
Algorithms and Probability
Exercise Session 11

https://n.ethz.ch/~ahmala/anw

Ford Fulkerson

Ford Fulkerson

Time Complexity
● O(val(f_max) * |E|)
● O(U * |V| * |E|)

Better Algorithm
(Dynamic Trees, Sleator-Tarjan, 1983): O(mn log n)

Max Flow in Almost Linear Time
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608/

The build is basically dynamic trees adapted to tree-based graph approximators. Brief guide to technical details from an OI data structures perspective(source
https://codeforces.com/blog/entry/100510?#comment-892347)

● Write flows in linear algebraic notation, bash some inequalities, turn the problem into supporting about m approximate minimum-ratio cycles on a dynamically changing graph.
(Section 4 & 9)

● Observe that routing along low stretch trees give such approximate solutions to the min-ratio cycle problem. (Dijkstra running in mlogn time is OP) (Section 2.2. for static,
dynamic version in Section 7)

● Start with one such tree embedding, throw HLD/separators/contractions at it to maintain partial routings to end points of vertices involved in updates. (Section 6)
● Problem on these vertices involved in updates becomes maintaining spanners under vertex splits. In static cases, this can be done by expanders, which are structureless

graphs. Maintain such graphs with another round (or two) of segtrees... (Section 5)
● Things can still break because the costs of the partial routing significantly decreased. Do some coordinated rebuild of the k layers of recursion (Section 8).
● Carefully analyze the interactions of the randomness against the future updates, using stability of the optimal update step. (start of Sections 6, then Section 9)

https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608/
https://codeforces.com/blog/entry/100510?#comment-892347

Max Flow in Almost Linear Time
https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608/

The build is basically dynamic trees adapted to tree-based graph approximators. Brief guide to technical details from an OI data structures perspective(source
https://codeforces.com/blog/entry/100510?#comment-892347)

● Write flows in linear algebraic notation, bash some inequalities, turn the problem into supporting about m approximate minimum-ratio cycles on a dynamically changing graph.
(Section 4 & 9)

● Observe that routing along low stretch trees give such approximate solutions to the min-ratio cycle problem. (Dijkstra running in mlogn time is OP) (Section 2.2. for static,
dynamic version in Section 7)

● Start with one such tree embedding, throw HLD/separators/contractions at it to maintain partial routings to end points of vertices involved in updates. (Section 6)
● Problem on these vertices involved in updates becomes maintaining spanners under vertex splits. In static cases, this can be done by expanders, which are structureless

graphs. Maintain such graphs with another round (or two) of segtrees... (Section 5)
● Things can still break because the costs of the partial routing significantly decreased. Do some coordinated rebuild of the k layers of recursion (Section 8).
● Carefully analyze the interactions of the randomness against the future updates, using stability of the optimal update step. (start of Sections 6, then Section 9)

NOT RELEVANT AT ALL

https://www.quantamagazine.org/researchers-achieve-absurdly-fast-algorithm-for-network-flow-20220608/
https://codeforces.com/blog/entry/100510?#comment-892347

How worse is Ford Fulkerson?

How worse is Ford-Fulkerson?
● maximum value of a flow is 4 million
● Ford-Fulkerson algorithm might always

choose a path that uses the edge uv by
alternately choosing suvt and svut.

● This way the value of the flow increases by
1 in every step, so it takes 4 million
improvements to reach a maximum flow.

Is this Correct?
Removing the shortest path from source to target decreases the
max-flow either by 0 or 1.

NOPE
Removing the shortest path from source to target decreases the flow either by 0 or 1.

Integrality Theorem

If the all capacities are integers, then there is an integer maximum flow.

Prove or Disprove!
Let G be a network with source s, sink t, and integer capacities.

a) If all capacities are even then there is a maximal flow f such that f(e) is
even for all edges e.

b) If all capacities are odd then there is a maximal flow f such that f(e) is
odd for all edges e.

Solution

Bipartite Matching in O(nm)

Multiple Sources and Sinks

Given a flow network with several sources and sinks, how can we compute maximum
flow on such a network?

Multiple Sources and Sinks
The idea is to create a super source, that send all its flow to the old sources and
similarly create a super sink that receives all the flow. Clearly, computing flow in both
networks in equivalent.

Minimum Cut with terminal nodes(sink & source)
Apply Max-Flow Algorithm (nm log(n))

Minimum Cut with and without terminal nodes(sink & source)
With Max-Flow Algorithm O(n4 * log(n))

Minimum Cut with and without terminal nodes(sink & source)
With Randomized Approach in O(n^2):

Repeat it n^2 * log(n) times, take the minimum of the returned values.

End up with O(n^4 * log(n))

Minimum Cut with and without terminal nodes(sink & source)

For n small, we have large failure rate.

Bootstrapping

● When a constant number of vertices left, use a deterministic&correct algorithm
(e.g. Max-Flow)

● With bootstrapping, you get O(n^2 * poly(log(n))).

In Class Exercise

In Class Exercise
Total Number Of Games?

How Many Matches of Pura left?

How many points other teams can
get max so Pura gets 1.place?

