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Chapter 1

Introduction of the model and
main questions

The model of first-passage percolation (FPP) was introduced by Hammersley and Welsh [14] in
1965 to study the spread of a fluid in a porous medium. Since then, it has been studied extensively
in the probability and the statistical physics literature. We refer to [17] for a general background
and to [3] for a review of more recent results.

1.1 Introduction of the model of FPP

Consider the lattice (Zd,Ed) for d ≥ 1 where Ed := {{x, y} : ∥x − y∥2 = 1, x, y ∈ Zd} is the set
of edges. Consider an independent and identically distributed (IID) family (te)e∈Ed distributed
according to some weight distribution G, a probability measure on R+. In our interpretation of
the model, the random variable te represents the time needed to cross the edge e.

A path p = (x0, e1, x1, . . . , en, xn) connecting x to y is an alternative sequence of vertices and
edges such that xi ∈ Zd, ei ∈ Ed,for all i ∈ {1, . . . , n}, ei = {xi−1, xi}, x0 = x and xn = y. To
each finite path p = (x0, e1, x1, . . . , en, xn), we associate a passage time

T (p) :=

n∑
i=1

tei . (1.1.1)

We define a random pseudo-metric T on Zd by setting the passage time between x, y ∈ Zd to be

T (x, y) := inf{T (p) : p is a path connecting x and y}. (1.1.2)

Any path achieving the infimum is called a geodesic between x and y. One can check that when
G is atomless, there exists a unique geodesic.

Figure 1.1: Simulation of two geodesics with different endpoints that have most of their edges in
common.

Exercise

1. Prove that T is a pseudo-metric, i.e., it satisfies the triangular inequality and the symmetry.
Argue why the separation property does not hold in general.

2. Prove that there exists almost surely a unique geodesic when G is atomless (i.e. has a density
with respect to Lebesgue measure).
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3. Prove that the infimum in the definition of T is almost surely attained when G({0}) = 0.

For t ≥ 0, denote B(t) the set of points that can be reached starting from 0 before time t, i.e.,

B(t) :=
{
x ∈ Zd : T (0, x) ≤ t

}
.

This set may represent the spread of an infection until time t; the infection starts at the origin 0
and for e = {x, y} ∈ Ed the time needed for x to transmit the infection to y is given by te. The
set B(t) represents the set of vertices that have been infected before time t.

Figure 1.2: Simulation of B(150) for G uniform random variable on [0, 1]. The color scale represents
the distance to 0.

In this lecture, we will be interested in the following questions.

1. The study of the large-scale properties of the random metric T and its geodesics. In par-
ticular, how does the random variable T (0, nx) behaves when n is large ? What does B(t)
look like for large t ? What is the impact of perturbing the edge weights on the asymptotic
properties ?

2. The fluctuations of the random variable T (0, nx) as well as the spatial fluctuations of the
geodesics. How much do the geodesics deviate from the straight lines ?

3. The large deviations of the random variable T (0, nx). We will see that the random variable
T (0, nx)/n converges, we will study at what rate this convergence occurs and what is the
probability that this random variable has atypical deviations from its mean.

1.2 FPP in dimension 1

As a warm-up, let us start by studying the dimension d = 1. Denote for n ≥ 1, Tn := T (0, n). It
is easy to check that

Tn = T (0, n) =

n∑
i=1

t{i−1,i}.

In dimension 1, first passage percolation boils down to studying a sum of IID random variables.
It follows from basic probability theory that if G is integrable, that is E[te] =

∫
R+
xdG(x) < ∞

(where e is a fixed edge in E1), then we have the strong law of large numbers

lim
n→∞

Tn
n

= E[te] almost surely.

The law of large numbers characterizes the asymptotic properties of Tn. One can also wonder
about the fluctuations of Tn, how much Tn typically deviates from its expected value nE[te]. If G
has a finite second moment, that is

∫
R+
x2dG(x) < ∞, then the central limit theorem holds, we

have

lim
n→∞

√
n

(
Tn
n
− E[te]

)
d
= N (0,Var(te))
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where N (0, σ2) is a normal distribution with mean 0 and variance σ2. The fluctuations are the
typical deviations from the mean value. One can also be interested in atypical deviations also called
large deviations, that is the probability that the random variable Tn has non-negligible deviations
from its mean. More precisely, we are interested in the decay rate of the following probability for
ε > 0

P
(
Tn
n
− E[te] ≥ ε

)
.

If the distribution G has light tails in the sense that the distribution G has an exponential moment,
i.e. there exists θ > 0 such that E[eθte ] <∞ then the decay rate is exponential. We will prove at
the end of the lecture, that there exists a function I : R+ → [0,+∞] such that

P
(
Tn
n
− E[te] ≥ ε

)
= e−nI(ε)+o(n)

as n goes to infinity. We will prove that when G has light tails, the most likely scenario causing the
upper large deviations event is when each input makes a tiny contribution to the overall deviation
by tilting its distribution slightly.

In what follows, we will also be interested in asymptotic properties (law of large numbers),
fluctuations, and large deviations. We will see that our understanding of the model of FPP is far
from complete in d ≥ 2.

1.3 Asymptotic properties of FPP in d ≥ 2: definition of the
time constant

A natural question is to understand the large scale properties of this random pseudo-metric. In
particular, what is the asymptotic behavior of the quantity T (0, nx) when n goes to infinity ? If G
has a finite moment, one can prove that we have a law of large numbers: asymptotically when n is
large, the random variable T (0, nx) behaves like nµG(x) where µG(x) is a deterministic constant
depending only on the distribution G and the point x ∈ Zd. More precisely, we have the following
theorem.

Theorem 1.3.1 (Law of large numbers for passage times). Let G be a distribution on R+ with a
finite moment. For every x ∈ Zd, there exists a deterministic constant µG(x) such that

lim
n→∞

T (0, nx)

n
= µG(x) almost surely and in L1.

This constant µG(x) is the so-called time constant in the direction x.

This constant may be interpreted as an inverse speed in the direction x. The convergence of this
quantity comes from the fact that the family (T (nx,mx))1≤n≤m is sub-additive. Sub-additivity
is a central notion in statistical mechanics. To get a better understanding of this notion, we can
start with the deterministic setting with Fekete’s lemma (whose proof is left as an exercise):

Lemma 1.3.2 (Fekete’s lemma). Let (un)n≥1 be a sub-additive sequence of real numbers, that is,
a sequence such that

∀n ≥ 1 ∀m ≥ 1 un+m ≤ un + um .

Then,

lim
n→∞

un
n

= inf
n≥1

un
n
∈ R ∪ {−∞} .

Proof. It is sufficient to prove that

inf
n≥1

un
n
≤ lim inf

n→∞

un
n
≤ lim sup

n→∞

un
n
≤ inf
n≥1

un
n
.

The left hand-side follows easily from the definition of lim inf. Let us prove the right-hand side.
Let ε > 0 and q ≥ 1 such that

uq
q
≤ inf
n≥1

un
n

+ ε.

Let n ≥ 1 write n = qp+ r with 0 ≤ r < q. Using the subadditivity, it yields

un
n
≤ puq + ur

n
≤ qp

qp+ r

uq
q

+
1

n
inf

0≤l<q
ur.
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By taking the limsup when n goes to infinity

lim sup
n→∞

un
n
≤ uq

q
≤ inf
n≥1

un
n

+ ε.

The result follows by letting ε goes to 0.

We claim that the sequence of real numbers (E[T (0, nx)])n≥1 is sub-additive. Indeed, using the
triangular inequality and taking the expectation, we get

∀n ≥ 1 ∀m ≥ 1 E[T (0, (n+m)x)] ≤ E[T (0, nx)] + E[T (nx, (n+m)x)]

= E[T (0, nx)] + E[T (0,mx)]

where we use in the last equality that the model is invariant in law under translations by a vector
in Zd. It follows using Fekete’s lemma that the limit of E[T (0, nx)]/n when n goes to infinity
exists and is finite when E[T (0, x)] <∞. The proof of the convergence of T (0, nx)/n requires more
powerful tools. We need the following theorem that comes proved by Kingman [18] using ergodic
theory (the proof was later simplified by Steele [19]:

Theorem 1.3.3 (Kingman’s subadditive ergodic theorem). Let (Xn,m, 0 ≤ n < m) be a collection
of random variables such that

1. Xl,n ≤ Xl,m +Xm,n whenever 0 ≤ l < m < n,

2. For each m ≥ 0, the joint distributions of (Xm,n, 0 ≤ m ≤ n) are the same as those of
(Xm+1,n+1, 0 ≤ m ≤ n)

3. For each n ≥ 1, E[|X0,n|] <∞ and E[X0,n] ≥ −cn for some constant c.

Then

lim
n→∞

X0,n

n
= lim
n→∞

E[X0,n]

n
= inf
n≥1

E[X0,n]

n
a.s. and in L1.

Let us prove how we can deduce Theorem 1.3.1 from Theorem 1.3.3. Let x ∈ Zd, consider the
sequence (T (nx,mx), 0 ≤ n < m). Thanks to the triangular inequality, this sequence satisfies the
condition 1. Because the environment (te)e∈Ed is i.i.d., the sequence also satisfies the condition 2.
When the distribution G has a first moment, i.e., E[te] <∞, then

E[T (0, nx)] ≤ ∥nx∥1E[te] < +∞

and condition 3 is satisfied. It follows that

lim
n→∞

T (0, nx)

n
= lim
n→∞

E[T (0, nx)]
n

= µG(x) a.s. and in L1 .

The subaditive ergodic theorem is a powerful tool but it has two main limitations: it cannot be
applied to irrational directions x ∈ Rd (because of the property 2) and it cannot be applied to a
distribution G without a first moment.

1.4 Fluctuations in 2D : Last passage percolation

Even though deriving the precise behaviour of fluctuations in FPP is expected to be a very hard
problem, there is an analogous model, called last passage percolation, where we have a precise
picture of the fluctuations. This model has the advantage of being solvable, meaning that the
problem of fluctuations can be solved by making explicit computations.

Define the model of last passage percolation (LPP) on Z2
+, we consider an IID family (ωx)x∈Z2

+

distributed according to geometric distribution of parameter q ∈ (0, 1). Let M,N ≥ 1. Let ΠM,N

be the set of all up/right paths from (1, 1) to (M,N), that is the set of p = (x0, . . . , xn) such that
x0 = (1, 1), xn = (M,N) and for all i ∈ {1, . . . , n} xi − xi−1 ∈ {(1, 0), (0, 1)}.

Set
G(M,N) := max

p∈ΠM,N

ωx.

Let γ ≥ 1 be a parameter characterising the slope of the paths. Using the subadditive ergodic
theorem 1.3.3 (here the process is super-additive), we can prove that a law of large numbers holds;
there exists ω(γ, q) > 0 such that

lim
n→∞

G(⌊γn⌋, n)
n

= sup
n≥1

E[G(⌊γn⌋, n)]
n

:= ω(γ, q) a.s.. (1.4.1)
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0 M

N

Figure 1.3: A path p ∈ ΠM,N

Exercise Prove the convergence in (1.4.1). Is the function q 7→ ω(γ, q) monotone ?

The Tracy–Widom cumulative distribution function FTW was introduced by Tracy and Widom
[23] in the context of the study of the largest eigenvalue of hermitian random matrices. The function
FTW has a semi-explicit expression. In particular, this distribution is not symmetric (see figure
1.4). We refer to Johansson [23] for the precise expression of FTW .

Figure 1.4: Graph of the density function fTW corresponding to FTW

There exists σ(γ, q) > 0 that has an explicit expression in terms of γ and q.

Theorem 1.4.1 (Johansson [15]). For each q ∈ (0, 1), γ ≥ 1 and s ∈ R

lim
n→∞

P
(
G(⌊γn⌋, n)− nω(γ, q)

σ(γ, q)n1/3
≤ s
)

= FTW (s).

This theorem is of a similar nature to the central limit theorem. Similar to how the normal
distribution describes the fluctuations of various quantities, Tracy-Widom fluctuations belong to
another universality class of fluctuations that encompass several models, such as the distribution
of the largest eigenvalues of certain types of random matrices and the size of the longest increasing
subsequence in a random permutation. The concept of universality is very important in statistical
mechanics. A universality class is a collection of models that share the same macroscopic behavior
even though they can drastically differ at the microscopic level.

For instance, the model of planar FPP is conjectured to be in the same universality class than
the model of LPP. It enables to have insights on the fluctuations of FPP. In particular, let us
informally define the scaling exponents χ, ξ:

Var(T ((0, 0), (0, n))) ≈ n2χ and hn ≈ nξ
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where hn corresponds to the maximal height attained by the geodesic γ between (0, 0) and (n, 0),
i.e., hn := sup{|y| : (x, y) ∈ γ}. It is believed that the FPP model is part of the KPZ universality
class, which includes various stochastic growth models first introduced by Kardar–Parisi–Zhang
[16]. This universality class is characterized by shared scaling exponents (χ = 1/3 and ξ = 2/3)
that govern the large-scale properties of their interfaces or surfaces, such as their roughness and
growth rates. While it has been proven that the LPP model belongs to the KPZ universality class,
the FPP model is still conjectured to belong to this class.

At first sight, it may be surprising that the density function fTW does not have null mean value
(see figure 1.4). It is due to the so-called non-random fluctuations

E[G(⌊γn⌋, n)]− nω(γ, q) < 0.

An important point to note is that, unlike the central limit theorem, the fluctuations in this case
are not symmetric once centered. Intuitively, it is easier for G(M,N) to be above the mean because
only one path needs to have a larger weight than the mean, while to be below the mean, all paths
must have weights smaller than the mean. We will observe that this asymmetry is further amplified
when analyzing upper and lower large deviations.



Chapter 2

Asymptotic properties

2.1 Limit shape theorem

In this section, we are interested in the behavior of B(t) when t is large. In the previous section,
we have seen the existence of a time constant. The emergence of a limit shape boils down to prove
that the convergence towards the time constant is uniform in the direction.

2.1.1 Extending the time constant to Rd and properties of the time
constant

In this section, we aim at extending µG to all Rd and proving basic properties of this function.
Denote by (e1, . . . , ed) the canonical basis of Rd.

Proposition 2.1.1. Let G be a distribution on R+ with a finite moment. The time constant
µG can be extended to Rd. Moreover, the function µG is homogeneous and satisfies the following
inequality

∀x, y ∈ Rd |µG(y)− µG(x)| ≤ µG(y − x) ≤ µG(e1)∥y − x∥1. (2.1.1)

Proof. Let us start with rational points in Rd. Let x ∈ Qd and N ≥ 1 such that Nx ∈ Zd. It
follows that

µG(Nx) = lim
n→∞

T (0, nNx)

n
= N lim

n→∞

T (0, nNx)

Nn
.

Hence, we set

µG(x) :=
µG(Nx)

N
.

By the same arguments, one can prove µG is homogeneous, that is

∀r ∈ Q ∀x ∈ Qd µG(rx) = |r|µG(x) . (2.1.2)

Now that µG is defined on Qd, we need to prove that the map x 7→ µG(x) is continuous in order
to define µG on the whole Rd. Let x, y ∈ Zd, we have by triangular inequality

µ(x+ y) = lim
n→∞

ET (0, n(x+ y))

n
≤ lim
n→∞

ET (0, nx))
n

+ lim
n→∞

ET (nx, n(x+ y))

n
= µ(x) + µ(y).

Let x ∈ Qd, we can write

x =

d∑
i=1

λiei, λi ∈ Q, 1 ≤ i ≤ d .

By triangular inequality and inequality (2.1.2), we have

µG(x) ≤
d∑
i=1

|λi|µG(ei) .

Since µG is invariant under permutation of the coordinate axes, it yields that

µG(x) ≤
d∑
i=1

|λi|µG(e1) ≤ ∥x∥1µG(e1) .

9
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Moreover, by triangular inequality, we have

∀x, y ∈ Qd µG(y) ≤ µG(x) + µG(y − x) .

It follows that

∀x, y ∈ Qd |µG(y)− µG(x)| ≤ µG(y − x) ≤ µG(e1)∥y − x∥1

The latter inequality enables to extend µG to Rd by continuity and density of Qd in Rd. We can
prove that for any r ≥ 0 and x ∈ Rd, we have µG(rx) = rµG(x).

Exercises

1. Prove that there exists p0 > 0 such that if G({0}) < p0 then µG(x) > 0 for all x ∈ Rd \ {0}.

2. Prove that µG is convex.

3. Prove that µG = 0 if and only if µG(e1) = 0.

2.1.2 Limit shape theorem

We have seen in Theorem 1.3.1, that there exists a law of large numbers, when considering some
direction x ∈ Zd, we have the almost sure convergence of T (0, nx) towards µG(x). If the latter
convergence is uniform in all directions, then an asymptotic shape emerges. This was first proved
by Cox and Durrett in [11]. Set

∀t ≥ 0 B̃(t) = B(t) +
[
−1

2
,
1

2

)d
.

Theorem 2.1.2 (Cox-Durrett [11]). Let G be a distribution on R+ such that µG > 0 and

E[min(td1, . . . , t
d
2d)] <∞ (2.1.3)

where ti, i = 1, . . . 2d, are independent copies of te. Then, there exists a deterministic convex
compact shape BµG

in Rd such that

∀ε > 0 a.s. ∃t0 > 0 ∀t ≥ t0 (1− ε)BµG
⊂ B̃(t)

t
⊂ (1 + ε)BµG

.

Furthermore, BµG
:= {x ∈ Rd : µG(x) ≤ 1} is the unit ball for the norm µG, it has non-empty

interior and is symmetric about the axes of Rd.

Little is known about the limit shape BµG
. There is no distributions G for which we can prove

that the limit shape is not a polygon. One of the main open problem is to prove that the limit
shape is strictly convex for continuous distributions. We will see that the limit shape encodes
information about the geometry of geodesics.

To prove Theorem 2.1.2, we need to interpolate between a finite number of rational directions
to obtain the linear growth of B(t) for any direction. We can apply the subadditive ergodic theorem
to a fixed rational direction to obtain the linear growth of B(t) in that direction. It follows that
with probability one, the linear growth holds simultaneously for a finite set of rational directions.
To be able to interpolate, we also need to prove that if two vertices are close then their passage
time is not too large. To simplify the proof, we will work under the stronger assumption that G
has a finite 3-moment.

The following lemma ensures that the passage time between close vertices is not too large.

Lemma 2.1.3. Assume E[t4e] <∞ There exists κ > 0 such that for any ε > 0, there exists almost
surely M > 0 random such that

∀x, y ∈ Zd ∥x∥1 ≥M and ∥x− y∥1 ≤ ε∥x∥1 =⇒ T (x, y) ≤ κε∥x∥1. (2.1.4)

Proof of Theorem 2.1.2. Let G be a distribution such that µG is a norm. Let c0, C0 > 0 be such
that

∀x ∈ Rd c0∥x∥1 ≤ µG(x) ≤ C0∥x∥1.
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Let κ > 0 be as in the statement of Lemma 2.1.3. Let ε > 0 and M be large enough such that
(2.1.4) holds. There exists a finite set (y1, . . . , ym) of rational points in {x ∈ Rd : ∥x∥1 ≤ 1} such
that

{x ∈ Rd : ∥x∥1 = 1} ⊂
m⋃
i=1

{
x ∈ Rd : ∥yi − x∥1 ≤

ε

2

}
.

Let λi > 0 be such that λiyi ∈ Zd. Thanks to the subadditive ergodic theorem, there exists a
random ni ≥ 1 such that

∀n ≥ ni
∣∣∣∣T (0, nλiyi)n

− µG(λiyi)
∣∣∣∣ ≤ ε.

Let t0 = max(M,λini, λi/2ε). Let t ≥ t0. Let x ∈ Rd such that ∥x∥1 ≥ t0, let yi the closest point
from x/∥x∥1. We have

∥∥x∥1yi − x∥1 ≤
ε

2
∥x∥1.

There exists n ≥ ni such that

∥λinyi − x∥1 ≤
ε

2
∥x∥1 + λi ≤ ε∥x∥1.

Let ε′ = (µG(e1) + 1 + κ)ε/c0. Hence for x ∈ Zd such that µG(x) ≤ (1 − ε′)t, using (2.1.4) and
(2.1.1), we have

T (0, x) ≤ T (0, λinyi)+T (λinyi, x) ≤ nµG(λiyi)+εn+κε∥x∥1 ≤ µG(x)+(µG(e1)+1+κ)ε∥x∥1 ≤ t.

It yields the leftmost inclusion.
Conversely, let x ∈ Zd such that T (0, x) ≤ t. We have

n(µG(λiyi)− ε) ≤ T (0, λinyi) ≤ T (0, x) + T (x, λinyi) ≤ t+ κε∥x∥1.

By (2.1.1), it yields that

µG(x) ≤ nµG(λiyi) + µG(e1)ε∥x∥1 ≤ t+ (κ+ µG(e1) + 1)ε∥x∥1 ≤ t+ (κ+ µG(e1) + 1)εC0µG(x)

and

µG(x) ≤
1

1− (κ+ µG(e1) + 1)εC0
t.

This yields the second inclusion with ε′′ = (κ+µG(e1)+1)εC0

1−(κ+µG(e1)+1)εC0
. To conclude the proof, for all ε0 > 0,

we choose ε small enough such that ε′, ε′′ ≤ ε0.

Proof of Lemma 2.1.3. For simplicity, we will assume that E[|te|3] <∞.We claim that there exists
κ0 ≥ 1 such that for any x, y ∈ Zd, there exist 2d edge disjoint paths between x and y of length less
than κ0∥x− y∥1. We leave this claim as an exercise. Let p be a path of length less than κ0ε∥x∥1
between x and y. Let κ ≥ 2κ0E[te] to be choose later. We have

P

(∑
e∈p

te ≥ κε∥x∥1

)
≤ P

(∑
e∈p

(te − E[te]) ≥ κ0ε∥x∥1E[te]

)

≤ 1

(κ0ε∥x∥1E[te])4

∑
e∈p

E[(te − E[te])4] + 12
∑
e ̸=f∈p

E[(te − E[te])2(tf − E[tf ])2]


≤ 24|p|2

(κ0ε∥x∥1E[te])4
E[(te − E[te])4].

It follows using the 2d edge disjoint paths (p1, . . . , p2d) joining x and y

P(T (x, y) ≥ κε∥x∥1) ≤ P(∀i ∈ {1, . . . , 2d} T (pi) ≥ κε∥x∥1)

=
∏

i∈{1,...,2d}

P(T (pi) ≥ κε∥x∥1)

≤
(
24(κ0∥x− y∥1)2

(κ0ε∥x∥1E[te])4
E[(te − E[te])4]

)2d

.
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Denote
En := {∃x, y ∈ Zd ∥x∥1 = n, ∥x− y∥1 ≤ εn, T (x, y) ≥ κεn}.

Note that
En ⊂

⋃
x:∥x∥1=n

⋃
y:∥y−x∥1≤εn

{T (x, y) ≥ κεn}.

We have by union bounding

P(En) ≤
∑

x:∥x∥1=n

∑
y:∥y−x∥1≤εn

P(T (x, y) ≥ κεn) ≤ C
∑

x:∥x∥1=n

∑
y:∥y−x∥1≤εn

1

n4d
≤ C

n2d
(2.1.5)

It follows that ∑
n≥1

P(En) <∞. (2.1.6)

By Borel-Cantelli Lemma, we deduce that there is almost surely only a finite number of occurrence
of En. Hence, there exists almost surely M ≥ 1 such that (2.1.4) holds.

2.2 Positivity of the time constant

In this section, we are interested in characterizing the distributions G such that µG = 0. This will
require some background on percolation theory.

2.2.1 Percolation

Bernoulli bond percolation was introduced by Broadbent and Hammersley in 1957 to model the
circulation of water in a porous medium [14]. The model is defined as follows. Let d ≥ 2. We
consider an i.i.d. family of Bernoulli random variables (Be)e∈Ed of parameter p ∈ [0, 1]. We will
denote by Pp the distribution of this family. If Be = 1, then we say that the edge e is open;
otherwise, we say the edge is closed. This model was introduced to model the circulation of water
through microscopic pores of a rock, with the open edges representing the holes through which
water can flow.

Let Gp be the graph of the open edges:

Gp := (Zd, {e ∈ Ed : e is open}) .

We write x↔ y if x and y are connected in Gp. For n ≥ 1, define the box Λn := {−n, . . . , n}d and
its inner boundary ∂Λn := {y ∈ Zd : ∥y∥∞ = n}.

Define for p ∈ [0, 1]
θ(p) := lim

n→∞
Pp(0↔ ∂Λn).

We can prove that p→ θ(p) is non-decreasing. Define

pc(d) := sup{p ≥ 0 : θ(p) = 0}.

Theorem 2.2.1. For d ≥ 2, we have pc(d) ∈ (0, 1).

We say that this model exhibits a phase transition at pc(d): for p > pc(d) (supercritical regime),
there almost surely exists a unique infinite open cluster C∞ in Gp. In contrast, for p < pc(d)
(subcritical regime), there is no infinite open cluster [13].

We will also need the following estimates. The following theorem controls the probability of having
a long open path in the subcritical regime.

Theorem 2.2.2. Let p < pc(d), there exist c, C > 0 such that

Pp(0↔ ∂Λn) ≤ Ce−cn.

The following theorem controls the size of the holes of the infinite cluster in the supercritical
regime.

Theorem 2.2.3. Let p > pc(d), there exist c, C > 0 such that

Pp(C∞ ∩ Λn = ∅) ≤ Ce−cn
d−1

.
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No infinite connected
component

Existence of a unique infinie
connected component C∞

Figure 2.1: Simulation of the connected component of 0 in Gp in the subcritical regime p < pc and
in the supercritical regime p > pc (in this simulation 0 ∈ C∞).

Exercises

1. Prove that p 7→ θ(p) is non-decreasing.

2. Prove that pc(d) > 0.

3. Prove that the function d 7→ pc(d) is non-increasing.

2.2.2 Control of the length of the geodesics

Theorem 2.2.4. Let G such that G({0}) < pc(d), there exist ρ, c, C > 0 such that for all n ≥ 1

P(There exists a self-avoiding path γ starting at 0 such that T (γ) ≤ n and |γ| ≥ ρn) ≤ C exp(−cn).

In order to prove this theorem, we will need a combinatorial result on the number of connected
component of size n containing 0. We say that Γ ⊂ Zd is connected if for any x, y ∈ Γ, there
exists a sequence of vertices x0, . . . , xk ∈ Γ such that ∥xi−xi−1∥∞ = 1. Let Animalkx be the set of
connected macroscopic sites of Zd of size k containing the site x. We have the following control

|Animalkx| ≤ 7dk (2.2.1)

(see for instance Grimmett [13, (4.24)]).

Exercise Let C(0) be the connected component of 0 in Gp. By considering Pp(|C(0)| = n) prove
inequality (2.2.1).

Proof. Let ρ > 1 be a constant we will choose later. Let ε > 0 such that G([0, ε]) < pc(d). Let
N ≥ 1. We do a renormalization of size N ; that is we divide the space into mesoscopic components
of size N . We define the N -box for k ∈ Zd

ΛN (k) := [−N,N)d ∩ Zd + 2kN,

and the enlarged box

Λ′
N (k) =

⋃
∥i−k∥∞≤1

ΛN (i).

Note that

Zd =
⊔
i∈Zd

ΛN (i)

where ⊔ denotes the disjoint union. The sites corresponding to the boxes are the so-called macro-
scopic lattice; whereas the standard vertices in Zd correspond to the microcopic lattice. We say that
a box i ∈ Zd is good if there is no path of diameter at least N made of edges with passage time less
than ε inside Λ′

N (i). Otherwise, we say that the box is bad. Let us compute the probability that
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a box is bad. Set p = G([0, ε]). We can couple the model of FPP with a subcritical percolation in
such a way that an edge e is open if and only if te ≤ ε.

P(i is bad) ≤ Pp

 ⋃
x∈Λ′

N (i)

{x←→ (∂ΛN + x)}

 ≤ |Λ′
N (i)|Pp(0←→ ∂ΛN ) ≤ (6N)dC exp(−cN)

(2.2.2)
where we used Theorem 2.2.2 in the last inequality.

We will need the following result that controls the probability that there exists a set of Zd-
connected boxes containing a positive fraction of bad boxes. Let Γ ⊂ Zd be a fixed set. The state
of the boxes in Γ are not necessarily independent. Though it is easy to check that if ∥i− j∥∞ ≥ 3
then the state of the boxes i and j are independent. Note that

Zd =
⊔

x∈{0,1,2}d

(3Zd + x).

Then, if Γ contains at least a |Γ|/2 bad boxes, by pigeon-hole principle, there exists x ∈ {0, 1, 2}d
such that Γ∩(3Zd+x) contains at least 1

2·3d |Γ| bad sites. In particular, these sites are independent.
It yields

P
(
|{i ∈ Γ : i is bad}| ≥ 1

2
|Γ|
)
≤

∑
A⊂Γ:|A|≥|Γ|/2

P (∀i ∈ A i is bad)

≤
∑

A⊂Γ:|A|≥|Γ|/2

P(i is bad)|A|/3d

≤ 2|Γ|C exp

(
−cN 1

3d
|Γ|
)
.

(2.2.3)

Denote

Fn :=

{
∃k ≥ n ∃Γ ∈ Animalk0 |{i ∈ Γ : i is bad}| ≥ 1

2
|Γ|
}
.

By union bound, using (2.2.1) and (2.2.3), we get

P(Fn) ≤
∑
k≥n

∑
Γ∈Animalk0

P
(
|{i ∈ Γ : i is bad}| ≥ 1

2
|Γ|
)

≤
∑
k≥n

7dk2kC exp

(
−cN k

3d

)
.

Finally, we choose N large enough depending on d such that

P(Fn) ≤ exp
(
−cN n

6d

)
. (2.2.4)

Let γ be a self-avoiding path such that T (γ) ≤ n and |γ| ≥ ρn. Denote by Γ(γ) the set of boxes
intersecting γ, that is

Γ(γ) := {i ∈ Zd : ΛN (i) ∩ γ ̸= ∅}.

It is easy to check that when γ is self avoiding then |Γ(γ)| ≥ |γ|/(2N)d and that the set Γ(γ) is Zd
connected. In particular, on the event Fcρn/(2N)d , we have that γ crosses at least |Γ(γ)|/2 boxes

where γ has at least one edge of passage time larger than ε. It yields that

T (γ) ≥ |γ|
2(2N)d

ε ≥ ρ

2(2N)d
εn.

Finally we set ρ := 4(2N)d

ε . Thanks to this choice, on the event Fcρn/(2N)d , there exists no path γ

starting at 0 such that |γ| ≥ ρn and T (γ) ≤ n. The proof follows from inequality (2.2.4).

2.2.3 Positivity of the time constant

Theorem 2.2.5. We have that µG > 0 if and only if G({0}) < pc.
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Proof. Let us assume G({0}) > pc and G is integrable. Let C∞ denote the infinite cluster of edges
with null passage time. Let n ≥ 1. Set

Fn := {C∞ ∩ ∂Λlog2 n ̸= ∅} ∩ {C∞ ∩ (∂Λlog2 n + ne1) ̸= ∅}.

Note that for x, y ∈ C∞, we have T (x, y) = 0. On the event Fn, let x ∈ C∞ ∩ ∂Λlog2 n and
y ∈ C∞ ∩ (∂Λlog2 n + ne1). It follows that

T (0, ne1) ≤ T (0, x) + T (x, y) + T (y, x) = T (0, x) + T (y, ne1).

Denote πn the straight path joining 0 and ne1. It follows that

T (0, ne1) ≤
∑
e∈πn

te1Fc
n
+

∑
e∈Λlog2 n∪(ne1+Λlog2 n)

te. (2.2.5)

By Theorem 2.2.3, we have

P(Fcn) ≤ 2Ce−c(logn)
2(d−1)

and ∑
n≥1

P(Fcn) <∞.

By Borel-Cantelli Lemma, it yields that

lim
n→∞

1Fc
n
= 0 a.s..

By strong law of large numbers, it follows that

lim
n→∞

1

n

∑
e∈πn

te = E[te] a.s..

Besides,

lim
n→∞

E

 1

n

∑
e∈Λlog2 n∪(ne1+Λlog2 n)

te

 = 0.

In particular, it implies that there exists a subsequence (nk)k≥1 such that the integrand converges
almost surely to 0. Finally, we get

µG(e1) = lim
n→∞

T (0, ne1)

n
= lim
k→∞

T (0, nke1)

nk
= 0.

The case where G({0}) = pc(d) will follow by continuity of G 7→ µG (we refer to the next section).
Conversely, let us now assume that G({0}) < pc(d) and let us prove that µG > 0. The geodesic

between 0 and ne1 contains at least n edges. Thanks to Theorem 2.2.4, we have

P(T (0, ne1) ≥ n/ρ) ≥ 1− Ce−cn.

By Borel–Cantelli Lemma, it follows that µG(e1) ≥ 1/ρ. This concludes the proof.

2.3 Continuity of the time constant

In this section, we aim to estimate the impact of perturbating the distribution G on the time
constant µG. Recall the notion of weak convergence of measures. Let (Gn)n∈N, andG be probability
measures on [0,+∞), we say that Gn weakly converges toward G if for all continuous bounded
functions f : [0,+∞)→ [0,+∞), we have

lim
n→+∞

∫
[0,+∞)

fdGn =

∫
[0,+∞)

fdG .

Theorem 2.3.1. Let (Gn)n∈N, and G be integrable probability measures on [0,+∞) such that Gn
weakly converges toward G. We have

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.



16 CHAPTER 2. ASYMPTOTIC PROPERTIES

A key part of the proof of this theorem is a continuity result for truncated distributions.

Proposition 2.3.2. Let G be a distribution on R+ such that G({0}) < pc. For M > 0, set
GM := G1[0,M ] +G((M,+∞))δM , then

∀x ∈ Zd lim
M→∞

µGM (x) = µG(x) .

Lemma 2.3.3. Let M > 0. Let (Gn)n∈N, and G be probability measures on [0,M ] such that Gn
weakly converges toward G and Gn({0}), G({0}) < pc. We have

∀x ∈ Zd lim
n→∞

µGn
(x) = µG(x).

Proof. Let δ > 0. Let ε > 0 we will choose later depending on δ. Since Gn weakly converges
towards G, there exists a coupling of (tGe )e and (tGn

e )e such that (tGe )e (respectively (tGn
e )e) is an

IID family distributed according to G (respectively Gn) and there exists n0 ≥ 1 such that for all
n ≥ n0

∀e ∈ Ed P(|tGe − tGn
e | ≥ ε) ≤ ε.

We denote by TG (respectively TGn
) the pseudo-metric associated to the family of edge weights

(tGe )e (respectively (tGn
e )e).

Let x ∈ Zd and k ≥ 1. Denote by γ the geodesic between 0 and kx for TGn
. We have

TG(0, kx) ≤
∑
e∈γ

tGe ≤
∑
e∈γ

tGn
e +ε+M1|tGe −tGn

e |≥ε ≤ TGn
(0, kx)+ε|γ|+M

∑
e∈γ

1|tGe −tGn
e |≥ε. (2.3.1)

Let p be a fixed path, let us compute the following using Chebyshev inequality for α > 0

P

(∑
e∈p

1|tGe −tGn
e |≥ε ≥ δ|p|

)
≤

E[exp(α1|tGe −tGn
e |≥ε)]

|p|

eαδ|p|
≤
(
1 + εeα

eδα

)|p|

. (2.3.2)

It follows that

P

(
∃p a path starting at 0 s.t. |p| ≥ k and

∑
e∈p

1|tGe −tGn
e |≥ε ≥ δ|p|

)
≤
∑
j≥k

(2d)k
(
1 + εeα

eδα

)k
.

We first choose α such that 2de−δα ≤ 1
2 depending on δ and then ε such that 1 + εeα ≤ 3

2 . It
yields that

P

(
∃p a path starting at 0 s.t. |p| ≥ k and

∑
e∈p

1|tGe −tGn
e |≥ε ≥ δ|p|

)
≤ 4

(
3

4

)k
. (2.3.3)

Besides, by Theorem 2.2.4, since TGn(0, kx) ≤M∥kx∥1, it yields

P(|γ| ≥ ρMk∥x∥1) ≤ Ce−ck.

It follows that for large enough k

P(TG(0, kx) ≤ TGn
(0, kx) + ερMk +M2ρδk) ≥ 3

4
.

Furthermore, by subadditive ergodic theorem, we have that for k large enough

P(TG(0, kx) ≥ k(µG(x)− δ)) ≥
3

4

and

P(TGn(0, kx) ≤ k(µGn(x) + δ)) ≥ 3

4
.

Hence, the intersection of these three events occurs with positive probability and

µG(x)− δ ≤ µGn
(x) + δ + ερM +M2ρδ.

By taking first the liminf in n and then the limit when δ goes to 0, it yields

µG(x) ≤ lim inf
n→∞

µGn
(x).

To conclude, we prove similarly by considering the geodesic for TG that

lim sup
n→∞

µGn
(x) ≤ µG(x).
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Lemma 2.3.4. Let (Gn)n∈N, and G be probability measures on R+ such that Gn weakly converges
toward G and Gn ≻ G and G is integrable. We have

∀x ∈ Zd lim
n→∞

µGn(x) = µG(x).

Proof. Due to the stochastic domination, we can couple the weight distributions (tGn
e )e and (tGe )

in such a way that for all e ∈ Ed tGn
e ≥ tGe and

∀e ∈ Ed lim
n→∞

tGn
e = tGe a.s..

To do so we use the standard coupling using uniform random variable on [0, 1], that is tG = F−1
G (U)

and tGn = F−1
Gn

(U) where F−1
G is the inverse of the partition function of G. We recall that

∀t ∈ [0, 1] F−1
G (t) := sup{x ≥ 0 : G([0, x]) ≤ t}.

It yields that
∀x, y ∈ Zd TGn

(x, y) ≥ TG(x, y)

and
lim inf
n→∞

µGn
(x) ≥ µG(x). (2.3.4)

Besides for x, y ∈ Zd and γ be a path between x and y, we have

TG(γ) = lim
n→∞

TGn
(γ) ≥ lim sup

n→∞
TGn

(x, y).

By taking the infimum over all path γ joining x and y in the previous inequality, it follows that

TG(x, y) ≥ lim sup
n→∞

TGn
(x, y)

and
TG(x, y) = lim

n→∞
TGn

(x, y) a.s..

Let H be the distribution corresponding to supn t
Gn
e . In particular, we have that H ≻ G. There

exists M > 0 such that H([0,M)) > pc. Denote by C∞ the infinite cluster of edges such that
tHe ≤M and denote x̃ the closest point to x in C∞ with a deterministic rule to break ties. We have

∀x ∈ Zd TGn
(0̃, x̃) ≤ TH(0̃, x̃).

We admit the following result that is related to the study of graph distance in the infinite cluster
of percolation. There exists β > 0 such that

∀x ∈ Zd E[TH(0̃, x̃)] ≤ βM∥x∥1.

By Fekete Lemma, we have

lim
k→∞

E[TGn(0̃, k̃x)]

k
= inf
k≥1

E[TGn(0̃, k̃x)]

k
.

Besides, we have

|TGn
(0̃, k̃x)− TGn

(0, kx)| ≤ TGn
(0̃, 0) + TGn

(kx, k̃x)

For every ε > 0

P(|TGn(0̃, k̃x)− TGn(0, kx)| ≥ 2εk) ≤ 2P(TGn(0̃, 0) ≥ εk).

Since by Theorem 2.2.3, the random variable TGn(0̃, 0) is almost surely finite, it yields that

lim
k→∞

1

k
|TGn

(0̃, k̃x)− TGn
(0, kx)| = 0 in probability,

and

inf
k≥1

E[TGn(0̃, k̃x)]

k
= µGn(x).

Since TH(x̃, ỹ) is integrable, we have using dominated convergence theorem

E[TG(x̃, ỹ)] = E[lim sup
n→∞

TGn
(x̃, ỹ)] = lim sup

n→∞
E[TGn

(x̃, ỹ)].
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Let x ∈ Zd and ε > 0, by definition of the time constant, there exists k ≥ 1 such that

µG(x) ≥
E[TG(0̃, k̃x)]

k
− ε.

Combining the previous inequalities it yields that

µG(x) ≥ lim sup
n→∞

E[TGn(0̃, k̃x)]

k
− ε ≥ lim sup

n→∞
µGn

(x)− ε.

By letting ε go to 0, it follows that

µG(x) ≥ lim sup
n→∞

µGn(x). (2.3.5)

Combining (2.3.4) and (2.3.5) yields the result.

Proof of Theorem 2.3.1. We will only prove that for x ∈ Zd, µGn
(x) converges towards µG(x) and

we leave the remaining of the proof as an exercise. Let x ∈ Zd. Let U be a uniform random variable
on [0, 1]. We couple tG and tGn using the standard coupling using uniform random variable on [0, 1].
Denote Gn and Gn the probability distribution of respectively min(tG, tGn) and max(tG, tGn). In
particular, we have

µGn
(x) ≤ µG(x) ≤ µGn

(x).

The proof will follow from the following inequality

lim sup
n→∞

µGn
(x) ≤ µG(x) ≤ lim inf

n→∞
µGn

(x).

The left hand side of the inequality follows easily from Lemma 2.3.4. To prove the right hand side,
consider GK = G1[0,K] +G([K,+∞))δK . Note that Gn weakly converges towards G. By Lemma
2.3.3, we have

lim
n→∞

µGK
n
(x) = µGK (x).

It yields that

lim inf
n→∞

µGn
(x) ≥ lim inf

n→∞
µGK

n
(x) = µGK (x).

Finally, by Proposition 2.3.2 when taking the limit when K goes to infinity

lim inf
n→∞

µGn
(x) ≥ µG(x).

This concludes the proof.

Exercise Let G be a distribution with a finite moment. Let (Gn)n≥1 such that Gn weakly
converges towards G.

1. We proved that for every x ∈ Zd, µGn(x) converges towards µG(x). Deduce that

lim
n→∞

sup
x∈Sd−1

|µG(x)− µGn
(x)| = 0.

2. Set

d2(x,A) := inf
y∈A
∥x− y∥2.

Define the Hausdorff distance between two sets A and B

dH(A,B) := max

(
sup
x∈A

d2(x,B), sup
x∈B

d2(x,A)

)
.

Prove that

lim
n→∞

dH(BµGn
,BµG

) = 0.
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Proof of Proposition 2.3.2. Let (te)e∈Ed be an IID family distributed according to G. Write TG
and TGM

the pseudo-metric associated to the family of edge-weight respectively (te)e∈Ed and
(min(te,M))e∈Ed .

Let ε > 0 we will choose later. Let M0 > 0 such that G([M0,+∞)) < ε/2d. We say that
w ∈ Zd is good if all the edges incident to x have a time less than M0. Otherwise, we say that w
is bad. In particular, we have

P(w is bad) ≤ 2dG([M0,+∞)) ≤ ε.

We say that u, v ∈ Zd are ∗-connected by a bad path if there exists a sequence (x0, . . . , xm) such
that x0 = u, xm = v, for all i ∈ {1, . . . ,m} ∥xi − xi−1∥∞ = 1 and all xi are bad. We denote by
C(x) the bad connected component of x, that is all the bad sites that are connected to x by a bad
path. We use the convention that C(x) = ∅ if x is good. For C a ∗-connected cluster, we define the
exterior boundary as follows

∂extC := {x ∈ Zd : ∃y ∈ C ∥x− y∥∞ = 1 and y is connected to infinity in Zd \ C}.

By Lemma 2.23 in [17], the set ∂extC is Zd-connected. Moreover, it is easy to check that the sites
in ∂extC(x) are good.

Figure 2.2: Bad and good vertices. The edges in blue have a passage time larger than M0. The
sites in white are good vertices

Let x ∈ Zd. Let n ≥ 1. Let M ≥ M0. Let γ be the geodesic between 0 and nx for TGM .
Denote by E the event that both 0 and nx are in the infinite cluster of good site. In particular,
using percolation estimates, we can prove that for ε small enough we have

P(E) ≥ 1

2
.

Write γ = (γi)
r
i=1. Denote by VM (γ) the set of vertices whose bad cluster intersects an edge of γ

with passage time larger than M , that is

VM (γ) := {w ∈ Zd : ∃e ∈ γ : te ≥M, e ∩ C(w) ̸= ∅}.

On the event E , we define inductively the following sequence

Ψin(1) = min
{
j ≥ 1 : γj ∈ VM (γ)

}
− 1

and
Ψout(1) = max

{
j ≥ Ψin(1) : γj ∈ C(γΨin(1)+1)

}
+ 1 .

Assume Ψin(1), . . . ,Ψin(k) and Ψout(1), . . . ,Ψout(k) are constructed then

Ψin(k + 1) = min
{
j ≥ Ψout(k) : γj ∈ VM (γ)

}
− 1

and
Ψout(k + 1) = max

{
j ≥ Ψin(k + 1) : γj ∈ C(γΨin(k+1)+1)

}
+ 1 .

This process eventually stops for an integer that we call m. By definition, all the edges between
γΨout(k) and γΨin(k+1) have a time less than M as the path does not intersect VM (γ).
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Figure 2.3: The path γ is in blue, in green are the γ(k)

By construction, we have γψin(k), γψout(k) ∈ ∂extC(γψin(k)+1). In particular, these two ver-

tices are connected by γ(k) a Zd-path of good sites in ∂extC(γψin(k)+1). Since all the sites in
∂extC(γψin(k)+1) are good, then the edges between these sites have passage time less than M0 and

TG(γ
(k)) ≤M0|∂extC(γψin(k))| ≤ 3dM0|C(γψin(k))|.

We write γ′ the path where we concatenate the paths (γi)
Ψin(1)
i=1 , γ(1), . . . , (γi)

Ψin(k)
i=Ψout(k)

, γ(k),. . . ,

(γi)
r
Ψout(m) in this order. In particular, the path γ′ is a path from 0 to nx made of edges with

passage time less than M . It follows that

TG(0, nx) ≤
∑
e∈γ′

te =
∑
e∈γ′

min(te,M) ≤
∑
e∈γ

min(te,M) +

m∑
k=1

TG(γ
(k))

≤
∑
e∈γ

min(te,M) + 3dM0

∑
C∈Bad:C∩VM (γ)̸=∅

|C|

≤ TGM (0, nx) + 3dM0

∑
C∈Bad:C∩VM (γ)̸=∅

|C|

where Bad is the set of bad clusters. We claim that for any δ > 0 there exists M ≥M0 such that
for all n large enough

P

∃p starting at 0 such that |p| ≥ n,
∑

C∈Bad:C∩VM (p) ̸=∅

|C| ≥ δ|p|

 ≤ 1

8
. (2.3.6)

Let us postpone the proof of this claim and first conclude. By Theorem 2.2.4, there exists ρ > 1
such that

P(|γ| ≥ 2ρE[te]∥x∥1n)

≤ P(|γ| ≥ ρE[te]∥x∥1n, TGn
(0, nx) ≤ 2∥x∥1E[te]n) + P(TGn

(0, nx) ≥ 2E[te]∥x∥1n) ≤
1

8
.

Furthermore, by subadditive ergodic theorem, we have that for n large enough

P(TG(0, nx) ≥ n(µG(x)− δ)) ≥
7

8

and

P(TGM (0, nx) ≤ n(µGM (x) + δ)) ≥ 7

8
.
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On the intersection of the four latter events together with the event E that occur with positive
probability, we have

−δ + µG(x) ≤ µGM (x) + δ + 2 · 3dM0E[te]ρδ

By letting first M go to infinity and then δ go to 0, we get

µG(x) ≤ lim
M→∞

µGM (x).

The other inequality being trivial, it completes the proof.

We are now left to prove inequality (2.3.6). The combinatorial term arising when summing
over all possible path p is too large to be counterbalanced. To solve this issue, we introduce the
skeleton of the path (instead of summing on all possible paths, we only reveal the positions of the
path at regularly space points). Let us first control the size of VM (γ). Let ξ > 0 depending on δ
we will choose later. By similar argument as in the proof of inequality (2.3.3), we have for M large
enough depending on ξ

P

(
∃p a path starting at 0 s.t. |p| = n and

∑
e∈p

1te≥M ≥ ξn

)
≤
(
3

4

)n
. (2.3.7)

This yields

P (∃p a path starting at 0 s.t. |p| = n and #{C ∈ Bad : C ∩ VM (p) ̸= ∅} ≥ ξn) ≤
(
3

4

)n
. (2.3.8)

Let K be an integer that we will chose later. For v ∈ Zd, we denote by ΛK(v) the hypercube of
side-length 2K centered at v and by ∂ΛK(v) its inner boundary:

ΛK(v) := {w ∈ Zd : ∥w − v∥∞ ≤ K} and ∂ΛK(v) := {w ∈ Zd : ∥w − v∥∞ = K} .

Let p = (pi)0≤i≤n be a self-avoiding path. We define v0 = p0, ℓ0 = 0. If ℓ0, . . . , ℓk and v0, . . . , vk
are constructed, we define if any

ℓk+1 := min {i ∈ {ℓk + 1, . . . , n} : pi ∈ ∂ΛK(vk)} and vk+1 := pℓk+1
.

If there is no such index we stop the process. Since ℓk+1− ℓk ≥ K, there are at most 1+n/K such
ℓk. We define τ = ⌊1 + n/K⌋. The path p is contained in

D(v0, . . . , vτ ) :=

τ⋃
i=0

ΛK(vi) .

If we stop the process for a k < τ , we artificially complete the sequence until attaining τ by setting
for k < j ≤ τ , vj = vk.

Figure 2.4: The corridor D(v0, . . . , vτ ) associated to the path p is represented by the grey section

Define Ak
x be the set of ∗-connected macroscopic sites of size k containing the site x. We have

|Ak
x| ≤ 7dk (see for instance Grimmett [13], p85).
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Thus, we obtain

P

∃p starting at 0 such that |p| = n,
∑

C∈Bad:
C∩VM (p) ̸=∅

|C| ≥ δn


≤ P

( ⋃
v0,...,vτ

{
∃p starting at 0 such that |p| = n∑
C∈Bad:

C∩VM (p)̸=∅
|C| ≥ δn, p ⊂ D(v0, . . . , vτ )

})

≤
∑

v0,...,vτ

P

(
∃p starting at 0 such that #{C ∈ Bad : C ∩ VM (p) ̸= ∅} ≤ ξn and∑

C∈Bad:
C∩VM (p)̸=∅

|C| ≥ δn, p ⊂ D(v0, . . . , vτ )

)
+

(
3

4

)n
≤

∑
v0,...,vτ

P
(
∃x1, . . . , xk ∈ D(v0, . . . , vτ ) :

k ≤ ξn,
∑k
i=1 |C(xi)| ≥ δn,

∀i ̸= j C(xi) ̸= C(xj)

)
+

(
3

4

)n

≤
∑

v0,...,vτ

ξn∑
k=1

∑
j≥δn

∑
j1+···+jk=j
j1≥1,...,jk≥1

∑
x1,...,xk∈D(v0,...,vτ )

∑
Ci∈A

ji
xi
,i∈{1,...,k}

∀i̸=j Ci∩Cj=∅

P (∀1 ≤ l ≤ k C(xl) = Cl) +

(
3

4

)n

where the first sum is over the sites v0, . . . , vτ satisfying v0 = p1 and for all 0 ≤ k < τ , vk+1 ∈
∂ΛK(vk) ∪ {vk}. Since ∂ΛK(v) ∪ {v} contains at most (cdK)d−1 sites where cd ≥ 1 is a constant
depending only on the dimension, the sum over the sites v0, . . . , vτ contains at most

(cdK)(d−1)τ ≤ (cdK)
2n(d−1)

K := κn2

terms for n large enough. For any fixed v0, . . . , vτ , D(v0, . . . , vτ ) contains at most

(τ + 1)(2K + 1)d ≤ (n/K + 2)(2K + 1)d ≤ 2n(3K)d := κ3n

sites. The constants κ2 and κ3 only depend on K and d. There are at most
(
κ3n
k

)
ways of choosing

the sites x1, . . . , xk. Thus, if we fix the sites x1, . . . , xk the number of possible choices of the
connected components C̄1, . . . , C̄k such that for all 1 ≤ l ≤ k, C(xl) = C̄l and

∑k
l=1 |C̄l| = j is at

most: ∑
j1,...,jk≥1
j1+···+jk=j

(7d)j1 · · · (7d)jk = (7d)j
∑

j1,...,jk≥1
j1+···+jk=j

1 .

Consider fixed disjoint C1, . . . , Ck. Note that there is a short range dependence between the state
of the vertices. But if ∥x− y∥∞ ≥ 3 then the fact that x is bad is independent from the fact that
y is bad. Note that the sets (3Zd + x, x ∈ {0, 1, 2}d) are disjoint. By pigeon-hole principle, there
exists x ∈ {0, 1, 2}d such that

|(3Zd + x) ∩ (∪1≤l≤kCl)| ≥
1

3d
| ∪1≤l≤k Cl|

It follows that

P (∀1 ≤ l ≤ k C(xl) = Cl) ≤ P(0 is bad)j/3
d

≤ εj/3d

Notice that

ξn∑
k=1

∑
x1,...,xk∈D(v0,...,vτ )

∑
j1,...,jk≥1
j1+···+jk=j

1 =

(
κ3n

ξn

) ∑
j1,...,jξn≥0
j1+···+jξn=j

1 =

(
κ3n

ξn

)(
ξn+ j − 1

j

)
.

Finally combining all the previous inequalities, we have

P

∃p starting at 0 such that |p| = n,
∑

C∈Bad:
C∩VM (p) ̸=∅

|C| ≥ δn

 ≤ κn2(κ3nξn
) ∑
j≥δn

(
ξn+ j − 1

j

)
7djεj/3d

To bound these terms we will need the following inequality, that we leave as an exercise.
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Exercise Let r ≥ 3, N ≥ 1 and a real z such that 0 < ez(1 + r
N ) < 1:

∞∑
j=N

zj
(
r + j − 1

j

)
≤ ν

(ez(1 + r
N ))N

1− ez(1 + r
N )

(2.3.9)

where ν is a universal constant.
Let us choose ξ = δ2 such that for ε small enough we have

e7ε1/3d
(
1 +

ξ

δ

)
< ε1/6d

Besides, using Stirling approximation, we have(
κ3n

ξn

)
≤ eξ log(

κ3
ξ )n+o(n)

Thanks to these estimates we have choosing K ≥ δ−2

P

∃p starting at 0 such that |p| = n,
∑

C∈Bad:
C∩VM (p) ̸=∅

|C| ≥ δn

 ≤ (cdK)
2n(d−1)

K eξ(log
(6K)d

ξ )n+o(n)νe
δ
6d (log ε)

≤ e δ
10d (log ε)n.

Inequality (2.3.6) follows by summing over all k ≥ n.
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Chapter 3

Fluctuations

3.1 Application of noise sensitivity to FPP

3.1.1 A useful formula for the variance

The proof of this section is an adaptation of the ones in [22]. We will consider here distributions
G that can take two values 0 < a < b such that G({a}) < pc. Let x ∈ Zd and n ≥ 1. In particular,
the geodesics between 0 and nx stay almost surely in a bounded region such that T (0, nx) only
depends on a finite number of edges (te1 , . . . , teN ). Denote

f(te1 , . . . , teN ) := T (0, nx).

We are interested in how f and the geodesics are affected when noising the environment. Set
X := (te1 , . . . , teN ). Let X ′ be an independent vector distributed as X. Consider (U1, . . . , UN ) an
i.i.d. family of uniform random variables on [0, 1]. For any s1, . . . , sN ∈ [0, 1], we define

∀ 1 ≤ i ≤ N Yi(s1, . . . , sN ) :=

{
Xi if Ui ≥ si
X ′
i otherwise.

For short, we write Ys for Y (s, . . . , s).

Definition 3.1.1 (Pivotal edge). We say that an edge e is pivotal for the configuration (te1 , . . . , teN )
if the value of f(te1 , . . . , teN ) depends on the value of te. More precisely, define for i ∈ {1, . . . , N}
σai : {a, b}N → {a, b}N the function that changes the value of the i-th coordinate to be a. Define
similarly σbi . We say that the edge ei is pivotal for f(X) if f ◦ σai (X) ̸= f ◦ σbi (X).

Let Ps be the set of edges that are pivotal for the function f(Y (s, . . . , s)). The following
proposition establishes a relationship between the variance of f(X) and the extent to which the
pivotal edges in the original environment overlap with those in the perturbed (noised) environment.

Proposition 3.1.2. For any n ≥ 1 we have

Var(T (0, nx)) = Var(te)

∫ 1

0

E[|P0 ∩ Ps|]ds .

Moreover, the function s 7→ E[|P0 ∩ Ps|] is non-increasing.

Remark 3.1.3. This formula implies that if the variance is negligible compared to n, then a small
noise modifies totally the geodesic in the sense that E[|P0 ∩Ps|] is also negligible with respect to n.

Proof. We have

Var(f(X)) = E[f(X)f(Y (0))]− E[f(X)f(Y (1))] =

∫ 1

0

− d

ds
E[f(X)f(Y (s))]ds.

By the chain rule, we have

d

ds
E[f(X)f(Y (s))] =

N∑
i=1

d

dsi
E[f(X)f(Y (s))].

25
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Denote ∇if(X) := 1f◦σb
i (X)−f◦σa

i (X)>0 = 1ei is pivotal for f(X). In particular, the value ∇if(X)
does not depend on Xi. Note that

f(X) = (Xi − a)∇if(X) + f ◦ σai (X).

Define
∀s ∈ [0, 1] φ(s) = E[f(X)f(Y (s, s2, . . . , sN ))].

Let δ > 0 such that t1 + δ ∈ [0, 1]. Write Y = Y (t1, t2, . . . , tN ) and Y ′ = Y (t1 + δ, t2, . . . , tN ).
Then,

φ(t1 + δ)− φ(t) = E[f(X)(f(Y ′)− f(Y ))]

= E[((X1 − a)∇1f(X) + f ◦ σa1 (X))(Y ′
1 − Y1)∇1f(Y )]

= E[(X1 − a)(Y ′
1 − Y1)]E[∇1f(X)∇1f(Y )] + E[Y ′

1 − Y1]E[f ◦ σa1 (X)∇1f(X)]

Note that E[Y ′
1 − Y1] = 0 and E[X1(Y

′
1 − Y1)] = E[X1(Y

′
1 − Y1)1U1∈[t1,t1+δ]] = E[X1X

′
1 −X2

1 ]δ. It
follows that

φ(t1 + δ)− φ(t) = −δVar(X1)E[∇1f(X)∇1f(Y )]

and φ′(t1) = −Var(X1)E[∇1f(X)∇1f(Y )]. Finally, we get

d

ds
E[f(X)f(Y (s))] = −

N∑
i=1

Var(X1)E[∇1f(X)∇1f(Y (s))]

= −Var(X1)

N∑
i=1

E[1ei∈P0∩Ps
] = −Var(X1)E[|P0 ∩ Ps|].

(3.1.1)

We are now left to prove that the quantity E[∇1f(X)∇1f(Y (s))] is non-increasing in s. To do so,
we consider the more general setting of a function g : {a, b}N → {0, 1} and we will prove that the
following function is non decreasing

∀s ∈ [0, 1] ψ(s) = E[g(X)g(Y (s, s2, . . . , sN ))].

Note that g(X) = (21X1=b − 1)∇1g(X) + E1g(X) where ∇1g = 1
2 (g ◦ σ

b
1 − g ◦ σa1 ) and E1g =

1
2 (g ◦ σ

b
1 + g ◦ σa1 ). By a same reasoning as in the case of f , we can prove that

ψ(t1 + δ)− ψ(t) = −4δG({b})G({a})E[∇1g(X)∇1g(Y )].

It is now left to prove that E[∇1g(X)∇1g(Y )] ≥ 0. This follows from the fact that the dynamic is
reversible. Let (s1, . . . , sN ) ∈ [0, 1]N and (u1, . . . , uN ) such that (1− ui)2 = 1− si. Now let X be
distributed as X andW be the vector where the i-th coordinate of X is resampled with probability
ui, and Y is the vector where the i-th coordinate of W is resampled with probability ui. It follows
using that X and Y are independent conditionally on W and (X,Y ) has the same law as (X,Y )

E[∇1g(X)∇1g(Y )] = E[∇1g(X)∇1g(Y )] = E[E[∇1g(X)|W ]2] ≥ 0.

This concludes the proof.

3.1.2 Lower bound on the vertical fluctuations

Denote cyl(0, ne1, h) the following cylinder:

cyl(0, ne1, h) := {x ∈ Rd : ∃t ∈ [0, n] ∥x− te1∥∞ ≤ h}.

Let ξ > 0 be such that

∃n0 ≥ 1 ∀n ≥ n0 P(γ(0, ne1) ⊂ cyl(0, ne1, n
ξ)) = 1 (3.1.2)

where γ(0, ne1) denotes a geodesic between 0 and ne1 chosen according to a deterministic rule in
case of ties. The following proposition may be understood as a lower bound for vertical fluctuations
of the geodesic.

Proposition 3.1.4. Let ξ > 0 such that (3.1.2) holds. Then, we have

ξ ≥ 1

d+ 1
.
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Proof. Let n be large enough, by definition of ξ the random variables (T (0, ne1) and T (2n
ξe2, ne1+

2nξe2) are independent. Besides, it is easy to check using triangular inequality that

|T (0, ne1)− T (2nξe2, ne1 + 2nξe2)| ≤ 4nξb.

Hence,

Var(T (0, ne1)) = E[(T (0, ne1)− T (2nξe2, ne1 + 2nξe2))
2] ≤ E[(4nξb)2] ≤ 16b2n2ξ.

Besides, using Proposition 3.1.2, we have

Var(T (0, ne1)) ≥ Var(te)E[|P0 ∩ P1|] = Var(te)
∑

e∈cyl(0,ne1,nξ)

P(e ∈ P0, e ∈ P1)

= Var(te)
∑

e∈cyl(0,ne1,nξ)

P(e ∈ P0)
2.

Using Cauchy-Schwarz, it yields ∑
e∈cyl(0,ne1,nξ)

P(e ∈ P0)

2

≤ 2d| cyl(0, ne1, nξ)|
∑

e∈cyl(0,ne1,nξ)

P(e ∈ P0)
2.

Note that if e ∈ γ(0, ne1) and te = b, then e ∈ P0.

Exercise Let G such that G({a}) < pc. Prove that there exists ρ > 0 such that for n large
enough

E[#{e ∈ γ(0, ne1) : te = b}] ≥ ρn.

Hint: Fist prove that

P(#{e ∈ γ(0, ne1) : te = b} ≤ ρn) ≤ 1

2

by using a renormalization similar to the proof of Theorem 2.2.4.

It follows that∑
e∈cyl(0,ne1,nξ)

P(e ∈ P0) = E[#{e ∈ cyl(0, ne1, n
ξ) ∩ P0}] ≥ E[#{e ∈ γ(0, ne1) : te = b}] ≥ ρn.

Combining all the previous inequalities, we get

16b2n2ξ ≥ Var(T (0, ne1)) ≥ Var(te)ρ
2 n2

2d| cyl(0, ne1, nξ)|
≥ Var(te)ρ

2

4d
n1−ξ(d−1).

Finally, since the previous inequality holds for all large enough n, it follows that

ξ ≥ 1

d+ 1
.

3.2 Sublinear upper bound on the variance

Let b > a > 0 and G = 1
2δa + 1

2δb. The following Theorem due to Benjamini–Kalai–Schramm
is currently the best upperbound on the variance. This result was extended to more general
distributions by Benaim and Rossignol [5] and Damron, Hanson and Sosoe [12].

Theorem 3.2.1 (BKS[6]). There exists a constant C > 0 depending on G and d such that for
every v ∈ Zd such that ∥v∥1 ≥ 2

Var(T (0, v)) ≤ C ∥v∥1
log ∥v∥1

.
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The key input to prove this theorem is the following concentration inequality. Let J be a finite
set of indices. For ω ∈ {a, b}J and j ∈ J denote σjω the function that switches the value in the
j-th coordinate. For f : {a, b}J → R, denote

∂jf :=
f − f ◦ σj

2
.

Consider µ the product measure on {a, b}J which gives a with probability 1/2 and b with probability
1/2. We denote ∥f∥22 =

∫
f2dµ and ∥f∥1 =

∫
|f |dµ

Theorem 3.2.2 (Talagrand’s inequality [20] Theorem 1.5). Let f : {a, b}J → R. We have

Var(f) ≤ C
∑
j∈J

∥∂jf∥22
1 + log(∥∂jf∥2/∥∂jf∥1)

(3.2.1)

where C is a universal constant.

We will need the following control on the expected intersection of a geodesic with a box. We
leave this lemma as an exercise as an application of Theorem 2.2.4.

Lemma 3.2.3. Let G be a distribution such that G({0}) < pc. For any geodesic γ between x and
y, there exists κ > 0 such that for any n ≥ 1

E[|γ ∩ Λm|] ≤ κm.

Proof of Theorem 3.2.1. Let v ∈ Zd and n = ∥v∥1. Letm = ⌊n1/3⌋. Let (X1
i )1≤i≤m, . . . , (X

d
i )1≤i≤m

be IID family of Rademacher random variable (that is X1
1 takes the value 1 with probability 1/2

and −1 with probability 1/2). Denote by z(X) the following random point of Zd

z = z(X) :=

(
m∑
i=1

X1
i , . . . ,

m∑
i=1

Xd
i

)
.

Let E be the deterministic set of edges such that almost surely for any X the geodesic between
z(X) and v+ z(X) only uses edges in E. Let (te)e∈E be an IID family distributed according to G.

We will need to define f̃ the averaged version of f = T (0, v):

f̃ := T (z(X), z(X) + v).

In particular, we have almost surely as ∥z(X)∥1 ≤ dm

|f̃ − f | ≤ 2dmb.

Moreover, we have E[f̃ ] = E[f ] In particular, it follows that

Var(f) = E[(f − E[f ])2] = E[(f − f̃ + f̃E[f ])2] ≤ 2E[(f − f̃)2] + 2Var(f̃) ≤ 2Var(f̃) + 8d2b2n2/3.

To conclude, it is therefore sufficient to prove that

Var(f̃) ≤ C ∥v∥1
log ∥v∥1

.

The reason for introducing this averaged version is that it will be easier to control the influence of
edges for f̃ than for f . The reason is that we don’t have estimates of the probability of an edge
being on the geodesic.

Let I ⊂ N be an indexing of the coordinates of X. For i ∈ I, it is easy to check that
∥σiX −X∥1 ≤ 2 and |σif̃ − f̃ | ≤ 4b It follows that

∥∂if̃∥2 ≤ 2b.

Let e ∈ E. Using that ∂ef̃ ̸= 0 does not depend on the value of e, we have

P(∂ef̃ ̸= 0) = 2P(∂ef̃ ̸= 0, te = a) ≤ 2P(e ∈ γ(z, z + v)).

Note that if ∂ef̃ ̸= 0 and te = a, then necessarily e has to belong to the geodesic. For e ∈ E,
thanks to the previous inequality, we have

∥∂ef̃∥22 ≤
(b− a)2

4
P(∂ef̃ ̸= 0) ≤ (b− a)2

2
P(e ∈ γ(z, z + v)).
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Besides, we have by Cauchy–Schwarz inequality

∥∂ef̃∥1 = E
[∣∣∣∂ef̃ ∣∣∣] ≤√P(∂ef̃ ̸= 0) ∥∂ef̃∥2 ≤

√
2P(e ∈ γ(z, z + v)) ∥∂ef̃∥2.

Let us assume that for all e ∈ E, P(e ∈ γ(z(X), z(X) + v)) ≤ m−1/8. By applying Theorem 3.2.2,
we have

Var(f̃) ≤ C

(∑
i∈I

2b+
∑
e∈E

12(b− a)2

log n
P(e ∈ γ(z, z + v))

)

≤ 2Cdn1/3b+ 12C
(b− a)2

log n
E[|γ(z, z + v)|] ≤ C ′ n

log n

(3.2.2)

Let us now control P(e ∈ γ(z(X), z(X) + v)). Let us assume that

∃e ∈ E P(e ∈ γ(z(X), z(X) + v)) ≥ m−1/8. (3.2.3)

Let e ∈ E be such an edge. We aim at deriving a contradiction. Let i ∈ {1, . . . , d}, let us prove
using a coupling that there exists a universal constant C > 0 such that

|P(e ∈ γ(z(X), z(X) + v))− P(e+ 2ei ∈ γ(z(X), z(X) + v))| ≤ C√
m
.

Consider the case where i = 1. The other cases are proved similarly. Let (te)e∈E . We define t′e as
follows

t′e :=

{
te+2e1 if e+ 2e1 ∈ E
t′′e otherwise

where (t′′e )e∈E is independent from (te). Let (Zi)1≤i≤m, (Z ′
i)1≤i≤m, (X2

i )1≤i≤m, (Xd
i )1≤i≤m be

independent families of Rademacher random variables. Set

Sk :=

k∑
i=1

Z ′
i and S′

k :=

k∑
i=1

Z ′
i.

Let
τ := inf{k ∈ {1, . . . ,m} : Sk ≥ S′

k + 2}
where we use the convention inf ∅ = +∞. Finally, we set

z1 :=

M∑
k=1

Zk and z′1 :=

min(τ,m)∑
k=1

Z ′
k +

m∑
k=min(τ,m)+1

Zk.

Denote by γ′ the geodesic between z′ and z′ + v corresponding to the family (t′e)e∈E . It is easy
to check that it has the same law as γ the geodesic from z to z + v with passage time (te)e∈E .
Moreover, there exists a universal C > 0 s.t.

P(z1 − z′1 ̸= 2) = P(τ =∞) = P(∀k ∈ {1, . . . ,m} S′
k − Sk ≥ 0) ≤ C√

m
.

On the event {z1 = z′1 + 2}, we have
γ = γ′ + 2e1.

It yields

|P(e ∈ γ(z′, z′ + v))− P(e+ 2e1 ∈ γ(z, z + v))| ≤ P(z1 − z′1 ̸= 2) ≤ C√
m
.

It follows that for all w ∈ Zd such that ∥w∥∞ ≤ m1/4

|P(e ∈ γ(z, z + v))− P(e+ 2w ∈ γ(z, z + v))| ≤ C ∥w∥1√
m
≤ Cd 1

m1/4

and
P(e+ 2w ∈ γ(z, z + v)) ≥ P(e ∈ γ(z, z + v))− Cdm−1/4 ≥ m−1/8/2.

This yields that

E[|γ(z, z + v) ∩ (e+ Λ2m1/4)|] ≥
∑

w:∥w∥∞≤m1/4

P(e+ 2w ∈ γ(z, z + v)) ≥ 1

2
md/4−1/8 ≥ 1

2
m3/8.

We conclude that it contradicts (3.2.3) for n large enough thanks to Lemma 3.2.3.
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3.3 Scaling relation

The aim of this section is to establish the link between spatial and time fluctuations. The limit
shape encodes information related to the fluctuations. In particular, in order to understand the
fluctuations, one needs to understand what is the energetic cost for the geodesics to deviate from
the straight line. This cost crucially relies on the curvature exponent.

Definition 3.3.1 (Curvature exponent). Let us assume that ∂Bµ is differentiable. The curvature
exponent κ(u) in the direction u is a real number such that there exist positive constants c, C, ϵ
such that for all z such that ∥z∥ ≤ ϵ and u+ z belongs to the tangent plane to the surface at u (see
Figure 3.1),

c∥z∥κ(u) ≤ µ(u+ z)− µ(u) ≤ C∥z∥κ(u).

Figure 3.1: Definition of the exponent κ(u)

For a direction u, we define the transversal fluctuation exponent

ξu := inf
{
ξ ≥ 0 : lim

n→∞
elog

2 nP(γ(0, nu) ̸⊂ cyl(0, nu, nξ)) = 0
}

where
cyl(0, nu, h) := {x ∈ Rd : ∃t ∈ [0, n] ∥x− tu∥∞ ≤ h}.

We will prove in the next section using concentration estimates that ξu ≤ 1. Define the exponent
related to time fluctuations

χ := inf

{
χ′ ≥ 0 : ∃α > 0 sup

v∈Zd\{0}
E
[
exp

(
α
|T (0, v)− µ(v)|

∥v∥χ′

)]
<∞

}
. (3.3.1)

Remark 3.3.2. This exponent is not directly related to time fluctuations T (0, v) − E[T (0, v)].
Though, thanks to a result of Alexander [1], one can prove that the definition is equivalent if we
replace µ(v) by E[T (0, v)].

Theorem 3.3.3. Let us assume the direction u has curvature exponent κ(u) = 2. Then, we have

ξu ≤
χ+ 1

2
. (3.3.2)

Proof. For simplicity, we will only consider u = e1. For short, write ξe1
= ξ. Let ε > 0. Let

ξ0 = χ+1
2 + ε. Let us prove that ξ0 ≥ ξ. Denote by Vn := cyl(0, ne1, n

ξ0). Note that if the geodesic
exits Vn it has to pass through the vertex boundary ∂Vn of Vn. It follows that

P(γ(0, ne1) ̸⊂ Vn) ≤ E[|γ(0, ne1) ∩ ∂Vn|] =
∑

w∈∂Vn

P(w ∈ γ(0, ne1)).

Let w ∈ ∂Vn. Let us lower bound the following quantity which corresponds to the additional
energetic cost of passing through w compared with energetic cost of the straight path

µ(w) + µ(w − ne1)− µ(ne1).

Let w0 be the projection of w on the line passing through 0 of direction e1. Write w0 = t0e1.
Thanks to the symmetry of the model, we can assume without loss of generality that t0 ≥ n/2.
By definition of the curvature exponent, we have for t0 ≤ n+ nξ0

c

t20
∥w − w0∥2 ≤

1

t0
(µ(w)− µ(w0)) ≤

C

t20
∥w − w0∥2.
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For such t0, we have ∥w − w0∥ = Ω(nξ0). This yields

n2ξ0−1 ≤ µ(w)− µ(w0). (3.3.3)

If t0 ≥ n+ nξ0 , then we have µ(w) ≥ µ(ne1) + nξ0 . Besides, using the convexity of µ, we have

µ(w − ne1) ≥ µ(w0 − ne1). (3.3.4)

Note that for ξ ≤ 1, we have nξ0 ≥ n2ξ0−1. We get

µ(w) + µ(w − ne1)− µ(ne1) = µ(w) + µ(w − ne1)− µ(w0)− µ(w0 − ne1) ≥ cn2ξ0−1.

Note that 2ξ0 − 1 = χ+ 2ε. In particular, by definition of χ, there exists α > 0 such that

M := sup
v∈Zd\{0}

E
[
exp

(
α
|T (0, v)− µ(v)|
∥v∥χ+ε

)]
<∞.

It yields for t ≥ 0

P(|T (0, v)− µ(v)| ≥ t∥v∥χ+2ε) ≤ E
[
exp

(
α
|T (0, v)− µ(v)|
∥v∥χ+ε

)]
e−αt∥v∥

ε

≤Me−αt∥v∥
ε

. (3.3.5)

Finally, we have

P(w ∈ γ(0, ne1)) = P(T (0, w) + T (w, ne1) ≤ T (0, ne1))

≤ P(|T (0, w)− µ(w)| ≥ c

3
n2ξ0−1) + P(|T (0, ne1)− µ(ne1)| ≥

c

3
n2ξ0−1)

+ P(|T (w, ne1)− µ(w − ne1)| ≥
c

3
n2ξ0−1) ≤ 3Me−αcn

ε

.

Finally, it yields that

lim
n→∞

elog
2 nP(γ(0, ne1) ̸⊂ Vn) = 0.

Hence, by definition of ξ, we have χ+1
2 + ε = ξ0 ≥ ξ. Since, the previous inequality holds for every

ε, this yields the desired inequality.

Let us define a new exponent for time fluctuations.

χ := sup

{
χ′ ≥ 0 : inf

v∈Zd\{0}

Var(T (0, v))

∥v∥2χ′ > 0

}
. (3.3.6)

The following result was first proved by Chatterjee in [9] and later simplified by Auffinger–
Damron in [2].

Theorem 3.3.4 (Hard-direction of the scaling relation). Let us assume the direction e1 has cur-
vature exponent κ(e1) = 2 and χ = χ. Then, we have

χ ≤ 2ξ − 1. (3.3.7)

Proof. Let ε > 0. Let vn = 4nξ+εe2. Denote by Fn the following good event

Fn := {γ(0, ne1) ⊂ cyl(0, ne1, n
ξ+ε)} ∩ {γ(vn, ne1 + vn) ⊂ vn + cyl(0, ne1, n

ξ+ε)}.

In particular, we have by definition of ξ, that

lim
n→∞

elog
2 nP(Fcn) = 0.

Recall that Var(X) = E[(X −X ′)2] for X,X ′ independent and identically distributed. Let T, T ′

be independent random variables distributed as T (0, ne1). It follows by Cauchy–Schwarz

Var(T (0, ne1)) = E[(T − T ′)21Fn ] + E[(T − T ′)21Fc
n
]

≤ E[(T (0, ne1)− T (vn, ne1 + vn))
21Fn

] + Cn2
√
P(Fcn).

Using the definition of χ, it follows for n large enough

cn2χ−ε ≤ 1

2
Var(T (0, ne1)) ≤ E[(T (0, ne1)− T (vn, ne1 + vn))

21Fn ].
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Let β < 1. Let L1
n := {nβ} × [3nξ, 5nξ] and L2

n := {n− nβ} × [3nξ, 5nξ]. On the event Fn, let
u ∈ L1

n and w ∈ L2
n such that the geodesic γ(vn, ne1 + vn) goes through u and w. It follows that

T (0, ne1)− T (vn, ne1 + vn) ≤ T (0, u) + T (u,w) + T (w, ne1)− T (vn, ne1 + vn)

≤ T (0, u)− T (vn, u) + T (w, ne1)− T (w, ne1 + vn)

≤ max
x∈L1

n

|T (0, x)− T (vn, x)|+ max
x∈L2

n

|T (x, ne1)− T (x, ne1 + vn)|.

Let x ∈ L1
n. We have

|T (0, x)− T (vn, x)| ≤ |T (0, x)− µ(x)|+ |µ(x)− µ(vn − x)|+ |T (vn, x)− µ(xn − x)|. (3.3.8)

Let us now upperbound

|µ(x)− µ(vn − x)| ≤ |µ(x)− µ(x− nβe1)|+ |µ(x− nβe1)− µ(x− nβe1)| ≤ Cn2ξ−β . (3.3.9)

Besides, we have by similar computations as in (3.3.5)

P(|T (0, x)− µ(x)| ≥ nβ(χ+2ε)) ≤ Ce−αn
βε

. (3.3.10)

In particular, we have

E
[
max
x∈L1

n

|T (0, x)− µ(x)|2
]
≤ Cn2β(χ+2ε)

and

E
[
max
x∈L1

n

|T (0, x)− T (vn, x)|2
]
≤ 3E

[
max
x∈L1

n

|T (0, x)− µ(x)|2
]
+ 3E

[
max
x∈L1

n

|T (vn, x)− µ(xn − x)|2
]

+ 3 max
x∈L1

n

|µ(x)− µ(vn − x)|2

≤ C(n2(2ξ−β) + n2β(χ+2ε)).

(3.3.11)

We can get a similar upper-bound for T (vn, ne1 + vn)− T (0, ne1). Finally, we get

cn2χ−ε ≤ E[(T (0, ne1)− T (vn, ne1 + vn))
2] ≤ C(n2(2ξ−β) + n2β(χ+2ε)). (3.3.12)

For small enough ε, since β < 1 and χ = χ, it follows that 2β(χ+ 2ε) < 2χ− ε. Since inequality
(3.3.12) holds for any n, it yields that

2χ− ε ≤ 2(2ξ − β).

By letting first ε go to 0 and then β go to 1, we get

χ ≤ 2ξ − 1. (3.3.13)

This concludes the proof.

3.4 Talagrand concentration estimate

In this section, we aim to prove the following strong concentration estimate originally proved by
Talagrand [21]. The proofs of this section are inspired by the proofs in [3, Section 3.4] and [7,
Section 6].

Theorem 3.4.1 (Talagrand concentration theorem). Assume G({0}) < pc and that G has an
exponential moment. There exist c, C > 0 such that

∀x ∈ Zd P(T (0, x)− E[T (0, x)] ≥ t
√
∥x∥1) ≤ e−ct

2

for t ∈ (0, C
√
∥x∥1).
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Exercise Thanks to this theorem prove that χ ≤ 1
2 and ξ ≤ 1 using the definitions of the

exponent from the previous section.

3.4.1 Logarithmic Sobolev inequalities

Let X1, . . . , Xn be independent random variables taking values in X and g be a positive-valued
function on Xn. We investigate concentration properties of Z = g(X1, . . . , Xn). Denote by Ei the
expectation conditionally on X1, . . . , Xi−1, Xi+1, . . . , Xn. Let X

′
1, . . . , X

′
n be independent random

variables distributed as X1, . . . , Xn. Write Z ′
i = g(X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn). As a warm-up

let us prove subadditivity for the variance.

Theorem 3.4.2 (Efron-Stein’s inequality). We have

Var(Z) ≤
n∑
i=1

E[Vari(Z)]

where Vari(Z) = Ei[(Z − Ei[Z])2].

Proof. Write E(i) the expectation conditionally on X1, . . . , Xi. Denote ∆i = E(i)[Z] − E(i−1)[Z].
Note that

Z − EZ =

n∑
i=1

∆i.

It follows that

Var(Z) = E

( n∑
i=1

∆i

)2
 =

n∑
i=1

E[∆2
i ] + 2

∑
1≤i<j≤n

E[∆i∆j ].

Besides, we have for i < j

E[∆i∆j ] = E[∆iE(i)[∆j ]] = E[∆i(E(i)[Z]− E(i)[Z])] = 0.

It yields that

Var(Z) =

n∑
i=1

E[∆2
i ].

By Jensen’s inequality, it follows that

E[∆2
i ] = E[E(i)[Z − Z ′

i]
2] ≤ E[E(i)[(Z − Z ′

i)
2]] = E[(Z − Z ′

i)
2] = E[Ei[(Z − Z ′

i)
2]] = E[Vari(Z)]

where we used in the last inequality that conditionally on X1, . . . , Xi−1, Xi+1, . . . , Xn, the random
variables Z and Z ′

i are independent and identically distributed. This concludes the proof.

Exercise Deduce from Theorem 3.4.2 that

Var(Z) ≤ 1

2

n∑
i=1

E[(Z − Z ′
i)

21Z′
i>Z

].

Apply this inequality to get a linear upper-bound for the first passage time between two points.

Denote ψ(x) = ex − x − 1 and τ(x) = x(ex − 1) for x > 0. Define the entropy of X and the
conditional entropy

EntX := EX logX − EX logEX and EntiX := EiX logX − EiX logEiX.

Roughly speaking, the entropy measures the amount of uncertainty of the measure X.
The following theorem will be the key inequality to prove Talagrand Theorem.

Theorem 3.4.3 (A logarithmic Sobolev inequality). For all s ∈ R

Ent[esZ ] ≤
n∑
i=1

E[esZτ(s(Z ′
i − Z))1Z<Z′

i
].

We will admit the following theorem (we refer to [7, Theorem 4.22]). This theorems says that
the entropy is a sub-additive quantity. It may be seen as the analogous of Theorem 3.4.2.
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Theorem 3.4.4 (Tensorization inequality of the entropy). We have

EntZ ≤
n∑
i=1

E[Enti Z].

We will also need the following easy lemma.

Lemma 3.4.5. Let Y denote a positive random variable and u > 0

EY log Y − EY logEY ≤ E[Y log Y − Y log u− (Y − u)].

Proof. We need to check that

EY log
u

EY
≤ u− EY.

It follows from log x ≤ x− 1 for any x > 0.

Proof of Theorem 3.4.3. Thanks to Lemma 3.4.5, we have

Enti Y ≤ Ei[Y (log Y − log Yi)− (Y − Yi)].

By applying it for Y = esZ , we get

Enti Y ≤ Ei[Y (s(Z − Z ′
i)− 1 + es(Z

′
i−Z)]] = Ei[esZψ(−s(Z − Z ′

i))].

Write
esZψ(−s(Z − Z ′

i)) = esZψ(−s(Z − Z ′
i))1Z>Z′

i
+ esZψ(s(Z ′

i − Z))1Z<Z′
i
.

By symmetry, we have

Ei[esZψ(−s(Z − Z ′
i))1Z>Z′

i
] = Ei[esZ

′
iψ(s(Z − Z ′

i))1Z<Z′
i
] = Ei[esZes(Z

′
i−Z)ψ(s(Z − Z ′

i))1Z<Z′
i
].

Note that ψ(x) + exψ(−x) = τ(x). It yields that

Ei[esZψ(−s(Z − Z ′
i))] = Ei[esZψ(s(Z ′

i − Z))1Z<Z′
i
] + Ei[esZes(Z

′
i−Z)ψ(s(Z − Z ′

i))1Z<Z′
i
]

= Ei[esZτ(s(Z ′
i − Z))1Z<Zi

].

The result follows by applying Theorem 3.4.4.

3.4.2 Proof of Talagrand concentration Theorem 3.4.1

Assume G has an exponential moment and G({0}) < pc. Let x ∈ Zd. We set Z = T (0, x).
By dominated convergence theorem, one can check that Theorem 3.4.3 extends to the case of
Z = T (0, x) where the random variables depend on a countable number of random variables as
long s is small enough. We enumerate the edges (e1, e2, . . . ). We will denote by (Xi)i≥1 and
(X ′

i)i≥1 two IID families of random variables distributed according to G. We set tei = Xi and
t′ei = X ′

i.
Denote by γ the geodesic between 0 and ne1 in the environment (Xi)i chosen with a determin-

istic rule to break ties. By Theorem 3.4.3, we have

Ent[esZ ] ≤
n∑
i=1

E[esZτ(s(Z ′
i − Z))1Z<Z′

i
]

Note that if Z < Z ′
i it implies that the edge ei is on the geodesic γ and that Z ′

i − Z ≤ X ′
i = t′ei .

It yields that

Ent[esZ ] ≤
n∑
i=1

E[esZτ(st′ei)1ei∈γ ] = E[τ(sX1)]E[esZ |γ|]

Since it is difficult to decouple |γ| and esZ , we will use the following variational characterization
of the entropy (see [7, Theorem 4.13])

EntX = sup{EXY : EeY ≤ 1}

which implies for X ≥ 0 and any Y

EXY ≤ EntX + EX logEeY .
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It follows for any a > 0

E[esZ |γ|] ≤ aEnt esZ + aEesZ logE exp

(
|γ|
a

)
.

Combining with the previous inequalities, for a small enough such that aE[τ(sX1)] < 1, we get

Ent esZ ≤ aE[τ(sX1)]

1− aE[τ(sX1)]
EesZ logE exp

(
|γ|
a

)
.

We will need the following lemma that we leave as an exercise.

Lemma 3.4.6. Assume that G has an exponential moment and G({0}) < pc. Then there exists
c1 > 0 depending on a such that

∀x ∈ Zd logE exp

(
|γ(0, x)|

a

)
≤ c1∥x∥1.

Now set F (s) := E[esZ ] and H(s) := s−1 logF (s). It follows that

H ′(s) =
sF ′(s)− F (s) logF (s)

s2F (s)
≤ c1∥x∥1

aE[τ(sX1)]

s2(1− aE[τ(sX1)])
.

By dominated convergence, we have

lim
s→0

aE[τ(sX1)]

s2(1− aE[τ(sX1)])
= aE[X2

1 ].

It follows that there exists s0 > 0 such that for all s ∈ (0, s0)

H ′(s) ≤ 2c1∥x∥1aE[X2
1 ] := C∥x∥1.

Besides, we have by l’Hospital rule

lim
s→0

H(s) =
F ′(0)

F (0)
= E[Z].

By integrating the above inequality for some s < s0, we get

H(s) ≤ C∥x∥1s+ EZ.

Finally, it gives

F (s) ≤ esEZ+s2C∥x∥1 .

By Markov’s inequality, we get

P(Z > EZ + t) ≤ F (s)e−sEZ−st ≤ es
2C∥x∥1−st.

Finally, we choose s = t/2C∥x∥1 for t ≤ 2s0C∥x∥1, it yields

P(T (0, x) > E[T (0, x)] + t) ≤ e−t
2/4C∥x∥1 .

The result follows.
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Chapter 4

Large deviations in first passage
percolation

4.1 Large deviations theory

Large deviation theory deals with the study of rare events, such as extreme fluctuations and devi-
ations from typical behavior. The theory provides a framework for understanding the probability
of such events. Large deviation theory has broad applications in diverse areas such as statistical
physics, insurance, finance. The central question in large deviation theory is about the decay rate
of the atypical event.

4.1.1 Sum of IID

Some examples

The simplest context to study large deviations is the case of the sum of IID random variables. Let
µ be a distribution that has finite expectation. Let (Xi)i≥1 be an IID family of random variables
distributed according to µ. We want to study the behaviour of the sum Sn :=

∑n
i=1Xi. Thanks

to the strong law of large numbers, we know that

lim
n→∞

1

n
Sn = E[X1] a.s..

We are interested in extreme deviations with respect to the mean, that is for ε > 0, we will
study P(Sn ≥ n(E[X1] + ε)). We can first lower bound the speed of decay. Let ε > 0 such that
P(X1 > E[X1] + ε) > 0. It is easy to check that

P(Sn ≥ n(E[X1] + ε)) ≥ P(∀i ∈ {1, . . . , n} Xi > E[X1] + ε) = P(X1 > E[X1] + ε)n.

This inequality indicates that it cannot decay faster than exponentially in n.
Let us now start with an easy example where all computations are explicit: X1 is distributed as

a standard gaussian random variable. Hence, it yields that the sum Sn is distruted as a centererd
gaussian random variable with variance n. It follows that

P(Sn > εn) =

∫
t≥εn

1√
2π
e−t

2/2ndt ∼ 1

ε
√
2πn

e−nε
2/2.

For general distributions, it is not always possible to get such a precise estimate on large
deviations events. Before stating the theorem let us study a last instructive example: the case of
a positive random variable where the distribution has heavy tails, that is there exists α > 0 such
that

∃x0 > 0 ∀x ≥ x0 P(X1 > x) > x−α.

It yields that

P(Sn ≥ n(E[X1] + ε)) ≥ P(X1 > n(E[X1] + ε)) ≥ (n(E[X1] + ε))−α.

This implies that we need stronger assumption than just the existence of a finite moment to ensure
that the large deviation events decay exponentially fast. We need an assumption to make sure the
tails are light enough. We will see that when the tails are light, the large deviation events are not
induced by shifting only one input but rather by the collective action of all the inputs.

37
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Cramer’s Theorem

Define
t0 := sup{t ≥ 0 : E[exp(tX1)] <∞}.

We assume that t0 > 0. Define φ(t) := E[exp(tX1)]. It is easy to check that φ is strictly convex
and C∞ on [0, t0). For a > E[X1] such that P(X1 > a) > 0, we define

I(a) = sup
t≥0

at− logφ(t).

It is easy to check that the supremum is attained.

Theorem 4.1.1 (Cramer’s theorem). Under the above conditions,

lim
n→∞

1

n
logP(Sn > an) = −I(a), (4.1.1)

that is P(Sn > an) = e−nI(a)+o(n).

Proof. The upper-bound follows easily by Chernoff bound. We have for t ∈ (0, t0)

P(Sn > an) = P(etSn > eatn) ≤ E[etSn ]e−atn = φ(t)ne−atn ≤ e−I(a)n. (4.1.2)

It yields that

lim sup
n→∞

1

n
logP(Sn > an) ≤ −I(a). (4.1.3)

The lower-bound is the hard part of the proof. To prove the lower-bound, we will do a change
of measure to favor large values. Let t∗ denote the value achieving the supremum. Let Y be the
random variables such that for any continuous function f

E[f(Y )] =
1

φ(t∗)
E[f(X)et

∗X ].

In other words, ifX has a density PX , then the density of Y is given by PY (dx) = PX(dx)et
∗x/φ(t∗).

Note that

E[Y ] =
1

φ(t∗)
E[Xet

∗X ] =
φ′(t∗)

φ(t∗)
.

Besides, since t∗ is the value where the supremum is attained, we have a − φ′(t∗)
φ(t∗) = 0. It yields

that E[Y ] = a. Let (Yi)i≥1 be an IID family with the same distribution as Y . We have

P(Sn > na) = E[1X1+···+Xn>na]

= ZnE[1Y1+···+Yn>nae
−t∗(Y1+...,Yn)]

≥ ZnE[1Y1+···+Yn∈(na,na+
√
n)e

−t∗(Y1+...,Yn)]

≥ Zne−t
∗(na+

√
n)P(Y1 + · · ·+ Yn ∈ (na, na+

√
n)).

By using the central limit theorem, we have that

lim
n→∞

1

σY
√
n

(
n∑
i=1

Yi − an

)
= N (0, 1) in distribution.

In particular, we have
lim
n→∞

P(Y1 + · · ·+ Yn ∈ (na, na+
√
n)) > 0.

Combining the previous inequalities, it follows that

lim inf
n→∞

1

n
logP(Sn > an) ≥ φ(t∗)− at∗ = −I(a). (4.1.4)

The result follows.

Exercise Compute I in the case where the distribution is Bernoulli random variable and expo-
nential random variable.
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4.1.2 General large deviations principle

In the previous section, we observed that in the case of a sum of independent and identically
distributed variables, the occurrence of a large deviation in the upper direction was caused by a
joint effort of all inputs, achieved by shifting their values up. In the following discussion, we will
explore broader large deviation principles for more general functions that rely on a set of input
variables. Through examples, we will observe that in certain cases, only a small fraction of the
inputs play a significant role in the large deviation event, leading to a decay rate that may not be
directly proportional to the number of inputs.

In the general context, the objects we will study are more general than real number. For
that reason, topology will play an important role in the study of large deviation, in particular to
quantify how close two objects are. Let us recall some definitions of topology. Let (X ,O) be a
regular topological space; regular means that for any x ∈ X and any closed subset F of X such
that x /∈ F , there exist two disjoint open sets U , V such that x ∈ U and F ⊆ V . We suppose that
X is also endowed with a σ-field B such that each element x ∈ X admits a basis of neighbourhoods
consisting of open measurable sets:

∀x ∈ X ∀O ∈ O x ∈ O ⇒ ∃V ∈ B ∩ O x ∈ V ⊆ O. (4.1.5)

Definition 4.1.2 (Rate function). A rate function on (X , O) is a lower semicontinuous map
I : X → R+ ∪ {+∞}. A rate function I is said to be good if its level sets {x ∈ X : I(x) ≤ λ},
λ ∈ R+, are compact.

Definition 4.1.3 (Large deviation principle (LDP)). Let (µn)n≥1 be a sequence of probability
measures defined on the σ-field B. The sequence (µn)n≥1 satisfies a large deviation principle with
speed an governed by the rate function I and with respect to the topology O if for any A ∈ B,

− inf{I(x) : x ∈ Å} ≤ lim inf
n→∞

1

an
logµn(A) ≤ lim sup

n→∞

1

an
logµn(A) ≤ − inf{I(x) : x ∈ A}

where Å and A are respectively the interior and closure of A.

Let (Xn)n≥1 be a sequence of random variables taking their values in the regular topological
space (X ,O), with a σ-field B satisfying the above hypothesis. We say that (Xn)n≥1 satisfies a
LDP if the sequence of their law does. Rougly speaking, if the sequence (Xn)n≥1 satisfies a LDP
governed by I with speed an if P(Xn ≈ x) = e−anI(x)+o(an).

Remark 4.1.4. Assume I admits a unique global minimizer x∗, then if Xn satisfies a LDP gov-
erned by I, for any neighborhood U ∈ B of x, we have

lim sup
n→∞

1

an
logP(Xn /∈ U) < 0.

Hence,
lim
n→∞

P(Xn ∈ U) = 1.

This may be interpreted as law of large number. In particular, we must have I(x∗) = 0 in order
not to contradict the limit above.

How to prove a LDP in practice ?

We now assume that X is a vector space and we denote by U a basis of neighbourhood of the
origin (as defined in (4.1.5)). To prove a LDP, one need to check the following conditions. A proof
of this proposition may be found in section 6 in [8].

Proposition 4.1.5. Let us assume that the following conditions are satisfied

• I is a good rate function;

• ∀x ∈ X ∀U ∈ U lim infn→∞
1
an

logP(Xn ∈ x+ U) ≥ −I(x);

• We have I-tightness, that is there exists c, λ0 > 0 such that

∀λ ≥ λ0 ∀U ∈ U lim sup
n→∞

1

an
logP(Xn /∈ I−1([0, λ] + U) ≤ −cλ;

• ∀x ∈ X I(x) <∞ ∀ε > 0 ∃U ∈ U lim supn→∞
1
an

logP(Xn ∈ x+ U) ≤ −I(x)(1− ε).
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Then, the sequence (Xn)n≥1 satisfies a LDP governed by I with speed an.

Remark 4.1.6. Note that the tightness assumption becomes trivial if with probability 1, Xn takes
values in a compact set. Otherwise, we need to ensure that the mass is exponentially concentrated
on compact sets.

Contraction principle

We conclude by mentioning a very useful result of stability of LDP. Let (X ,OX) and (Y,OY) be
two regular topological spaces. We suppose also that X and Y are both endowed with two σ–fields
BX and BY satisfying the condition in (4.1.5). Let us assume we know that the sequence (Xn)n≥1

satisfies a LDP governed by I with speed an. Let f : X → Y be a continuous map, measurable
with respect to the σ–fields BX and BY . Set Yn = f(Xn). Then, the sequence (Yn)n≥1 also satisfies
a LDP.

Proposition 4.1.7. If the sequence (Xn)n≥1 satisfies a large deviation principle governed by the
good rate function I and with respect to the topology OX , then the sequence (Yn)n≥1 satisfies a
large deviation principle with respect to the topology OY , with the same speed, governed by the good
rate function J given by

∀y ∈ Y J(y) := inf{I(x) : x ∈ X , y = f(x)}.

Proof. The function J takes its values in [0,+∞]. Let t ≥ 0 and y ∈ Y such that J(y) ≤ t. Since
I has compact level sets, it attains its minimum in the following compact set

{x ∈ X : f(x) = y} ∩ {x ∈ X : I(x) ≤ λ}.

Let x ∈ X be such that f(x) = y and J(y) = I(x). It follows that

{y ∈ Y : J(y) ≤ t} = f({x ∈ X : I(x) ≤ t})

and J also has compact level set. Next we prove the large deviation lower bound. Let B ∈ BY .
Then

lim inf
n→∞

1

an
logP(Yn ∈ B) = lim inf

n→∞

1

an
logP(Xn ∈ f−1(B)) ≥ − inf{I(x) : x ∈ ˚f−1(B)}.

Mote that f−1(B̊) ⊆ ˚f−1(B). It yields

− inf{I(x) : x ∈ ˚f−1(B)} ≥ − inf{I(x) : x ∈ f−1(B̊)}
= − inf{inf{I(x) : x ∈ X, f(x) = y} : y ∈ B̊}
= − inf{J(y) : y ∈ B̊}.

Finally, let us prove the large deviation upper bound:

lim sup
n→∞

1

an
logP(Yn ∈ B) = lim sup

n→∞

1

an
logP(Xn ∈ f−1(B)) = − inf{I(x) : x ∈ f−1(B)}.

Note that f−1(B) ⊆ f−1(B), whence

− inf{I(x) : x ∈ f−1(B)} ≤ − inf{I(x) : x ∈ f−1(B)}
= − inf{inf{I(x) : x ∈ X, f(x) = y} : y ∈ B}
= − inf{J(y) : y ∈ B}.

This concludes the proof.

Exercise Let (Xi)i≥1 be an IID family of random variables distributed according to some distri-
bution µ with all exponential moment. Set Sn :=

∑n
i=1Xi. Prove that ( 1nSn)n≥1 satisfies a LDP.

Deduce that (( 1nSn)
2)n≥1 also satisfies a LDP and determine the corresponding rate function.
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4.2 Large deviations for FPP

4.2.1 Lower tail large deviations

Let x ∈ Zd. We want to study the asymptotic probability that the time is abnormally low, that is
the following event {T (0, nx) < (1− ε)µ(x)n}, ε > 0. Intuitively, to create this unlikely event it is
sufficient to decrease all the time of the edges along the geodesic. It will induce a speed of large
deviation of order n. The following theorem asserts the existence of a rate function and that n is
the correct speed of large deviation.

Theorem 4.2.1. The following limit exists

lim
n→∞

1

n
logP(T (0, nx) < (1− ε)µ(x)n) := −Il(x, ε) (4.2.1)

and for ε > 0 and x ∈ Zd, we have Il(x, ε) > 0

The existence of the limit is an easy consequence of subadditivity and FKG inequality. The
second part of the theorem is more involved. To prove this theorem, we will need to use FKG
property. We say that an event E is increasing if for any (t′e)e∈Ed ≥ (te)e∈Ed if (te)e∈Ed ∈ E then
(t′e)e∈Ed ∈ E. If two events are increasing, there are positively correlated, hence there have more
chance to occur jointly than separately. More formally, we have the following inequality.

Proposition 4.2.2 (FKG inequality). If E and F are increasing, then

P(E ∩ F ) ≥ P(E)P(F ).

The same conclusion holds if both events are decreasing.

Define the disjoint occurrence of E and F denoted by E ◦ F if for any (te)e ∈ E ◦ F , there
exists a set of edges G such that the edges in G are sufficient to say that the event E occurs and
the edges outside G are sufficient to say that the event F occurs. We will also need the following
inequality.

Proposition 4.2.3 (BK inequality). We have

P(E ◦ F ) ≤ P(E)P(F ).

Proof of Theorem 4.2.1. Note that the event {T (0, nx) < (1 − ε)µ(x)n} is decreasing. By FKG’s
inequality, we have

P(T (0, (n+m)x) < (1− ε)µ(x)(n+m))

≥ P(T (0, nx) < (1− ε)µ(x)n, T (nx, (n+m)x) < (1− ε)µ(x)m)

≥ P(T (0, nx) < (1− ε)µ(x)n)P(T (nx, (n+m)x) < (1− ε)µ(x)m)

= P(T (0, nx) < (1− ε)µ(x)n)P(T (0,mx) < (1− ε)µ(x)m).

By setting un := logP(T (0, nx) < (1 − ε)µ(x)n). We have that (un)n≥1 is super-additive. We
conclude that the limit in (4.2.1) exists by Fekete’s lemma.

Let us now turn to the proof of Il(x, ε) > 0. To simplify, we will assume that the distribution
G is compactly supported on [0,M ]. Let γ be the geodesic between 0 and nx on the event
{T (0, nx) < (1 − ε)µ(x)n}. Let K ≥ 1 we will choose later. Let (xi)i=0,...,m be its corresponding
K-skeleton as defined in the proof of Proposition 2.3.2. In particular, we have m ≤ |gamma|/K.
By triangular inequality, we have

m∑
i=1

µ(xi − xi−1) ≥ nµ(x).

Besides, we have on the event {T (0, nx) < (1− ε)µ(x)n}

(1− ε)
m∑
i=1

µ(xi − xi−1) ≥ T (0, nx) =
m∑
i=1

T (xi−1, xi) ≥
m∑
i=1

T (xi−1, xi)1T (xi−1,xi)>(1−ε/2)µ(xi−xi−1)

≥
m∑
i=1

(1− ε/2)µ(xi − xi−1)1T (xi−1,xi)>(1−ε/2)µ(xi−xi−1).
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It follows that

(1−ε)
m∑
i=1

µ(xi−xi−1)1T (xi−1,xi)≤(1−ε/2)µ(xi−xi−1) ≥
ε

2

m∑
i=1

µ(xi−xi−1)1T (xi−1,xi)>(1−ε/2)µ(xi−xi−1)

Since ∥xi − xi−1∥∞ = K (except for i =M), we have

Kµ(e1) ≤ µ(xi − xi−1) ≤ Kdµ(e1).

Write E := {i < m : T (xi−1, xi) > (1− ε/2)µ(xi − xi−1)} and N := #E. Hence, εN ≤ 2(m− N)d
and N ≤ 2d

2d+εm. Let δ > 0. For K large enough we have for all ∥y∥1 ≥ K/2

P(T (0, y) ≤ (1− 3ε/4)µ(y)) ≤ δ. (4.2.2)

Let K0 = ⌊εK/16dM⌋. Denote by x ∈ Zd be such that x ∈ (2K0x + [−K0,K0)
d) := ΛK0(x).

Let x, y ∈ Zd. Assume there exists x ∈ ΛK0
(x) and y ∈ ΛK0

(y) such that ∥x− y∥∞ = K and

T (ΛK0(x),ΛK0(y)) ≤ (1− ε/2)µ(x− y).

It follows that

T (2K0x, 2K0y) ≤ dK0M + T (ΛK0
(x),ΛK0

(y)) + dK0M

≤ 2(1− ε/2)K0µ(x− y) + εKµ(e1)/16 + 2dK0µ(e1)

≤ 2K0(1− 3ε/4)µ(x− y).

Hence

{T (ΛK0
(x),ΛK0

(y)) ≤ (1− ε/2)µ(x− y)} ⊂ {T (2K0x, 2K0y) ≤ 2K0(1− 3ε/4)µ(x− y)}

and by inequality (4.2.2)

P(T (ΛK0
(x),ΛK0

(y)) ≤ (1− ε/2)µ(x− y))) ≤ δ.

By summing over all possible x1, . . . , xm, we get

P(T (0, nx) < (1− ε)µ(x)n)

≤
∑

x1,...,xm admissible

P
(
N ≤ 2d

2d+ ε
m,∀i xi ∈ ΛK0(xi)

)
≤

∑
x1,...,xm admissible

∑
E⊂{1,...,m}:
#E≤ 2d

2d+εm

P(∀i ∈ {1, . . . ,m} \ E T (ΛK0
(xi−1),ΛK0

(xi)) ≤ (1− ε/2)µ(xi − xi−1))

≤
∑

x1,...,xm admissible
m≤βn/K

∑
E⊂{1,...,m}:
#E≤ 2d

2d+εm

δ
ε

2d+εm + P(|γ| ≥ βn)

≤ ecβ n
K log ε2β

n
K eβ

ε
3d

n
K log δ + e−cn

where in the second to last inequality we used that the occurrence of all these events is disjoint
and that we can therefore apply BK inequality. We also used Theorem 2.2.4 where we used that
G({0}) < pc since otherwise there is no lower large deviation. The result follows by first choosing
δ small enough such that −ε log δ ≥ − log ε and then K large enough such that (4.2.2) holds.

4.2.2 Upper tail large deviation

The study of upper large deviation {T (0, nx) > (1 + ε)nµ(x)}, ε > 0 is much more involved. In
particular, in the case of bounded passage time, it is not sufficient to increase the passage time
along the geodesic to create this event as there will be another path with a passage time close to
nµ(x). In fact, the passage time of a positive fraction of the edges needs to be shifted up to ensure
the upper large deviation occurs. When the distribution G has compact support, the speed of large
deviation is volumic nd. When the distribution does not have compact support, the phenomenology
is radically different depending on the tail of G. In some cases, the upper large deviation becomes
a local event, only the edges nearby the endpoints of the geodesic need to be shifted up to create
the upper tail large deviation event. In the case of compactly supported distribution, we have the
existence of a rate function.
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Theorem 4.2.4 (Basu–Ganguly–Sly [4]). Assume G has a regular density and compact support.
Then, the following limit exists

lim
n→∞

1

nd
logP(T (0, nx) ≥ (1 + ε)µ(x)n) := −Iu(x, ε).

Note that the proof of this theorem is much more involved that its lower tail large deviation
counterpart. The proof also relies on sub-additivity but the sub-additivity is much more involved
to get. We also have the following theorem for some specific non-compact distributions.

Theorem 4.2.5 (Cosco–Nakajima [10]). Consider a distribution G satisfying

P(te ≥ t) ≍ e−αt
r

as t→∞ with some constants r ∈ (1, d], α > 0.

Then, the rate function for upper tail large deviations exists and is related to the so-called discrete
p-capacity and the correct speed is nr.

We will prove here the following more modest result which confirms that the appropriate speed
is volumic in the bounded case.

Theorem 4.2.6. Assume G has compact support. We have for all x ∈ Zd

lim sup
n→∞

1

nd
logP(T (0, nx) ≥ (1 + ε)µ(x)n) ≤ 0.

To prove this theorem, we will first prove the following intermediate proposition. Let C ⊂ Ed,
we denote the time restricted to paths in C by TC , that is

∀x, y ∈ C TC(x, y) = inf{T (γ) : γ ⊂ C path between x and y}.

Proposition 4.2.7. For all ε > 0, there exists K ≥ 1 and c > 0 such that

P(Tcyl(0,nx,K)(0, nx) ≥ (1 + ε)nµ(x)) ≤ e−cn.

Let us postpone the proof of this proposition to the end of the proof of Theorem 4.2.6.

Proof of Theorem 4.2.6. Assume G is supported on the interval [0,M ]. Let ε > 0. Let K and
c be the parameters of Proposition 4.2.7 corresponding to ε/2. Set δ = ε

4dM . Set S := {0} ×
((3KZ)d−1 ∩ [−δn, δn]d−1). In particular, thanks to the definition of S, we have that all the
cylinders cyl(w,w + nx,K), w ∈ S are disjoint. Now let us assume there exists w ∈ S such that
Tcyl(w,w+nx,K)(w,w + nx) ≤ (1 + ε/2)µ(x)n. It follows that

T (0, nx) ≤ T (0, w) + T (w,w + nx) + T (w, nx) ≤ 2(d− 1)Mδn+ (1 + ε/2)µ(x)n ≤ (1 + ε)µ(x)n.

Hence, we have that

{T (0, nx) ≥ (1 + ε)µ(x)n} ⊂
⋂
w∈S
{Tcyl(w,w+nx,K)(w,w + nx) ≥ (1 + ε/2)µ(x)n}.

Since the cylinders are disjoint, the events in the intersection are independent and

P(T (0, nx) ≥ (1 + ε)µ(x)n) ≤
∏
w∈S

P(Tcyl(w,w+nx,K)(w,w + nx) ≥ (1 + ε/2)µ(x)n)

≤ e−cn#S ≤ e−cn
d( δ

3K )
d−1

where we used Proposition 4.2.7. The result follows.

Proof of Proposition 4.2.7. Let ε > 0. Let δ be such that δM ∥x∥1

µ(x) ≤
ε
4 . Let K0 be large enough

such that

P(T (0,K0x) ≥ (1 + ε/2)µ(x)K0) ≤
δ

2

and let K be large enough such that |γ(0,K0x)| ≤ K with probability at least 1− δ/2 (to simplify
we assume G({0}) < pc). It follows that

P(Tcyl(0,K0x,K)(0,K0x) ≥ (1 + ε/2)µ(x)K0) ≤ δ.
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To simplify the notations, let us assume n is a multiple of K0. Note that

Tcyl(0,nx,K)(0, nx) ≤
n/K0∑
k=1

Tcyl((k−1)K0x,kK0x,K)((k − 1)K0x, kK0x)

≤ (1 + ε/2)µ(x)n+M∥x∥1K0N

where N := #{1 ≤ k ≤ n/K0 : Tcyl((k−1)K0x,kK0x,K)((k − 1)K0x, kK0x) ≥ (1 + ε/2)µ(x)K0)}. It
yields that

{Tcyl(0,nx,K)(0, nx) ≥ (1 + ε)µ(x)n} ⊂
{
N ≥ ε µ(x)

2MK0∥x∥1
n

}
⊂ {N ≥ 2δ

n

K0
}.

By looking at 1 ≤ k ≤ n/K0 modulo K, we have

{N ≥ 2δ
n

K0
} ⊂

K⋃
r=0

{Nr ≥ 2δ
n

KK0
}

where

Nr := #{1 ≤ k ≤ n

K0
, k− r ∈ KZ : Tcyl((k−1)K0x,kK0x,K)((k− 1)K0x, kK0x) ≥ (1+ ε/2)µ(x)K0)}.

Using that the cylinders at distance KK0 are independent, it follows

P(N ≥ 2δ
n

K0
) ≤

K−1∑
r=0

P(Nr ≥ 2δ
n

KK0
) ≤

K−1∑
r=0

P

n/KK0∑
i=1

Xi ≥ 2δ
n

KK0


where (Xi)i≥1 is an IID family of Bernoulli random variables of parameter δ. Using large deviations
estimates on Bernoulli random variable, the result follows.
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Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 81(1):73–205, Dec
1995.

[22] Vincent Tassion and Hugo Vanneuville. Noise sensitivity of percolation via differential in-
equalities. Proceedings of the London Mathematical Society, n/a(n/a).

[23] Craig A. Tracy and Harold Widom. On orthogonal and symplectic matrix ensembles. Com-
munications in Mathematical Physics, 177(3):727–754, Apr 1996.


	Introduction of the model and main questions
	Introduction of the model of FPP
	FPP in dimension 1
	Asymptotic properties of FPP in d2: definition of the time constant
	Fluctuations in 2D : Last passage percolation

	Asymptotic properties
	Limit shape theorem
	 Extending the time constant to R d and properties of the time constant
	Limit shape theorem

	Positivity of the time constant
	Percolation
	Control of the length of the geodesics
	Positivity of the time constant

	Continuity of the time constant

	Fluctuations
	Application of noise sensitivity to FPP
	A useful formula for the variance
	Lower bound on the vertical fluctuations

	Sublinear upper bound on the variance
	Scaling relation
	Talagrand concentration estimate
	Logarithmic Sobolev inequalities
	Proof of Talagrand concentration Theorem 3.4.1


	Large deviations in first passage percolation
	Large deviations theory
	Sum of IID
	General large deviations principle

	Large deviations for FPP
	Lower tail large deviations
	Upper tail large deviation



