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In this experiment we measure the temperature-dependent resistance of a semiconductor sample and
determine the band gap in the intrinsic regime. After carrying out the experiment we have for the
band gap energy Eg,T2

= 1.129 ± 0.003 eV in a temperature range T2 = [480.15, 773.15]K. We conclude
that the experimentally obtained values do not align with the theoretical model and the literature value
consequently does not lie within the uncertainty of our results. Therefore the experiment can be improved
by conducting an extensive error analysis on the experiment setup and sample as well as finding more
descriptive models and minimize simplifications to describe the behavior of the semiconductor sample.

Microchips rely on semiconductor materials, which are es-
sential in modern electronics. With of the sociotechnical in-
fluence of microchips nowadays comes also political as well
as economical interest which emphasizes the importance of
semiconductor materials.

Semiconductors are conductors whose charge carrier
concentration and therefore its conductivity

σ = σ(T ) (1)

is temperature-dependent. At the atomic level, if N atoms
are brought increasingly closer to each other and form a
crytal, there is an increasing quantum mechanical coupling
between the atoms. As N → ∞ the discrete energy levels of
the isolated atoms form energy bands of allowed electronic
states. This result can be obtained solving the following
Schrödinger equation
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∇2unk⃗(r⃗)e

ik⃗r⃗ + (E − V )unk⃗(r⃗)e
ik⃗r⃗ (2)

with spin degenerate energy states where unk⃗(r⃗) is the Bloch
function, E the total energy, V the periodic potential with
the same period as the crystal lattice, m the free electron
mass, h the Planck constant k⃗ the wave vector and n a band
index. [1] [2] A consequence of solving Equation (2) using
the approximation for the quasi free electrons is that solu-
tions do not exist at all energies. Which explains the band
gap

Eg = EC − EV (3)

a range of energies where no electronic states exist, where
EC is the lowest conduction band energy and EV the high-
est valence band energy.

The probability that a quantum state with energy E is
occupied at a given temperature T is given by the Fermi-
Dirac distribution

f(E) =
1

1 + e

(
E−EF
kBT

) (4)

where EF is the Fermi energy, kB the Boltzmann constant
and T the temperature. Materials are classified via the po-
sition of the Fermi energy EF at T = 0K.

• Metals: EF lies within the conduction band, so
electrons are free to move and contribute to elec-
trical conduction. Conductivity is high (σmetal ≈
105Ω−1cm−1) and changes weakly with temperature.

• Insulators: EF is in a large band gap (Eg ⪆ 10
eV). This makes them poor conductors (σinsulator ∈
[10−14, 10−3]Ω−1cm−1).

• Semiconductors: The energy gap is smaller (Eg ⪅
10 eV) and an exponentially small number of ther-
mally excited electrons populate the conduction band.
Hence the electrical conductivity depends very sensi-
tively on the temperature via Equation (4)

An ideal semiconductor, i.e. intrinsic semiconductor, has
no lattice defects, impurities or dislocations.

A real semiconductor (extrinsic) contains at least a rel-
ative impurity atom concentration of 10−10. One can also
voluntarily introduce impurities, i.e. dope the semiconduc-
tor, to fabricate p-type (achieved with acceptors) and n-type
(achieved with donors) semiconductors, depending on the
semiconductor material and the choice of atom to replace
with in the crystal lattice. The consequence of doping is
that it introduces different regimes of conduction. Namely
an extrinsic and intrinsic conduction. In this experiment
we study the intrinsic regime.

In the intrinsic regime conduction is dominated by the
thermally excited charge carriers, i.e. for higher temper-
atures (kBT ≈ Eg) which results in excitation of elec-
trons from valence to conduction band. [3] The conduc-
tion is caused by electron-hole pairs and the charge car-
rier density is the following (under the assumption that
EC − EF , EF − EV ≫ kBT )

n = p = ni =
√
NCNV e

(
− Eg

2kBT

)
∝ T

3
2 e

−Eg
2kBT (5)

where n is the electron density, p the hole density, ni the
intrinsic charge carrier density and NC , NV the effective
density of states the conduction and valence band respec-
tively. Lastly, the electrical conductivity is given by

σ ∝ e
−Eg
2kBT (6)

[4]
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Methods
The purpose of this experiment is to measure the electrical
resistence of a silicon semiconductor sample as a function
of temperature from room temperature to 873.15K. The
resistance then is used to estimate the band gap Eg of the
semiconductor performing a linear fit and extracting the
slope using Equation (6), in order to compare the experi-
mentally obtained values to literature values and therefore
verify the theoretical model.

The experimental setup consists of a silicon sample,
which has 4 aluminium strips evaporated on the surface to
ensure good electrical contact to the wires on the bottom
of the sample holder for a 4-point measurement, an oven
and heat controller, as well as a vacuum pump. The sample
is heated in a vacuum chamber in order to eliminate error
sources or potential damage to the sample such as oxidation
or thermal stress due to rapid heating or cooling. Further-
more a 4-point measurement is employed to measure the
resistance of the sample, as it eliminates the influence of the
contact resistances and therefore provides a more accurate
measurement of the sample resistance.

Since the conductivity and hence the resistance is
temperature-dependent as Equation (1) suggests, we first
have to estimate a maximum current to avoid heating the
sample since we do not have the temperature under control.
Additionally, the temperature dependence of the resistance
will lead to changes in the current and hence requires us
to ensure that the estimated maximum current is not ex-
ceeded.

The measurement procedure consists of heating the
sample from room temperature to 873.15K and cooling it
down again to approximately the end of the intrinsic regime
taking a datapoint every 5K.

Data Analysis and Results
If not mentioned otherwise, the uncertainties of the values
are calculated using Gaussian error propagation. (see Ap-
pendix A.1).
data analysis

The estimated maximum current through the sample
was estimated to be Imax = 0.55± 0.05 mA.

For the band gap determination the dimensions of the
semiconductor were not relevant, therefore no further eroor
analysis or measurements have been performed on it.

0

2000

4000 Tmin = 295.85K
Tmax = 873.15K
Heating

300 400 500 600 700 800 900
0.00

0.05

0.10

0.15 Tmin = 483.15K
Cooling

T [K]

R 
[

]

Fig. 1 | Measured resistance of the semiconductor sample
as a function of temperature, the upper graph for heating

the sample up to 873.15K and the lower for cooling the
sample to approximately the end of the intrinsic regime
≈483.15K. The datapoint at Tmax is the same for both
datasets and hence not considered in the lower one as it
does not contribute to further analysis.

Since the electrical resistance is inversely proportional to
the conductivity we can use the relation from Equation
(6) to plot ln(R) in dependence of 1/2kBT . We do this in
order to be able to extract then from this relation through
a linear fit the slope of the curve in the intrinsic regime
which gives us the band gap Eg.
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Fig. 2 | The upper graph shows ln(R) in dependence of
1/kBT for the heating and cooling process. To extract the
band gap Eg a linear fit is performed in the intrinsic regime,
the slope of the fit then is the value for Eg. To perform
a linear fit, some values have been left out on purpose to
ensure higher precision. The fits are indicated by the dot-
ted lines. The black dotted line was chosen on a relatively
linear behaving interval (T1 := [410.65, 578.15]K) with as
few fluctuations as possible. Hence all the values outside
this range did not contribute to estimating the slope of
the curve i.e. performing the linear fit. The same was
done for the cooling process indicated by the red dotted
line (T2 := [480.15, 773.15]K), additionally the green dot-
ted line then is the slope for the same interval the fit was
performed on the dataset for the cooling process applied
on the dataset for the heating process. The grey dotted
lines emphasize the region of interest, which is also seen in
the lower graph showing the dataset for the cooling process
which is expected to have higher precision which shall be
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used to compare with literature values.
Additionally for the linear fit on the cooling process the

residuals have been plotted.

Using the the results of the fits, we can then compare the
different calculated values for the bandgap Eg and compare
to literature values.

Table 1 | Estimated band gap Eg,T1
(T1 =

[410.65, 578.15]K) for the heating process as well as
for the heating and the cooling process Eg,T2

(T2 =
[480.15, 773.15]K) using Equation (6). Furthermore the
literature value for a silicon semiconductor at a tempera-
ture of 300K is listed even though it does not lie in any of
our temperature ranges we used to perform the linear fit.

Eg,T1 (eV) Eg,T2 (eV)

Cooling - 1.129± 0.003
Heating 1.164± 0.005 0.99± 0.02

Literature Value for Eg [5]
Eg,T=300K = 1.1242± 0.0002eV

Discussion of Results
As the values in Table 1 indicate, the estimated band gap
for the cooling process is associated with a higher precision
then for the heating process which was expected. Further-
more if one chooses the temperature range for the heating
process in the most linear behaving region, the band gap for
the heating process is closer to the band gap for the cooling
process. It is expected since during cooling, the sample
and its environment are more likely to reach thermal equi-
librium at each step, which consequently leads to a more
precise measurement of the resistance. In contrast, during
heating, the oven introduces an active thermal input, which
itself might fluctuate or be an uneven process, furthermore
if the heating is rapid, the actual temperature of the sample
might differ slightly from the recorded temperature. These
are all systematic errors which were not considered in the
error analysis.

Literature suggests a decline in the band gap with in-

creasing temperature, with the band gap at 300K being
1.1242 ± 0.0002eV. [5] Compared to our result of the cool-
ing process Eg,T2

, the literature value does not lie within
its uncertainty and is even larger than the value at 300K
which does not correspond to the expected behaviour the
theoretical model predicts since it should be smaller with
increasing temperature.

The residuals of the fit are relatively small, indicating
a good fit with minimal deviation from the model, which
is expected in the intrinsic regime where the behavior of
the semiconductor is dominated by intrinsic conduction.
However as we move toward lower temperatures the resid-
uals begin to increase, particularly at the right side of the
plot. This could be explained due to the fact that extrinsic
carriers start to dominate and therefore our model based
on intrinsic behavior no longer holds, i.e. extrinsic conduc-
tion is not accounted for in our model since the material
behaves differently which might not be described by our
linear model anymore.

Additionally, since no error analysis on the semiconduc-
tor sample, regarding its doping or impurities, has been
performed as well as above described systematic errors
which were not accounted for the errors are expected to be
much larger than calculated.

Conclusion
In this experiment we determine the band gap of a semi-
conductor sample. The literature values and theoretical
predictions do not lie within the uncertainty of our experi-
mental results.

It is expected that this is a consequence of system-
atic errors included in the experiment setup, and under-
descriptive models used to describe the behavior of the sam-
ple as well as only performing the measurement once which
includes random error and hence falsifies the final results.

To improve the experiment, one should perform an ex-
tensive error analysis and assess the purity (or degree of
doping) of the sample, the quality of the vacuum in the vac-
uum chamber and find a more descriptive model or use sev-
eral models for different regimes acquired during the mea-
surement process. Which will consequently lead to more
accurate results and a better understanding of the behavior
of the semiconductor sample.
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A Appendix

A.1 Calculation of Uncertainties Using Gaussian Error Propagation

For uncorrelated variables x1, x2, ..., xn with uncertainties σx1
, σx2

, ..., σxn
and a function f(x1, x2, ..., xn), the uncer-

tainty of f is given by

σf =

√√√√ n∑
i=1

(
∂f

∂xi

)2

σ2
xi

(7)
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