Ambient Noise Correlation Amplitudes and Local Site Response

Shallow crustal features in Long Beach, CA

Daniel Bowden¹(dbowden@caltech.edu), Victor Tsai¹, and Fan-Chi Lin²

¹California Institute of Technology ²University of Utah

34.0°

3.5°

³ Three other crustal properties

Site Amplification (Site Response)

 $\boldsymbol{\beta}(\boldsymbol{x}, \boldsymbol{y}) = \frac{A(x, y)}{A_0} = \frac{\text{Observed Amplitude}}{\text{Reference Amplitude}}$

Important for engineers at > 1 Hz

(Intrinsic) Attenuation

Inelastic loss of energy

Scattering or Sources

Heterogeneities which redistribute energy

4 Ambient Noise Cross Correlations

Amplitudes vary with source distribution

What do we do?
Ignore the problem
Correct for known sources
Use some other method

Dec 16, 2014

S21E-02

This study

5 Approach: Track wavefronts

Measure travel time τ , and amplitude, *A*

From Lin et al, 2012

 ∇

 Be careful with signal processing!
 (Treat all stations equal)

 ∇

 ∇

Daniel Bowden -- Ambient Noise and Site Amplification

Munth

2014 S21E-02

Helmholtz Wave Equation

$$S + \frac{2\nabla\beta\cdot\nabla\tau}{\beta} - \frac{2\alpha}{c} = \frac{2\nabla A\cdot\nabla\tau}{A} + \nabla^{2}\tau$$

Source + Amplification - Intrinsic Attenuation = Observed Amp Decay + Focusing, Defocusing Defocusing

β Site amplification factor α Intrinsic attenuation factor

A Observed Amplitude au Observed Travel Time

Dec 16,

2014 S21E-02

c Phase Velocity

Daniel Bowden -- Ambient Noise and Site Amplification

9

12 Attenuation and Scattering

Conclusions

17

In theory: Able to resolve all 3 properties:
 Site Amplification, Attenuation,
 Sources/Scatt.

- Observations capture:
 - Velocity changes
 - Other effects we're interested in:
 - 3D geometry, resonances, topography, etc...

Future Work UsArray --- compare to EQs

Daniel Bowden -- Ambient Noise and Site Amplification

18

23 Ambient Noise Cross Correlations

Random noise, recorded at two seismometers

X_A X_B

Ideally, homogeneous distribution of sources in time, space, and frequency...

Ambient Noise Cross Correlation

33.84[°]

Constructing Wave-field maps

33.84[°] 33.80[°]-33.78 33.76° 241.80° 241.82° 241.84° 241.86° 0.006 0.012 0.017 0.023 0.028 0.033 0 Amplitude (arbitrary units) Dec 16,

Spatial Analysis of Lin et al. 2012

Daniel Bowden -- Ambient Noise and Site Amplification

28

An initial estimate of site amplificatio

Consider amplitudes only:

Striking correlation with Newport-Encelwood Fault $A=A_0$ $A=A_0 \frac{1}{\beta_1}$

