Algorithms and Probability Exercise Session 4

https://n.ethz.ch/~ahmala/anw

11 Problems9 MinutesPassword:

11 Problems9 MinutesPassword:

velocity

Grading

Theory Sheets: Strict

Peer Grading: Strict

Coloring

Complete graph with n nodes has chromatic number of [...].

Complete graph with n nodes has chromatic number of n. K_n is n-partite.

Complete graph with n nodes has chromatic number of n.

 K_n is n-partite.

Is there a polynomial time algorithm to find if the graph has chromatic number 3?

Complete graph with n nodes has chromatic number of n.

 K_n is n-partite.

Finding out if the graph has chromatic number >=3 is NP-Complete.

Is it to good?

Greedy-Färbung (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- $\texttt{2:} \ c[\nu_1] \gets 1$
- 3: for i = 2 to n do
- $4: \quad c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \dots, \nu_{i-1}\}\}$

With Greedy-Färbung we get 2-coloring for every bipartite graph?

Greedy-Färbung (G)

- 1: wähle eine beliebige Reihenfolge der Knoten: $V = \{v_1, \dots, v_n\}$
- 2: $c[v_1] \leftarrow 1$
- 3: for i = 2 to n do
- $4: \quad c[\nu_i] \leftarrow \min\{k \in \mathbb{N} \mid k \neq c(u) \text{ für alle } u \in N(\nu_i) \cap \{\nu_1, \dots, \nu_{i-1}\}\}$

No!

Beispiel 1.61. Betrachten wir den Graphen B_n mit 2n Knoten, der aus dem vollständigen bipartiten Graphen $K_{n,n}$ entsteht, indem man die Kanten zwischen gegenüberliegenden Knoten entfernt. Da der Graph B_n bipartit ist, könnte er eigentlich mit zwei Farben gefärbt werden; es ist aber nicht schwer einzusehen, dass es auch eine Reihenfolge der Knoten gibt, für die der Greedy-Algorithmus n Farben benötigt (Übung!).

In-Class Exercise

https://n.ethz.ch/~ahmala/anw/material/In_Class_Exercise.pdf

Probability Space(Wahrscheinlichkeitsraum) = $(\Omega, Pr[])$

Discrete Sample Space (Ereignisraum) $\Omega = \{\omega_1, \omega_2, \omega_3, \dots\}$

Elementary Event(Elementare reignis): $\omega_i \in \Omega$

Probability function (Wahrscheinlichkeitsfunktion) $Pr: \Omega \rightarrow [0, 1]$

A set $E \subseteq \Omega$ is called event (Ereignis): set of elementary events

Pr [E]: sum of the elementary events included in E

Complementary Event (Komplementärereignis) $\overline{E} := \Omega \setminus E$

 $\Pr[\overline{E}] = 1 - \Pr[E]$

 $\forall \omega \in \Omega : 0 \leq \Pr(\omega) \leq 1$ n $\Pr(\omega) = 1$ > $\omega \in \Omega$ $orall E \subseteq \Omega: Pr[E] = \sum Pr[\omega]$ $\omega \in E$

 $\Pr[\varnothing] = ?$

 $\Pr[\Omega] = ?$

 $A \subseteq B \Rightarrow \Pr[A]$? $\Pr[B]$

 $egin{aligned} &orall \omega\in\Omega:0\leq \Pr(\omega)\leq 1\ &\sum_{\omega\in\Omega}^n\Pr(\omega)=1\ &orall E\subseteq\Omega:Pr[E]=\sum_{\omega\in E}Pr[\omega] \end{aligned}$

 $\Pr[\varnothing] = 0$

 $\Pr[\Omega] = 1$

 $A \subseteq B \Rightarrow \Pr[A] \leq \Pr[B]$

 $egin{aligned} &orall \omega\in\Omega:0\leq \Pr(\omega)\leq 1\ &\sum_{\omega\in\Omega}^n\Pr(\omega)=1\ &orall E\subseteq\Omega:Pr[E]=\sum_{\omega\in E}Pr[\omega] \end{aligned}$

Roll Two Dices At Once

How likely is to roll a sum of 8?

Different Ways of Picking Elements

	order matters	order does not matter
repetition allowed	n^k .	$\frac{(n+k-1)!}{k!(n-1)!}$
no repetition allowed	$\frac{n!}{(n-k)!}$	$\frac{n!}{k!(n-k)!}$

- 1) Drawing *k* cards from a deck of *n* cards.
- 2) Choosing which *k* items to buy from a store that has unlimited amounts of *n* different items.
- 3) Rolling an *n*-sided die *k* times.
- 4) The number of possible first *k* places on a scoreboard of *n* people