDdwaCjM/edit?usp=sharing



https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1owPsJsd9THBWInwFcVjKCc0f_r6n4pGwwDKMDdwaCjM/edit?usp=sharing

