Complex Analysis
Abstract
important thms., definitions, etc. (minimalistic)
based on Complex Analysis 401-2303-00S HS23
Cauchy Riemann Equations (CR-eq.) : $f(z) = u(x, y) + iv(x, y)$
corr. : - $$\partial_x u = \partial_y v$$
- $$\partial_y u = -\partial_x v$$
$f \in \mathcal{H(\Omega)}$, $\Omega$ open conn., $f' = 0 \implies f = const.$
-
$f \in \Omega \subset \mathbb{C}$ open, $u, v \in C^0(\Omega)$ $\wedge$ CR-eq. satisfied on $\Omega \implies f \in \mathcal{H}(\Omega)$
$$e^z := \sum_{n \in \mathbb{N}_0}^{} \frac{z^n}{n!}$$
$$\cos z := \frac{e^{iz} + e^{-iz}}{2} = \sum_{n \in \mathbb{N_0}}\frac{(-1)^n}{(2n!)}z^{2n} = cosh(iz)$$
$$\sin z := \frac{e^{iz} - e^{-iz}}{2i} = \sum_{n \in \mathbb{N_0}}\frac{(-1)^n}{(2n+1)!}z^{2n+1} = -isinh(iz)$$
Goursat
Corollary $\leadsto$ same for rectangles (2 triangles)
-
$\Omega \subset \mathbb{C}$ open, $T \subset \Omega$
Triangle
, $T^\circ \subset \Omega$
$$\implies \int_{T}^{} (f\in \mathcal{H}(\Omega)) = 0$$
locally every $f \in \mathcal{H}$ has a primitive $F$
- $f \in \mathcal{H}(D)$, $D$ open disc $\in \mathbb{C}$ $\implies \exists F \in D: F'= f$
- $D$ (from above), $f \in C^0(D) : \int_{\text{$\partial$\{closed rect.\}}}^{}f \stackrel{Goursat}{=} 0$ when sides $||$ coord. ax. $\implies \exists$ $F$ in $D$
Cauchy's thm. for a disc
Corr. $\leadsto$ circles (proof with "keyhole"), generally $\leadsto$ toy contours
$\int_{\gamma}^{}\frac{1}{z - z_0} = 2\pi i$, $\gamma$: toy contour (circle, rect., ...)
$\int_{\gamma}^{}\frac{1}{z - z_0} = 2\pi i$, $\gamma$: toy contour (circle, rect., ...)
- $f \in \mathcal{H}(D \backslash \{z_0\}) \quad \wedge \quad f \in C^0(D)$
CIF
corr. $\leadsto f \in \mathcal{H}(\Omega) \implies f \in C^{\infty}(\Omega)$
- $f \in \mathcal{H}(\Omega)$, $\bar{D} \subset \Omega$ open
winding number $w_{\gamma}$
$\leadsto$ prop.:
$\implies w_{\gamma} \in C^{\circ}(\Omega, \mathbb{C}), w_{\gamma}(z) \in \mathbb{Z}$, hence const. on any conn. sset. of $\Omega$, $w_{\gamma}(z) = 0$ if $|z|$ large enough
$\implies w_{\gamma} \in C^{\circ}(\Omega, \mathbb{C}), w_{\gamma}(z) \in \mathbb{Z}$, hence const. on any conn. sset. of $\Omega$, $w_{\gamma}(z) = 0$ if $|z|$ large enough
- $z_0 \in \mathbb{C}$, $\not\in \gamma \in C^{\infty}_{pw}$ closed, $w_{\gamma}(z_0) := \frac{1}{2\pi i}\int_{\gamma}^{}\frac{1}{z - z_0}dz$
Meromorphic function $f \in \mathcal{M}$
$\mathcal{M}$ is a $\mathbb{C}$ vector space:
$f, g \in \mathcal{M}(\Omega):$
$af + bg, fg \in \mathcal{M}(\Omega)$
$0 \not\equiv f \in \mathcal{M}(\Omega)$ and zeroes of f don't have lim. pt. in $\Omega \implies \frac{1}{f} \in \mathcal{M}(\Omega)$
$f, g \in \mathcal{M}(\Omega):$
$af + bg, fg \in \mathcal{M}(\Omega)$
$0 \not\equiv f \in \mathcal{M}(\Omega)$ and zeroes of f don't have lim. pt. in $\Omega \implies \frac{1}{f} \in \mathcal{M}(\Omega)$
- $f:\Omega\to\hat{\mathbb{C}}$, $\Omega$ open
- $1)\quad S_f := \{z \in \Omega : f(z) = \infty\}$ has no lim. pt. in $\Omega$, i.e. $S_f$ si discrete in $\Omega$
- $2)\quad f \in \mathcal{H}(\Omega \backslash S_f)$
combination of 2 thms. on zeroes and poles of functions
sometimes useful but theoretically included in the thm. already:
$1) \quad f$ has pole of ord. $m$ at $z_0$ (i.e. $|\lim_{z \to z_0}(z - z_0)^m f(z)| < \infty$) and $m$ is the smallest such integer
$2) \quad \exists r>0: D_r(z_0) \subset \Omega \wedge h \in \mathcal{M}(D_r(z_0)): h(z) \not = 0 $
$ \forall z \in D^*_r(z_0)$
$h$ has a zero of ord. $m$ at $z_0$ and s.t.: $f(z) = \frac{1}{h(z)} \quad \forall z \in D^*_r(z_0)$
(ord. of zero $z_0$: $ord_{z_0}f := min(\{k \geq 0 : f^{k}(z_0) \not= 0\})$)
$1) \quad f$ has pole of ord. $m$ at $z_0$ (i.e. $|\lim_{z \to z_0}(z - z_0)^m f(z)| < \infty$) and $m$ is the smallest such integer
$2) \quad \exists r>0: D_r(z_0) \subset \Omega \wedge h \in \mathcal{M}(D_r(z_0)): h(z) \not = 0 $
$ \forall z \in D^*_r(z_0)$
$h$ has a zero of ord. $m$ at $z_0$ and s.t.: $f(z) = \frac{1}{h(z)} \quad \forall z \in D^*_r(z_0)$
(ord. of zero $z_0$: $ord_{z_0}f := min(\{k \geq 0 : f^{k}(z_0) \not= 0\})$)
- $f \in \mathcal{M}(\Omega), f \not= 0, z_0 \in \Omega$
- $1)\quad ord_{z_0}f \iff \exists r>0, h \in \mathcal{H}(D_r(z_0)):$
$h(z_0) \not= 0, f(z) = (z - z_0)^{ord_{z_0}f}h(z) \quad \forall z \in D^*_r(z_0)$
- $ord_{z_0}f < 0$ if $z_0$ pole
- $ord_{z_0}f > 0$ if $z_0$ zero
- $2)\quad ord_{z_0}(fg) = ord_{z_0}f + ord_{z_0}g, ord_{z_0}(\frac{f}{g})$ =
$ord_{z_0}f - ord_{z_0}g$
- $3)\quad ord_{z_0}(f + g) \geq min({ord_{z_0}f, ord_{z_0}g})$
- $f \in \mathcal{M}(\mathbb{\hat{C}})$
pwr. series exp. at $z_0$
f pwr. series, rad. of conv. = R $\implies f'$ obtained by termwise diff. has same rad. of conv.
Laurent Series: $\sum_{n \in \mathbb{Z}}^{}a_n(z - z_0)^n$, Annulus $\mathcal{A}$...
- $f \in \mathcal{H}(\Omega)$, $D \hat{=} D_R(z_0)$ from above
Liouville's thm.
$\Uparrow$
- $f \in \mathcal{H}(\mathbb{C}) \wedge$ bdd.
Generalized Liouville's thm.
- $f \in \mathcal{H}(\mathbb{C}) : |f(w)| \leq c|w|^n \quad \forall w \in \{z \in \mathbb{C} : |z| > C\}$ for $c, C > 0, n \geq 0$
- $f \in \mathcal{H}(\Omega)$, $\Omega$ conn. open that vanishes on seq. of distinct pts. with lim in $\Omega$
identity thm.
- $f, g \in \mathcal{H}(\Omega)$, $\Omega$ open, conn. $\not= \emptyset$
- $a)\quad f = g$
- $b)\quad \exists a \in \Omega: f^{(n)}(a) = g^{(n)}(a)$ $\forall n \geq 0$
- $c)\quad \{z \in \Omega: f(z) = g(z)\}$ has lim. in $\Omega$
Morera
- $f \in C^0(D)$, $D$ open, $\forall T \subset D:$ $\int_{T}^{}f = 0$
- $\{f_n\}_{n\geq1}$ seq.: $f_i \in \mathcal{H}(\Omega)$, that conv. unif.
seq. $f_1, f_2,... : \Omega \to \mathbb{C}$ of func. def. on $\Omega \subset \mathbb{C}$ is unif. conv. to lim. $f:\Omega\to\mathbb{C}$ if:
$\forall\varepsilon>0 \exists N > 0 : |f(z) - f_n(z)| < \varepsilon$ $\forall n \geq N, z \in \Omega$ to a func. f in every comp. sset of $\Omega$
unif. conv. on compacta $\iff$
- $1)\quad \forall a \in \Omega \exists \varepsilon > 0: B_{\epsilon}(a) \subset \Omega : (f_n|_{B_{\epsilon}(a)})$ conv. unif. $\wedge$
- $2)\quad \forall $ comp. sset. $K \subset \Omega: (f_n|_K)$ conv. unif.
Weierstrass M-test
Riemann contin. thm.
- $z_0 \in \mathbb{C}$, $f \in \mathcal{H}(\Omega\backslash\{z_0\})$, $\Omega \not= \emptyset$
- $1)\quad f$ is holom. ext. to $\Omega$
- $2)\quad f$ is cont. ext. to $\Omega$
- $3)\quad f$ is bdd. in nbhd. of $z_0$ i.e. $\exists r>0 : |f(z)| \leq M \in \mathbb{R}$ $\forall z \in D^*_r(z_0)$
- $4)\quad \lim_{z \to z_0}f(z) = 0$
Riemann's thm. on remov. sing. $3) \implies 1)$ from R-contin.thm
- $f \in \mathcal{H}(\Omega\backslash\{z_0\})$, $f$ bdd. in $D^*_r(z_0)$ for some $D_r(z_0)\subset \Omega$
$$\implies z_0 \text{ is a remov. sing. of } f$$
i.e. $\exists F\in \mathcal{H}(\Omega, \mathbb{C}): F(z) = f(z) \quad \forall z\in \Omega\backslash\{z_0\}$
func. with poles
special case of Laurent series:
$f(z) = \sum_{j = -n}^{\infty}a_j(z - z_0)^j$ same hypotheses as above
$f(z) = \sum_{j = -n}^{\infty}a_j(z - z_0)^j$ same hypotheses as above
- if $f$ has pole of ord. $n$ at $z_0$:
- $G \in \mathcal{H}(D_r(z_0))$, $a_{-1} := res_{z_0}f$
residue $res_{z_0}f$
- $f$ pole of ord. $n$ at $z_0$
- $f, g \in \mathcal{H}(\{z_0\})$, $g(z)$ simple zero at $z_0$
General Residue Formula/thm.(using homotopy thm.) $\implies$ CIF
- $\Omega \subset \mathbb{C}$ simply conn., $f\in \mathcal{M}(\Omega)$, $V:=\Omega\backslash S_f$, $\gamma \subset V$ closed curve
Homotopy thm.
$\Downarrow$
- $\Omega \subset\mathbb{C}$ open, $\gamma_{0, 1}:[a, b] \to \Omega$ s.t.:
- $1)\quad \gamma_{0, 1}$ are closed and $\gamma_{0} \sim_{\Omega}\gamma_{1}$ (Homotopic)
- $2)\quad \gamma_{0, 1}$ have same endpts. and are homotopic with fixed endpts.
- $f \in \mathcal{H}(\Omega)$, $\Omega$ simply conn. $\implies \exists F: F' = f$, in part.: $\int_{\gamma_{closed}\in \Omega}^{}f \stackrel{\text{cauchy thm.}}{=} 0$, any 2 primitives differ by a const.
Casorati-Weierstrass ($\Leftarrow$ Picard thm.
$f\in \mathcal{H}(D^*_r(z_0))$ with ess. sing. $z_0$ $\implies \#\{\mathbb{C}\backslash f(D^*_r(z_0))\} \leq 1$
)
$\forall z \in \mathbb{C}, \varepsilon > 0 \exists w \in \mathbb{C}: |z - f(w)| < \varepsilon $
- $f \in \mathcal{H}(D^*_r(z_0))$ with ess. sing. $z_0$
$\forall z \in \mathbb{C}, \varepsilon > 0 \exists w \in \mathbb{C}: |z - f(w)| < \varepsilon $
Arg. princ.
has poles of ord. 1 at $z_0 \in \Omega$ i.e. $z_0$ is either pole or zero of $f$
$res_{z_0}(\frac{f'}{f}) = ord_{z_0}f$
$Z_f :=$ set of zeroes of f
$S_f :=$ set of poles of f
- $\Omega \subset \mathbb{C}, \gamma \subset \Omega$ s.t. res. formula holds, $f\in \mathcal{M}(\Omega)$
- if $f$ has no zeros or poles on $\gamma$
has poles of ord. 1 at $z_0 \in \Omega$ i.e. $z_0$ is either pole or zero of $f$
$res_{z_0}(\frac{f'}{f}) = ord_{z_0}f$
$Z_f :=$ set of zeroes of f
$S_f :=$ set of poles of f
Rouché's thm.
gives the nicest proof to fund. thm of algebra
- $f, g \in \Omega \supset C, C^{\circ}$, $\Omega$ open
- $|f(z)| > |g(z)| \quad \forall z \in C$
open mapping thm.
$\Downarrow$
- $\Omega$ open conn., $f\in \mathcal{H}(\Omega)$, $f$ not a const (i.e. $f$ has iso. sing.)
- $\implies f \not=$ const. if $f \in \mathcal{H}(D_r(0))$
- $\implies$ it's not possible that: $f(z) \in \mathbb{R} \quad \forall z$ , since any sset of $\mathbb{R}$ is not open in $\mathbb{C}$
max. mod. princ.
special case of open mapping thm. since if $|f|$ attains local max. at $z \implies img(B_\varepsilon (z))$ cannot be open $\implies f =$ const.
$\Omega \subset \mathbb{C}$ open conn., $f \in \mathcal{H}(\Omega)$ not const.: $$\implies \not\exists z_0 \in \Omega : |f(z_0)| \geq |f(z)| \quad \forall z \in \Omega$$ ($f$ cannot attain a max. in $\Omega$)
in part. if $\bar{\Omega}$ bdd., $f \in C^0(\bar{\Omega})$ $$\implies max_{z \in \bar{\Omega}}|f(z)| = max_{z \in \partial\Omega}|f(z)|$$
- $\Omega$ open, conn., $f \in \mathcal{H}(\Omega)$
- $\exists z_0 \in \Omega: |f(z_0)| \geq |f(z)| \quad \forall z \in B_\varepsilon(z_0) $
$\Omega \subset \mathbb{C}$ open conn., $f \in \mathcal{H}(\Omega)$ not const.: $$\implies \not\exists z_0 \in \Omega : |f(z_0)| \geq |f(z)| \quad \forall z \in \Omega$$ ($f$ cannot attain a max. in $\Omega$)
in part. if $\bar{\Omega}$ bdd., $f \in C^0(\bar{\Omega})$ $$\implies max_{z \in \bar{\Omega}}|f(z)| = max_{z \in \partial\Omega}|f(z)|$$
Homotopy
branch of log, Log
existence of log
conformal map
- $U, V \subset \mathbb{C}$ open
- inj. holom. map : $f: U \to V$ is called conformal map
- if $f$ is bij. : conformal equivalence
conf. equiv. is an equivalence relation:
$\sim_C$ i.e.:
$U\sim_CU \quad \hat{=} \quad f: U\to U, u\mapsto u$ (id.)
as well as symmetry and transitivity (/biholom./holom. isomorph.) $\implies f\in \mathcal{H}$
- $U$ and $V$ are conformally equivalent if $U = V \iff$ automorphism
Riemann thm.
corr. $\leadsto$ any 2 proper, simply conn. open ssets of $\mathbb{C}$ are conf. equiv.
- $\Omega$ proper
$\not= \emptyset \wedge \Omega \subsetneq \mathbb{C}$
simply conn., $z_0\in \Omega$
$$\implies \exists ! F \text{ (conformal) } : \Omega \to \mathbb{D}:$$
$$F(z_0) = 0, F'(z_0) > 0$$
only autom. of $D_1$ that fix the origin are rotations
- if $f:\mathbb{D} \to \mathbb{D}$ is an automorph. of $\mathbb{D}$
Schwarz's Lemma ($\Leftarrow$ mod. princ.)
- $f\in \mathcal{H}(\mathbb{D},\mathbb{D}): f(0) = 0$
- $1) \quad |f(z)| \leq |z| \quad \forall z\in \mathbb{D}$
- $2) \quad$ if for some $z_0 \not= 0$ we have $|f(z_0)| = |z_0| \implies f$ is a rot.
- $3) \quad |f'(0)| \leq 1$,
$|f'(0)| = 1 \iff f$ is a rot. ($\exists\theta\in\mathbb{R}:f(z)= e^{i\theta}z$)
- every automorph. $g\in \mathcal{H}(\mathbb{H}, \mathbb{H})$ is of the form:
Montel thm.
Integrals
f even $\implies \int_{\mathbb{R^+}}^{}f = \frac{1}{2}\int_{\mathbb{R}}^{}f$$1) \quad$ e.g.: $\int_{\mathbb{R}}^{}\frac{1}{(x^2 + a^2)^2}dx$ (sketch: path integral over $\mathbb{D} \cap \mathbb{H} \leadsto \gamma := \gamma_{R} \cup [-R, R]$, $\gamma_{R}\stackrel{R\to \infty}{\to}0, \lim_{R\to\infty}[-R, R] = (-\infty, \infty)$)
$f := \frac{P(x)}{Q(x)}$ $$I := \int_{\mathbb{R}}^{}fdx$$ $P, Q \in \mathbb{R}[x]: deg(Q) \geq deg(P) + 2$ s.t.: $|\int_{\gamma_R}^{} fdx| \leq C\frac{1}{R^{degQ - degP}}R \stackrel{R\to \infty}{\to}0$ , $\not\exists z_0 \in \mathbb{R}: Q(z_0) = 0$ $$\implies I = 2\pi i\sum_{\substack{z_i \in S_f\\ S_f \cap \gamma = \emptyset}}res_{z_i}f = 2\pi i \sum_{\substack{(imz_i > 0) \in S_f \\ S_f \cap \gamma = \emptyset}}res_{z_i}f$$ since our choice of path
$1.1) \quad$ e.g.: $\int_{\mathbb{R}}^{}\frac{1}{x^2 + 1} cos(ax)dx$ ($|e^{iz} = e^{i(x+iy)}| = e^{-y} \implies |e^{iz}| \leq 1 : imz > 0$) $$\int_{\mathbb{R}^{}}f cos(ax) dx$$ define $f_{new} := f(z)e^{iaz}$
sol. $\leadsto$ same as above
$2) \quad$ e.g.: $\int_{0}^{2\pi}\frac{1}{a + cos\theta}d\theta$ (sketch: contour integral around $C_1(0)$ with subst. $z := e^{i\theta}$) $P, Q \in \mathbb{R}[x], Q(x, y) \not= 0$ for $x^2 + y^2 = 1 \quad \forall x, y\in \mathbb{R}$ $$\int_{0}^{2\pi}\frac{P(cost, sint)}{Q(cost, sint)}dt$$ $\implies$ res. thm.