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ABSTRACT
The presence of sediments near the Earth’s surface can significantly amplify the strength of
shaking during earthquakes. Such basin or site amplification effects have been well doc-
umented in numerous regions, yet the complex and often situational dependence of com-
peting reasons for this amplification makes it hard to quantify in a general sense or to
determine the most significant contributions. Simple 1D seismic profiles can be used to
estimate the amplitude differences between a basin site and a hard-rock reference site,
but this ignores any reflections or conversions at the basin edge or a resonance effect
depending on the basin’s geometry. In this article, we explore an analytic model based
on coupling coefficients for surface Rayleigh waves to account for the lateral discontinu-
ities at a basin’s edge (Datta 2018). We use this simple tool to explore the relationship
between the basin’s Rayleigh-wave amplification spectrum and various parameters such
as basin depth, edge slope angle, and impedance contrast. The step-by-step construction
of the model allows us to quantify the contributions from various wave propagation
effects with the goal of identifying situations under which various basin-edge effects must
be considered in addition to purely 1D estimates. For the most velocity contrasts (less than
a factor of 5), the error made by the 1D theory in predictingmaximum Rayleigh-wave basin
amplification is under 35% for both the horizontal and the vertical components. For simple
basins, the vertical amplification dominates at larger high frequencies and the horizontal
at lower frequencies. Finally, we demonstrate from comparisons with spectral-element
wavefield simulations that realistic velocity structures can be reduced to a simpler
“box” shape for the semi-analytic formulation used here with reasonable results. For
the purposes of estimating site-amplification or microzonation, an improved model that
accounts for basin-edge effects can be implemented without high-computational cost.

KEY POINTS
• We explore analytically the link between the basin

Rayleigh-wave amplification and basin properties.
• Although pure 1D theory provides reasonable estimates,

higher-order mode conversion is a significant effect.
• The simple physics-based method we develop can provide

better microzonation estimates than purely 1D models.

Supplemental Material

INTRODUCTION
Sedimentary basins cause significant amplification of seismic
waves during earthquake shaking. This has been observed in
many locations worldwide and has been the focus of many
studies using empirical observations (Aki, 1993; Pratt et al.,
2003; Koketsu et al., 2008; Marafi et al., 2017), numerical sim-
ulation (Kawase, 1996; Olsen, 2000), analytic theory (Bard and

Bouchon, 1985; Sánchez-Sesma and Velázquez, 1987; Bard
et al., 1988; Lontsi et al., 2015), and every combination of
approaches therein. Observations of higher amplitudes in
basins are generally attributed to path or site effects, both of
which are important for characterizing seismic hazard
(Field, 2000; Borcherdt, 2014).

Amplification from site effects is often characterized by a
1D seismic velocity and density profile immediately beneath
a given location. This usually assumes that strong shaking is
dominated by vertically propagating shear waves that resonate
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up and down in the flat shallow layers (Borcherdt, 2014).
However, it is also well acknowledged that deeper structure
and 3D shape of basins can play a significant role in further
amplifying, focusing, or resonating particular frequencies
(Bard and Bouchon, 1985; Field, 1996). Indeed, numerous
studies have observed and remarked upon the importance
of 3D basin effects, including works devoted to comparing
the 1D to 3D estimates (Chavez-Garcia and Faccioli, 2000),
to run simulations that account for complex basin shapes
(Fäh et al., 1994; Graves et al., 2010), or to describe ray focus-
ing using surface-wave travel-time derivatives (Dalton and
Ekström, 2006; Lin et al., 2012). Despite such detailed efforts,
it has remained difficult to quantify the importance of different
effects in a general sense; the results of many such studies
remain case-specific, and the relative importance of different
effects can be difficult to quantify.

One potential improvement comes in acknowledging that
the effect of 3D basins is different for different types of waves.
Bowden and Tsai (2017) pointed out that the purely 1D ampli-
fication spectrum of surface waves will be different as com-
pared to the vertically incident shear waves that are usually
assumed. That is, in computing a frequency-dependent ampli-
fication between a hard-rock profile and a basin profile, the
strength of amplification will be different depending on the
wave type. Their theory assumes, however, as with the standard
theory for vertically incident shear waves (Haskell, 1962), that
all of the energy is transmitted from one site to another as the
same mode and wave type, with no reflections, conversions, or
any other competing 3D effect. These effects can be significant.
For example, surface waves can be generated or amplified at
basin edges (Hanks, 1975; Field, 1996; Kawase, 1996), surface
waves can resonate laterally across a basin (Bard and Bouchon,
1985), higher-order modes of surface waves may dominate
shaking for certain periods (Savage and Helmberger, 2004;
Boué et al., 2016; Cruz-Atienza et al., 2016), or surface-wave
energy can be focused by the basin-edge curvature (as in a lens,
Feng and Ritzwoller, 2017). These phenomena are documented
specifically for surface waves, but, again, most studies remain
case-specific and are often difficult to compare.

The goal of this article is to expand on this purely 1D theory
of Bowden and Tsai (2017) and account for transmission and
reflection at the basin edges and wave interference within the
basin. This is accomplished primarily by calculating the sur-
face-wave’s transmission and reflection coefficients, and con-
sequently a term for mode conversion. This employs the
software developed by Datta (2018) to compute these coeffi-
cients and semi-analytically derive the basin Rayleigh-wave
amplification. The computation of transmission coefficients
to approximate surface-wave Green’s functions also bears sim-
ilarity to work by Panza et al. (2001) for realistic basin hazard
estimation, who describe a basin by a number of discretized
boundaries in piecewise laterally homogeneous structures.
The current study aims to expand on previous work by

performing numerical validation of transmission coefficients
in basin structures and by considering reflections at lateral
boundaries that are generally ignored.

This article remains focused on the effects of transduced
Rayleigh waves, that is, Rayleigh waves generated by distant
shallow earthquakes that are transmitted within the basin
(Kawase, 2003). Future studies will include Love waves, which
are an important contribution in the description of the basin
response, but correspond to a different type of wave motion
that requires an extended investigation. Whether Rayleigh
waves contribute most strongly to seismic hazard depend
on the earthquake source, the basin depth, and the frequency,
or the type of measurement of interest; they may not play a
strong role for high-frequency acceleration motions, but
may be dominant when considering longer period displace-
ments. The basins modeled here are intended to loosely
represent possible scenarios at low frequency for the Los
Angeles basin or the Mexico City basin (Field, 1996; Cruz-
Atienza et al., 2016). The validation simulations (explained
more later) include a point-source earthquake modeled
directly at the Earth’s surface, not because this is the most real-
istic, but because it will strongly generate surface waves for the
purpose of this study.

The basins considered here are of a very simple geometry, as
others have used (Narayan, 2010, 2012; Zhu et al., 2018). These
simple models and the analytic formulation allow us to explore
a range of scenarios and test the validity of various simplifying
assumptions. By iteratively adding complexity to the models,
we can understand the relative importance of different effects.

THEORY
In this section, we describe the surface-wave amplification
between two geological sites as well as the expression of the
surface-wave Green’s function for a laterally heterogeneous
medium. This will provide a framework for semi-analytically
generating amplification spectra that we can later use to
explore various basin effects.

1D amplification between two sites
In Bowden and Tsai (2017), the authors describe a 1D surface-
wave amplification predictive model, based on the conserva-
tion of energy flux, building on the work of De Noyer
(1961) and Tromp and Dahlen (1992). Given the 1D velocity
and density profile at a reference site (denoted by superscript
rock) and another site of interest, this ratio of amplitudes for
the ith component and a given mode and surface-wave type is
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in which A is the wave amplitude at the surface, �ui�0��i�1;2;3 is
the displacement eigenfunction amplitude at the surface (in
which i � 1; 2, or 3 for radial, vertical, and tangential
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components of motion, respectively), U is the group velocity,
and I0 is an integral over the eigenfunctions and density such
that
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The primary assumption in equation (1) is that all of the sur-
face-wave energy is transferred to within the basin, as the same
wave type. This will only be the case if the change from one
material to the other is relatively smooth, and no other 2D or
3D effects are significant. Therefore, it ignores a number of
different wave propagation effects including: reflected energy
away from the first basin edge, reflections and resonances
within the basin, higher-order surface-wave modes and their
interference, focusing or defocusing of surface-wave energy
(as in a lens), and body-wave conversions. We note that lateral
surface-wave reflections and resonances within the basin are
qualitatively similar to the vertical resonances observed in a
sediment column for vertically propagating SH waves. Other
than focusing and body-wave conversions, all of the other
effects listed will be investigated in this article.

Adding a basin edge
Generally, lateral variations of seismic velocities may not be
smooth. Whether a velocity contrast may be considered sharp
and significant depends on the horizontal gradient relative to
the wavelength of interest, specifically:
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in which ∇x is the horizontal gradient operator. We note that
while the change from sediments to hard rock is itself almost
always a sharp geologic boundary, for surface waves, a gently
sloping basin edge may be considered to be a smooth lateral
boundary (Keilis-Borok, 1989).

Because real sedimentary basins have complex geometries
and highly heterogeneous velocity structures, we have to make
some simplifications to be able to perform an analytic study of
the seismic amplification. Figure 1 shows the typical basin
structure that we will consider in this article. As will be
described in the next section, this allows us to write sur-
face-wave transmission and reflection coefficients at the basin
edges and better describe the energy distribution across
the basin.

The structure corresponds to an axisymmetric basin (2:5-d)
defined by its length Lbasin, depth hbasin, basin-edge slope γ, and
two different seismic velocities and densities. These basin
parameters are the most significant for constraining the ampli-
fication within the basin (Narayan, 2010, 2012; Moczo et al.,

2018). At first we consider homogeneous blocks of seismic
structure as in Figure 1, and later we also explore a 1D stratified
velocity structure according to an increasing power-law model
VS;basin � V0;basin�z�αbasin to investigate the impact of stratifi-
cation.

Similarly, for much of the article we will use an even more
severe simplification of a box shape for which the basin edge is
perfectly vertical (γ � π=2). This may be considered a “worst-
case” scenario in regards to the applicability of a purely 1D
theory, because the vertical, sharp boundary will have a
stronger effect on propagating waves. Specifically, exploring
a range of best-case or worst-case scenarios in regards to
the importance of various effects will be the focus of a later
section.

Surface-wave propagation and transmission within a
basin
To account for transmission at the first basin edge, reflections
within the basin, dispersion, and attenuation, we describe here
the expression for Green’s functions describing the propaga-
tion across a vertical boundary. This boundary can be
described in terms of propagation and reflection coefficients,
but specifically coefficients exist for a given mode’s intra- and
intercoupling. For example, the fundamental mode surface
wave will not only reflect and transmit as a fundamental mode
(intracoupling), but will also reflect and transmit some amount
of energy into higher-order modes as well (intercoupling).

For simplicity, in this section, we only consider a homo-
geneous hard-rock reference with, therefore, only one incident
fundamental Rayleigh-wave mode. Our notation is as follows:
at the first basin edge, the incident fundamental-mode propa-
gating in the rock is transmitted into various other possible
modes n � 0;Nm with amplitude Ti;�n� that will propagate
within the basin. Then, as waves reflect on the far basin edge,

Figure 1. Geometry of the basin used for simulations. γ is the basin-edge
angle (rad), Lbasin; h (km) are the basin length and depth, respectively, VP

(km s−1) is the compressional velocity, VS (km s−1) is the shear velocity, and
ρ (kg m−3) is the density. The subscript basin and rock correspond,
respectively, to the basin and the rock-site properties. xa is the location of
the basin edge at the surface and xb its location at depth. The color version
of this figure is available only in the electronic edition.
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they may be converted into waves of mode m � 0;Nm, with
amplitude R

Nr

i;�m�, in which the superscript Nr corresponds to
the total number of reflections within the basin. The reflected
energy after one reflection will then be reflected and converted
again on the first basin edge. For simplicity, we denote by
R
Nr

i;�m� the entirety of the reflected wavefield after Nr reflections
due to an incident mode �m�. These coefficients,
�Ti;�n�;R

Nr

i;�m��n;m�0;Nm
, include the energy converted between

different modes (i.e., intercoupling coefficients) that is a pri-
mary difference between the method used here and the purely
1D theory from the previous section. These intercoupling coef-
ficients are known to be significant for surface-wave propaga-
tion across strong lateral heterogeneities (Maupin and Kennett,
1987). Coefficients �Ti;�n� and R

Nr

i;�m��n;m�0;Nm
are surface dis-

placement ratio of, respectively, transmitted and reflected to
incident waves (Datta, 2018). We refer to �Ti;�n� and
R
Nr

i;�m��n;m�0;Nm
as transmission and reflection coefficients in

the rest of the article for simplicity.
In this configuration, the amplitude Ai of the ith component

motion of the surface-wave train composed of Nm modes
within the basin is
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�4�
in which �Sj�j�1;3 is the source frequency spectrum for the jth
component, �Grock

�0�;ij�i;j�1;3 are the components of the rock-site
fundamental-mode Green’s functions, Nm is the number of
modes propagating within the basin, and Nr is the number
of reflections within the basin. Ti;�n� corresponds to the ith
transmitted energy of mode n, whereas R

Nr

i;�n��f ; x� is the
reflected energy after Nr reflections at a location x within
the basin due to the incident surface-wave mode n; these
are defined more fully in the supplemental material along with
the full solution for heterogeneous rock sites. Taking the ratio
of basin-to-rock surface-wave amplitude using equation (4),
the amplification spectrum reads:
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The expression (5) enables us to analytically study the influ-
ence of basin structure on surface-wave propagation. It also
greatly simplifies the study of higher-order mode conversions
and resonances in the basin, because we can directly identify
the contributing factors in the amplification spectrum through
the surface-wave Green’s function expression.

The coefficients �Ti;�n��n�1;Nm
and �Ri;�m��m�1;Nm

can be
analytically determined using theory for surface-wave propa-
gation through a plane vertical interface (Alsop et al., 1974;
Malischewsky, 1976; Its and Yanovskaya, 1985; Maupin and
Kennett, 1987; Marquering and Snieder, 1995; Romanelli et al.,

1997). Vertical boundaries enable one to express the surface-
wave field in terms of incident, reflected, and transmitted
waves. Details about the theoretical framework can be found
in Keilis-Borok (1989, his chapter 3.3). The coefficients
�R�m��m�1;Nm

correspond to reflections occurring within the
basin and not from the rock to the basin, because the latter
is implicitly accounted for in the transmission coeffi-
cients �T�n��n�1;Nm

.
To solve the transmission-and-reflection problem at the

boundary (equations 3.8 and 3.9 in Keilis-Borok, 1989), we
use the implementation of Datta (2018) based on the
Rayleigh-wave theory by Its and Yanovskaya (1985).
However, the initial implementation for Rayleigh waves by
Datta (2018) only focused on the vertical component, we,
therefore, extended his work by implementing the horizontal
component in the same framework. There are four main
assumptions behind the calculation of those coefficients:
(1) the coefficients are valid in the far field of the basin edge,
(2) the wave incidence is assumed orthogonal (i.e., there are no
Rayleigh-to-Love wave conversions), (3) the diffraction of
body waves at the interface is negligible, and (4) the interface
is assumed to be vertical. This assumption can be partially
relaxed as Its and Yanovskaya (1985) extended the theory
to inclined interfaces for incident wavelengths λ0 larger than
the distance between the slope extremities (xa and xb) such that
λ0 >>

hbasin
tan γ (Its and Yanovskaya, 1985). For the sake of provid-

ing a complete description of 2D basin effects, in the current
article, we will later investigate numerically the impact of
angles γ on the amplification.

Although equation (5) is valid for both Love and Rayleigh
waves, we explore basin effects for Rayleigh waves only in this
article for clarity. Nonetheless, we note that the methodology
would be very similar for Love waves and will be the focus of
future work.

Numerical method to generate reference
amplification spectra
Finally, to compute reference amplification spectra and pro-
vide meaningful comparisons with the theoretical model pre-
viously described, we compute higher-order numerical
solutions. The numerical method employed in this article is
the axisymmetric version of the seismic wave propagation
package SPECtral Finite EleMents (SPECFEM) (Komatitsch
and Vilotte, 1998), which is based on a weak Galerkin formu-
lation with spectral finite elements and Gauss–Lobatto–
Legendre points. SPECFEM accounts for complex velocity
structures and attenuation. To generate a wavefield dominated
by surface waves, we use a vertical point force at the surface
located at least three times the Rayleigh-wave wavelength away
from the basin edge. In an elastic, homogeneous, and isotropic
medium, locating the source three times the wavelengths from
the basin edge ensures that the body-wave contribution is neg-
ligible (Tamura, 1996). The vertical point force follows a
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Gaussian time function with half-duration
t0 � 1=f 0 � 1=�f h ≈ vs;basin

2:25hbasin
� s, in which f 0 is the dominant

frequency in the basin (described in detail in the next section).
To ensure that the Rayleigh-wave propagation is not altered by
the domain geometry, we choose a basin edge located in the
source far field, and we extend the mesh vertically until the
displacement eigenfunctions are of amplitude <0:01 at the
source dominant frequency. Finally, we apply absorbing boun-
dary conditions on each side of the domain to avoid spurious
numerical reflections. The spectral amplification is then com-
puted by taking, for a given location, the ratio of the Fourier
transform of the velocity waveform from a numerical simula-
tion, including a basin, and from a separate numerical simu-
lation where the basin did not exist.

INFLUENCE OF BASIN STRUCTURES ON SURFACE-
WAVE PROPAGATION
To study the influence of basin structures on the amplification
spectrum in sedimentary basins, we will consider various basin
configurations with increasing complexity. By successively
adding complexity, and by controlling which terms in our
Green’s Function formulation are used, we can explore the
impact of different effects independently. Five main features
will be discussed in the following sections: transmission and
reflection coefficients of the incoming surface wave in the
Basin-edge velocity contrast and mode conversion section,
attenuation in the Attenuation section, stratified layers instead
of homogeneous blocks in the Stratification section, lateral res-
onance in the Lateral resonance section, and the slope of the
basin edge in the Edge slope section.

Throughout this section, we generally focus on variations in
shear-wave velocity and use empirical relations between den-
sity to VP and VP to VS, as in equations (1) and (9) in Brocher
(2005) (this will be relaxed in later sections). To provide
generic results, we use a normalized frequency f =f h, in which
the dominant vertical amplification frequency f h depends
upon the basin characteristics. Narayan (2010) empirically
observed that this f h relates to basin depth hbasin and shear-
wave velocity VS;basin as

EQ-TARGET;temp:intralink-;df6;41;237f h ≈
VS;basin

2:25hbasin
: �6�

The empirical formula (6) has been tested against numerical
results in the supplemental material. We point out that equa-
tion (6) differs from the traditional S-wave resonant frequency
f h;Swave � VS;basin

4hbasin
. Although the dominant frequency might

slightly differ from equation (6) for the horizontal fundamen-
tal-mode Rayleigh wave, in this section, for consistency, we will
only show the spectra in terms of normalized frequency based
on the vertical component.

Although the notion of dominant frequency in equation (6)
is poorly constrained for basins with strong lateral

inhomogeneities and shear-wave velocity variations with depth,
using a normalized frequency enables us to generalize the results
for simple basin structures. Not only does the dominant fre-
quency correlate with the basin depth and the basin shear-wave
velocity, but also more importantly the spectrum scales with the
basin depth for a given velocity model (Brissaud and Tsai, 2019).
More specifically, if we consider two basins defined by the same
velocity model and basin depths h1 for the first basin and
h2 � αh1 for the second basin, amplification spectra defined
by equation (4) for media 1 and 2 read

EQ-TARGET;temp:intralink-;df7;308;614

A1
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A1;R
i �f ; x� �

A2
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in which the superscripts 1, 2 denote the media 1 or 2, respec-
tively.

Basin-edge velocity contrast and mode conversion
We first use our analytic framework described in equation (5)
to explore the effect of transmission coefficients and mode con-
versions, as compared to the purely 1D theory and compared
to the fully numerical SPECFEM solution.

Numerous studies show that the velocity contrast at the
basin bottom has a strong impact on the maximum amplitude
and dominant frequency of the amplification spectrum (Bard
and Bouchon, 1985; Meier andMalischewsky, 2000; Tuan et al.,
2011; Narayan, 2012; Moczo et al., 2018). In addition to the
transmission and reflection of the fundamental-mode
Rayleigh wave, energy conversion to higher modes occurs at
sharp boundaries. Those higher-order surface-wave modes
propagate in the basin and can constructively and destructively
interfere with the fundamental mode (Savage and Helmberger,
2004; Boué et al., 2016).

We first consider a 1 km deep basin, with only a vertical
velocity contrast on one side (the other edge may be thought
of as infinitely far away). The rock shear-wave velocity is
assumed to be 2 km=s and the basin sediments to be either
1.2 or 1:4 km=s. Comparisons are presented in Figure 2, with
amplification curves from a purely 1D theory for fundamental
Rayleigh-wave amplification, our improved semi-analytic
theory, which accounts for basin-edge effects, and the true sol-
ution (“num. simulation”). The purely 1D theory result in
Figure 2a shows a typical example of an amplification spec-
trum in a sedimentary basin that can be divided into three fre-
quency domains: an unamplified low-frequency part for
f =f h ≪ 1, which corresponds to the solution for a thin basin
layer (Malischewsky, 1976, his chapter 2.1.2), a dominant peak
for f =f h ≈ 1 due to the discontinuity in the seismic velocity
model, and a high-frequency part for f =f h ≫ 1 that converges
to the value given by the quarter-space approximation
(equation 2.13 in Clement, 1961). The purely 1D theory tends
to overpredict the amplification amplitude throughout the
spectrum, because this neglects effects at the basin edge.
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Comparing Figure 2a and b, we note that the higher the
velocity contrast, the larger the discrepancy between the true
solution and the purely 1D theory. Because higher-order mode
Rayleigh waves propagate with different velocities, their

constructive or destructive
interference introduces perio-
dicity in the time series and,
therefore, extra peaks and
troughs in the energy spec-
trum. Particle motions associ-
ated with Figure 2a,b are
provided in the supplemental
material showing a prograde
first higher-order mode propa-
gates faster than a retrograde
fundamental mode. Thus, we
already see the advantage of
estimating reflection and trans-
mission coefficients and conse-
quently the higher-order mode
conversions. The red lines
(“full 1D trans”) match the
numerical simulations (black
dashed lines) remarkably well,
suggesting that the analytic
approximations described in
equation (4) is quite sufficient
for this model. Around
f =f h ≈ 1:15, we observe a small
discontinuity in the amplifica-
tion spectrum in Figure 2b.
This jump can be attributed
to the rapid amplitude increase
around f =f h ≈ 1:15 of the first-
order transmission coefficient
that is zero for f =f h < 1:15.
Later sections, as well as the
supplemental material, further
compare the various
approaches in terms of spatial
location in the basin, maxi-
mum amplification, and fre-
quency of maximum
amplification.

We also show in Figure 3
the amplification spectrum
for the horizontal component
of motion. By comparing
Figures 2a and 3a, we observe
that for the amplifications of
the fundamental-mode
Rayleigh waves, the horizontal
and vertical amplification

spectra are somewhat similar in terms of dominant frequency
and maximum amplification. This might be expected as hori-
zontal and vertical eigenfunctions are affected by the basin dis-
continuity in a similar manner. However, some differences do

(a)

(b)

Figure 2. Vertical amplification spectrum against normalized frequency from numerical simulation (“num. simula-
tion,” black dashed line), from the 1D transmission coefficients for the fundamental and first higher-order mode
(“full 1D trans.” thick red line), from the 1D transmission coefficients for the fundamental mode only (“fund. 1D
trans.” pink line), and from the purely 1D theory (“purely 1D,” blue dashed line) at distance x � 5 km from the
basin edge, for (a) hbasin � 1 km, V0;basin � 1:2, and V0;rock � 2 and for (b) V0;basin � 1:4 km=s and
V0;rock � 2 km=s. The color version of this figure is available only in the electronic edition.

(a)

(b)

Figure 3. Horizontal amplification spectrum against normalized frequency from numerical simulation (“num. sim-
ulation,” black dashed line), from the 1D transmission coefficients for the fundamental and first higher-order mode
(“full 1D trans.” thick red line), from the 1D transmission coefficients for the fundamental mode only (“fund. 1D
trans.” pink line), from the purely 1D theory (“purely 1D”), and from a vertically incident shear wave (“vertically
incident shear wave,” gray line) at distance x � 5 km from the basin edge, for hbasin � 1 km and V0;rock � 2 for
(a) V0;basin � 1:2 and (b) V0;basin � 1:4. The color version of this figure is available only in the electronic edition.
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remain: whereas the vertical amplification is generally larger at
higher frequencies f > 0:75f h, at lower frequencies of
f < 0:75f h the horizontal amplification dominates. The
differences are more significant when including the fundamen-
tal-to-first-mode transmission coefficient. In Figure 3a, com-
paring the horizontal and vertical full 1D transmission
coefficients, we observe constructive interference between the
modes shifts the horizontal amplification’s maximum toward
higher frequencies, which corresponds to a “trough” in the ver-
tical amplification spectrum. The horizontal and vertical spec-
tra tend to be “out-of-phase”, that is, a local maximum for the
vertical component corresponds to a local minimum for the
horizontal component and vice versa, for f > 0:75f h. The spa-
tial dependence of this “out-of-phase” behavior is further
explored in the supplemental material. At lower frequencies,
we observe discrepancies between the semi-analytical and
the numerical solutions that we think are due to the stronger
Rayleigh-to-body wave diffraction at the basin edge (not taken
into account by the analytical model) for the horizontal com-
ponent than for the vertical component. Finally, for a lower
velocity contrast, shown in Figure 3b, the influence of
higher-order modes tend to be less significant for the horizon-
tal component than for the vertical component, and the hori-
zontal amplification spectrum converges to the fundamental-
mode transmission coefficient. Figures 2 and 3 show results for
one location only, but similar observations can be made further
away from the basin edge. We provide additional details about
the spatial dependence of the wavefield within the basin in the
supplementary material.

Because the difference between the horizontal and the ver-
tical surface-wave amplifications will be similar for many of the
basin effects investigated in the rest of the section, for concise-
ness, we will only show the horizontal component when the
horizontal spectra show unique features. We emphasize that
for surface waves the horizontal and vertical components
are very often similar, and so any general patterns or behaviors
observed here may be considered applicable to both compo-
nents of motion unless stated otherwise. We also remind
the reader that the curves described here are for amplification,
not absolute amplitudes themselves. At a hard-rock site,
Rayleigh-wave horizontal-to-vertical ratios are typically less
than one, meaning the absolute horizontal amplitudes are
smaller to begin with. Therefore, the absolute horizontal
amplitude within a basin can theoretically be smaller than
the absolute vertical amplitude.

Finally, we note that vertically incident SH body waves
exhibit a periodicity in the amplification spectrum from reso-
nance overtones (Thompson et al., 2009). In a simple homo-
geneous basin, the maximum shear-wave amplification occurs
around multiples of f � VS

4hbasin
≈ 0:56f h, meaning that a mini-

mum is reached at f � 1:12f h, approximately when the
Rayleigh-wave amplification comes to a maximum, which
can potentially lead to the misinterpretation of the observed

signal. We note that we include the amplification of vertically
incident shear waves here for comparison, but remind the
reader that the numerical simulations (black dashed curves)
are designed to be shallow and thus excite strong surface waves;
a different simulation would be needed to further comment on
the 2D or 3D amplification effects of body waves.

Besides mode conversions, reflections also occur at the
basin edge, and, energy is partially reflected back to the rock,
effectively lowering the observed amplitudes in the basin. In
Figure 4, we show both the transmission and the reflection
coefficients against normalized frequency for various velocity
contrasts as well as the maximum value of both the transmis-
sion and reflection coefficient in the range of normalized fre-
quency f =f h � �0:4; 3�. The reflection coefficient is not
component dependent, because we consider in this section that
only the fundamental mode can propagate outside of the basin.
These reflection coefficients correspond to a wave propagating
in the rock and are being reflected at the basin edge and not
within the basin. By comparing Figure 4b,d,e, we observe that
the higher the velocity ratio, the larger the transmission not
only for both the components but also the reflection. The local
reflection maximum around f =f h ≈ 1 also corresponds to the
amplification peak and has large values for large velocity ratios
that can no longer be neglected when computing the amplifi-
cation within the basin. This normalized frequency f =f h ≈ 1
and the corresponding amplitude of the reflection are impor-
tant values that have been used in the past to locate and mea-
sure discontinuity depths (e.g., Meier et al., 1997; Meier and
Malischewsky, 2000; Du, 2002). Figure 4f relates to the per-
centage of inaccuracy in maximum amplification of the purely
1D theory for a given velocity contrast, because the 1D theory
does not account for reflections (see the Accuracy of the 1D
Theory for Maximum Amplification Predictions section for
more details).

Attenuation
Attenuation will also play an important role in the energy dis-
tribution, as typical sedimentary basins generally have low-
quality factors (Hauksson et al., 1987; Hauksson and
Shearer, 2006). A frequency-dependent quality factor can be
taken into account in equation (5) through the Green’s func-
tions exponential damping term in equation (5) (more details
are provided in the supplementary material). To illustrate the
impact of attenuation on the amplification spectrum, we com-
pare unattenuated propagation with propagation for a simple
basin attenuation model Qs � 5%VS;basin, with VS;basin in
meters per second, and Qp � 2Qs (Graves and Pitarka,
2010). The Rayleigh-wave quality factor can be simply com-
puted from Qp;Qs and the Rayleigh-wave phase velocity
(Anderson et al., 1965). Amplification spectra are shown in
Figure 5a,c,d, in which we observe that attenuation lowers
the amplification and eventually reaches values <1 for
some frequencies at large distances from the basin edge. In
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Figure 5b, the fundamental mode has lower Q values than the
first higher-order mode. Because the sensitivity of higher-order
modes penetrates to larger depths than the fundamental mode
for any given frequency, the fundamental mode will be more
sensitive to the shallow surface, where attenuation is usually
stronger, and therefore more dampened than the higher-order
modes. Around f =f h ≈ 1, we observe a small discontinuity in
the amplification spectrum. Similar to Figure 2b (around
f =f h ≈ 1:15), this jump can be attributed to the rapid ampli-
tude increase around f =f h ≈ 1 of the first-order transmission
coefficient that is zero for f =f h < 1. As was the case with
Figure 2, we emphasize that our semi-analytic formulation
(“full 1D trans.”, thick red line) matches the numerical simu-
lation (black dashed line) rather well. Attenuation in the rock
can also be taken into account by introducing the correspond-
ing shear-wave quality factor in the rock-site Green’s function
in equation (5).

Stratification
So far we have considered sim-
ple homogeneous basin- and
rock-site velocity models.
However, a more realistic
approximation consists of using
power-law shear-velocity struc-
tures to describe the subsurface
(Boore and Joyner, 1997). Basin
shear-wave velocity layering is
known to have an impact on the
fundamental frequency, the
maximum amplification, and
the dispersion of surface waves
(Narayan and Singh, 2006). In
this section, we consider a
power-law shear-velocity struc-
ture (defined by parameters
hbasin � 1 km, αbasin � 0:1,
V0;basin � 1:2 km=s, and
V0;rock � 2 km=s) along with
a strong discontinuity at the
sediment-rock bottom boun-
dary. Because a pure power law
leads to a zero velocity at the
surface that is unphysical and
numerically unstable, we con-
sider the shear velocity to be
constant for depths
z < 0:01 m, corresponding to
a minimum velocity of
0:380 km=s. The velocity
model for the rock site, and the
basin structure is shown in
Figure 6b.

Amplification spectra are
shown in Figure 6a,c. We observe that the complex amplifica-
tion pattern produced by the soil layering is accurately cap-
tured by the transmission coefficients. The maximum
amplification peak in Figure 6a is modestly underpredicted
by the purely 1D theory due to the constructive interference
of higher-order modes with the fundamental mode. Because
of the highly dispersive nature of surface waves in layered
media, several amplification peaks appear in Figure 6c with
roughly similar amplitudes. Those high-amplitude amplifica-
tion peaks show the importance of considering higher-order
modes to fully constrain the amplification spectrum.

Lateral resonance
Our models up to this point have only considered the basin
edge for which surface waves enter the basin, but lateral
boundaries will reflect waves back and forth within the basin
and eventually constructively and destructively interfere

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4. (a) Fundamental-mode vertical transmission coefficients against normalized frequency, (b) maximum
amplitude of the fundamental-mode vertical transmission coefficients in the range of normalized frequency f=f h �
�0:4; 3� against rock-to-basin shear-velocity ratio, (c) fundamental-mode horizontal transmission coefficients
against normalized frequency, (d) maximum amplitude of the fundamental-mode horizontal transmission coef-
ficients in the range of normalized frequency f=f h � �0:4; 3� against rock-to-basin shear-velocity ratio, (e) fun-
damental-mode reflection coefficients against normalized frequency, and (f) maximum amplitude of the
fundamental-mode reflection coefficients in the range of normalized frequency f=f h � �0:4; 3� against rock-to-
basin shear-velocity ratio. (a,c,e) Show coefficients for various rock-to-basin shear-velocity ratios VS;rock=VS;basin �
1:43 (thick blue line, corresponding to Fig. 3a), 1.67 (orange line, corresponding to Fig. 3b), and 2 (thin green line).
The reflection coefficient is not component dependent because we consider that only the fundamental mode can
propagate outside of the basin in the Basin-edge velocity contrast and mode conversion section. The color version
of this figure is available only in the electronic edition.
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(Sanchez-Sesma and Luzon,
1995; Narayan, 2005). To
compute the effect of lateral
resonance within a basin, fol-
lowing equation (5), we can
also consider the reflection
coefficients at the opposing
basin edge.

Amplification spectra for
various basin lengths Lbasin
are shown in Figure 7, stated
in terms of the basin-shape
ratio. We observe that as the
basin-shape ratio decreases,
the spectral oscillations widen
as the arrival time of reflections
gets closer to the arrival time of
the incident wave. The spatial
and frequency dependence of
the interference between inci-
dent and reflected wavefields
are further explored in the sup-
plementary material.

We note that Liu and Zhou
(2016) showed that the near-
field Rayleigh waves tend to
have lower amplitudes and
later arrivals than far-field
Rayleigh waves. Therefore, in
the current analytic frame-
work, the predicted spectra
provide an upper bound for
maximum amplification in
basin structures showing lat-
eral resonances. Additional
details about the near-field
and far-field discrepancies are
given in the supplementary
material.

Rather than continue to
focus only on specific basin
examples, the semi-analytic
form developed in equation (5)
can quickly generate amplifica-
tion spectra for any basin
length Lbasin and at any loca-
tion x within the basin. In
Figure 8, we show the maxi-
mum amplification (see
Fig. 8b,d, as well as the corre-
sponding frequency of that
maximum, see Fig. 8a,c)
against relative location in the
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Figure 5. Vertical amplification spectrum against normalized frequency from numerical simulation (“num. simula-
tion,” black dashed line), from the 1D transmission coefficients for the fundamental and first higher-order mode
(“full 1D trans.” thick red line), from the 1D transmission coefficients for the fundamental-mode only (“fund. 1D
trans.” pink dashed line) and from the 1D transmission coefficients for the fundamental-mode only without
attenuation (“fund. 1D trans. without attenuation,” thick dashed green line) at distance (a) x � 3:5 km,
(c) x � 6:3 km, and (d) x � 9:4 km from the basin edge, for hbasin � 1 km, V0;basin � 1:2 km=s, and V0;rock �
2 km=s with shear-wave quality factor QS � 0:05VS;basin and QP � 2QS. (b) Rayleigh-wave quality factor against
normalized frequency for the fundamental mode (blue) and the first higher-order mode (red). The color version of
this figure is available only in the electronic edition.

(a)

(c)

(b)

Figure 6. Vertical amplification spectrum against normalized frequency from numerical simulation (“num.
Simulation,” black dashed line), from the 1D transmission coefficients for the fundamental and first higher-
order mode (“full 1D trans.” thick red line), from the 1D transmission coefficients for the fundamental mode only
(“fund. 1D trans.” pink line), and from the purely 1D theory (“purely 1D,” dashed blue) at distance (a) x � 5 km
and (c) x � 7:5 km from the basin edge, for hbasin � 1 km, αbasin � 0:1, V0;basin � 1:2 km=s, and
V0;rock � 2 km=s. (b) Shear-wave velocity model against depth for the rock site (pink dashed line) and the basin
(blue line). The color version of this figure is available only in the electronic edition.
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basin and basin-shape ratio for two test cases: by neglecting
lateral resonance (see Fig. 8a,b, and by including lateral reso-
nance, see Fig. 8c,d). When neglecting reflections, variations in
amplitude for increasing basin-shape ratios are a result of the
nondimensionalization of the location in the basin using the
basin length. By taking into account of reflections within
the basin, the maximum amplification is increased by approx-
imately 8%, for this given velocity contrast, due to the con-
structive interference between incoming and reflected waves
from various modes. Lateral resonance also changes the loca-
tion of the global maximum (blue dots in Fig. 8b,c) toward
larger basin-shape ratios and brings it closer to the right edge
of the basin. We note that the location of maximum interfer-
ence is affected by both geometrical attenuation and wave-train
dispersion. The strongest interference here occurs close to the
right-side basin edge (for x=Lbasin > 0:6), because this is the
first place the two wave trains meet, and after this the waves
are only further damped by geometrical effects. Especially for
large basin-shape ratios (Lbasin=hbasin > 30) and for locations
x=Lbasin > 0:6, the complex interactions between the various
incoming and reflected Rayleigh-wave modes strongly alter
the maximum amplification. For basin-shape ratios
Lbasin=hbasin < 30, we observe more distinct peaks and troughs
in maximum amplification against relative location when
including reflections (Fig. 8d) than when ignoring reflections
(Fig. 8b). Taking into account, reflections leads to destructive
interference between incoming and reflected modes, depend-
ing on the location within the basin. Not only the

amplification’s maximum is
affected but also its dominant
frequency, as shown in
Figure 8c, in which for loca-
tions x=Lbasin > 0:7, the maxi-
mum is shifted toward higher
frequencies, such that
f =f h > 1, due to the construc-
tive interference of higher-
order modes.

As mentioned in the Basin-
edge velocity contrast and
mode conversion section, the
velocity contrast has a strong
effect on the maximum ampli-
fication. In Figure 9, we show
the maximum amplification
against basin-shape ratio and
relative location for VS;rock

VS;basin
� 2.

We observe in Figure 9b that
a larger velocity contrast leads
to a larger maximum amplifi-
cation. Because a larger
shear-wave velocity contrast
leads to the propagation of

more dispersive higher-order modes, constructive interference
occurs throughout the basin, and the peak of maximum ampli-
fication against location broadens. Moreover, the lower shear-
wave velocity in the basin makes the maximum for a given
basin-shape ratio occur farther from the left edge.
Horizontal motions show similar patterns and are shown in
the supplementary material.

When neglecting attenuation, we observe strong interfer-
ence between surface-wave modes throughout the basin for
large basin-shape ratios. However, when including strong
attenuation, we expect the waves travelling long distances to
be greatly attenuated. In Figure 10a,b, we show the same maps
as in Figure 8c,d, but including a low-shear-wave quality factor
such that Qs � 5%VS;basin, with VS;basin in meters per second,
and Qp � 2Qs (as in the Attenuation section). We observe that
for low basin-shape ratios (Lbasin=hbasin < 30) or locations close
to the left edge (x=Lbasin < 0:3) the map of maximum ampli-
fication in an anelastic basin in Figure 10b, while having lower
amplitudes (global maximum ≈8% lower than in the elastic
case), shows similar trends compared to the elastic case
because waves have not travelled long distances. However,
for Lbasin=hbasin > 30 and x=Lbasin > 0:3 we mainly observe
the first transmitted Rayleigh waves, as in Figure 8b.
Reflections do not lead to strong interference anymore, because
they have been strongly attenuated, especially for large basin-
shape ratio. Moreover, attenuation leads to significantly lower
frequencies at maximum amplification, because most of the
higher frequency energy has been damped.

(a)

(b)

(c)

Figure 7. Vertical amplification spectrum against normalized frequency from numerical simulation (“num. simula-
tion,” black dashed line), from the 1D transmission and reflection coefficients for the fundamental and first higher-
order mode (“full 1D trans.” dark thick red line), from the 1D transmission coefficients for the fundamental and first
higher-order mode (“full 1D trans. without reflection,” light red line), from the 1D transmission coefficients for the
fundamental mode only (“fund. 1D trans.” pink line), and from the purely 1D theory (“purely 1D,” blue dashed line)
at the center of the basin, for (a) Lbasin � 10 km, for (b) Lbasin � 7:5 km, and for (c) Lbasin � 5 km with
hbasin � 1 km, V0;basin � 1:2 km=s, and V0;rock � 2 km=s. Lbasin=hbasin is the basin-shape ratio. The color version
of this figure is available only in the electronic edition.
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Edge slope
The models and comparisons shown thus far assume a purely
vertical basin edge. This serves as a “worst case” or especially
conservative comparison to 1D theory, and here we consider
the effect of relaxing that assumption by varying the angle γ at
the basin edge (Fig. 1).

The geometry of a basin is known to have an influence on
the spatial distribution of amplification (Narayan et al., 2016;
Zhu et al., 2018), with maximum vertical amplification close to
the edge of the basin in trapezoidal structures. However, most

studies have focused on the
amplification of incident body
waves, which inevitably leads
to constructive interference
between body and diffracted
Rayleigh waves, referred to as
“the basin-edge effect”
(Kawase, 1996). Although this
could be significant in particu-
lar scenarios, here we are inter-
ested in the amplification of
incident Rayleigh waves, for
which the interaction between
diffracted body waves and sur-
face waves should not be the
largest contribution to the
overall amplification.

The angle γ between the
basin edge and the surface will
play a crucial role in transmit-
ting or reflecting incident sur-
face waves. As described in
equation (3), if the horizontal
gradients of the basin edge
are small compared to the
wavelength, reflections and
mode conversions should be
negligible (Keilis-Borok,
1989). When γ is small, the
amplification should converge
to the solution given by the
purely 1D theory, because most
of the energy is transferred as a
fundamental mode. For a ver-
tically incident shear wave,
the angle γ has an opposite
effect on surface response.
For body waves, a small angle
γ leads to strong wave conver-
sion at the surface (Narayan
et al., 2016). For large basin-
edge angles (γ > π=3), Fujii
(1986) and Its and Yanovskaya

(1985) concluded that transmission coefficients were only
weakly dependent on angle.

The amplification spectra for two different slope angles γ �
π=20 and π=2 as well as the numerical simulations are shown
in Figure 11. Specifically, this shows a location 10 km away
from the basin edge, defined from the point where the full
basin depth is first reached. As we decrease γ, the amplification
spectrum converges toward the purely 1D solution, with fewer
higher-order mode contributions. Maximum error between the
purely 1D and numerical solutions is reached for γ � π=2.
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Figure 8. (a,c) Normalized frequency at maximum vertical amplification against relative location in the basin x=Lbasin
and basin-shape ratio Lbasin=hbasin for a given velocity ratio

VS;rock
VS;basin

≈ 1:7 (V0;basin � 1:2 km=s and V0;rock � 2 km=s)
without accounting for reflection (a) within the basin and (c) with reflections. (b,d) Corresponding maximum vertical
amplification, computed with equation (5), without accounting for reflection within the basin in (b) and (d) with
reflections. Red dots correspond to the relative location of maximum amplification for a given basin-shape ratio.
Blue dots correspond to the global maximum amplification. Amax is the global maximum amplification value. The
color version of this figure is available only in the electronic edition.
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ACCURACY OF THE 1D
THEORY FOR MAXIMUM
AMPLIFICATION
PREDICTIONS
In the previous sections, we
observed discrepancies between
the 1D theory and a more com-
plete description of amplifica-
tion that depends on
impedance contrast, location,
basin depth, and basin length.
In this section, we attempt to
generalize the conclusions and
offer a more complete descrip-
tion regarding these differences.

Accuracy of the purely 1D
theory against
amplifications computed
with transmission
coefficients
We first compute the ratio of
maximum amplitude of the
amplification spectrum derived
from the transmission coeffi-
cient A1D;trans over the maxi-
mum from the purely 1D
theory A1D;pure. We consider
this ratio of maximum amplifi-
cations for a range of different
velocity, impedance, and
Poisson’s ratio contrasts.

Because the maximum
amplitude is location depen-
dent when higher-order modes
are considered, we show the
geometric mean of the amplifi-
cation spectra over the first
5 km such that
A
1D;trans � 1

d

R
d
0 A1D;trans�x�dx,

in which d � 5 km (5 km cor-
responds roughly to two fun-
damental-mode wavelengths).

Ratios of maximum amplifi-
cation from the purely 1D
theory over the maximum
amplification from the trans-
mission coefficients are pre-
sented in Figure 12a,b for
three typical Poisson’s ratio
ν � 0:25, 0.3, 0.35 and
constant density ρbasin �
ρrock � 3 kg=m3. Figure 12a,b
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Figure 9. (a) Normalized frequency at maximum vertical amplification against relative location in the basin x=Lbasin
and basin-shape ratio Lbasin=hbasin for a given velocity ratio

VS;rock
VS;basin

� 2 with reflections. (b) Corresponding maximum
vertical amplification, computed with equation (5), against relative location in the basin x=Lbasin and basin-shape
ratio Lbasin=hbasin. Red dots correspond to the relative location of maximum amplification for a given basin-shape
ratio. Blue dots correspond to the global maximum amplification. Amax is the global maximum amplification value.
The color version of this figure is available only in the electronic edition.
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Figure 10. (a) Normalized frequency at maximum vertical amplification against relative location in the basin x=Lbasin
and basin-shape ratio Lbasin=hbasin with reflections for a given velocity ratio VS;rock

VS;basin
≈ 1:7 (V0;basin � 1:2 km=s and

V0;rock � 2 km=s), QS � 5%VS;basin, with VS;basin in meters per second, and QP � 2QS. (b) Corresponding
maximum vertical amplification, computed with equation (5), including reflections. Red dots correspond to the
relative location of maximum amplification for a given basin-shape ratio. Blue dots correspond to the global
maximum amplification. Amax is the global maximum amplification value. Scales are different for Figures 8 and 9.
The color version of this figure is available only in the electronic edition.
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can be interpreted as the ratio of maximum amplitude that has
been overpredicted or underpredicted by the 1D theory for a
given impedance contrast and a given Poisson’s ratio. We show
that the ratio for impedance contrasts ranging from 2 to 10, as
they are representative of real basins comprising up to 70% of
the compiled data from the statistical study by Stambouli et al.
(2017). For the vertical component, in Figure 12a, and an
impedance contrast �ρVS;rock=ρVS;basin� < 6, the purely 1D
theory overpredicts the amplification, consistent with earlier
observations in Figures 2 and 3. At higher impedance con-
trasts, however, the trend reverses, and this can be understood
through Figure 12c and d, which show separately the contri-
butions from the fundamental mode and the first overtone.
The local minima in the curves from Figure 12a,b, roughly cor-
respond to the points at which the fundamental-to-first con-
versions start playing a more significant role. The strong mode
conversion at the basin boundary may have been the situation,
for example, in the Mexico City basin, as presented for the elas-
tic case in Cruz-Atienza et al. (2016).

In contrast to the vertical components, when comparing
Figure 12a and b, we observe that the purely 1D theory tends
to underpredict the maximum horizontal amplification for an
impedance contrast <6. Because of the larger fundamental-to-
first higher-order mode transmission coefficient for the hori-
zontal component than for the vertical component, visible in
Figure 12d, constructive interference between modes lead to

larger maximum amplification
not captured by the purely 1D
theory. The large horizontal
fundamental-to-first higher-
order mode conversion is con-
sistent with the conclusions by
Narayan (2010, 2012) showing
horizontally polarized higher-
order modes for low-imped-
ance contrasts. We also include
the standard variation (bars
around each data point in
Fig. 12a,b), because we are
averaging observations over
the first 5 km. The points of
maximum variance occur near
the local minima of each curve
where both modes contribute
equally, and consequently
there is more constructive
and destructive interference.
Though we keep a constant
density in these plots for illus-
trative purposes, a strong den-
sity contrast will also play a
role in determining how the
two modes interact.
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Figure 11. Amplification spectrum against normalized frequency from
numerical simulation with slope angle γ � π=2 (“num. simulation
γ � π=2 - vertical edge,” thick black line) and slope angle γ � π=20
(“num. simulation γ � π=20,” black dashed line) and from the purely 1D
theory (“purely 1D,” blue dashed line) at distance x � 10 km from the
edge of the basin located at xa in Figure 1, for hbasin � 1 km,
V0;basin � 1:2 km=s, and V0;rock � 2 km=s. The color version of this figure
is available only in the electronic edition.
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Figure 12. (a,b) Ratio of maximum amplification from the purely 1D theory over the maximum amplification from the
transmission coefficients for the fundamental and first higher-order mode, averaged over the first 5 km (together
with the variance demoted by the error bar), for (a) the vertical component and (b) the horizontal component,
against impedance contrast (or velocity contrast since the density is constant) for Poisson’s ratio ν � 0:25 (thin),
ν � 0:3 (medium), and ν � 0:35 (thick). (c,d) Ratio of maximum amplification from the purely 1D theory over the
maximum amplification from the transmission coefficients for the fundamental mode T�0→0� (pink) and the first
higher-order mode T�0→1� (green dashed line) for (c) the vertical component and (d) the horizontal component
against impedance contrast for Poisson’s ratio ν � 0:25 (thin), ν � 0:3 (medium), and ν � 0:35 (thick). The color
version of this figure is available only in the electronic edition.
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For impedance contrasts <6, the purely 1D theory leads
generally to an overestimation of the vertical amplification
and underestimation of the horizontal amplification, and
the error remains around 35%. This is less than the epistemic
uncertainties sometimes remaining in ground-motion models
(GMMs) (Zhu et al., 2018; Kristek et al., 2018), and we believe
even the simple parameterizations shown here might reduce
overall GMM residuals, if surface waves are taken into account.
Thus, for many earthquake hazard estimates, the purely 1D
theory may be useful, despite some modest errors.

Accuracy of the transmission coefficients against
numerical simulations
Finally, we reiterate again that we have calculated transmission
and reflection coefficients by neglecting body-wave contribu-
tions in the basin scattered wavefield. This assumption will
inevitably lead to an error in the predicted surface energy dis-
tribution for large velocity contrasts (Malischewsky, 1976).
However, even for extremely large impedance contrasts, both
the error in capturing the frequency at maximum amplification
and the maximum amplification is less than 18% for the ver-
tical component and less than 25% for the horizontal compo-
nent, as shown in Table 1, and this discrepancy is usually much
smaller. We believe that some, if not most, of this difference
comes from unmodeled body-wave conversions at the basin
edge, and find that on the whole this contribution to be rela-
tively small for most velocity contrasts. Larger errors in the
horizontal amplification are due to the increased contribution
of diffracted shear waves at the basin edge compared to the
vertical component. This suggests that while accounting for
basin edge effects can be important, either through full numeri-
cal simulation or the semi-analytic Green’s function approach
presented here, the 1D theory with added transmission coef-
ficients may also be considered sufficient for many appli-
cations.

PREDICTION OF THE AMPLIFICATION SPECTRUM
FOR REALISTIC BASIN STRUCTURES
Simple basin geometries and power-law shear-velocity struc-
tures enable us to measure the importance of basin parameters
in the amplification spectrum, because we can derive an

analytic expression for the surface-wave Green’s functions.
However, realistic basin structures have irregular geometries
and more discontinuous velocity profiles, because of the pres-
ence of shallow low-velocity sedimentary layers. A remaining
question, then, relates to what degree a simple homogeneous
basin with a vertical interface can reproduce amplifications in
basins of a more realistic geometry.

We continue to focus on the amplification that can be
described by our semi-analytic Green’s functions, that use only
a single basin “box,” that is, a vertical boundary on the near
edge and far edge of the basin. Here, we use the velocity struc-
ture from the Southern California Earthquake Center (SCEC)
Community Velocity Model version 4.26 (CVM-S4.26, Lee
et al., 2014) for southern California. To compute the transmis-
sion coefficients, we first extract a 2D cross section from the
Los Angeles basin, as shown in Figure 13, as if a source were
originating out toward the San Andreas fault. This model
shows a high-velocity contrast VS;rock

VS;basin
≈ 4:2 along an almost ver-

tical boundary, at the location denoted by the black dashed line
around x ≈ 64 km in Figure 13a. We choose a rock-site station
around x ≈ 20 km, where the subsurface is close to homo-
geneous and a basin station at 15 km from the basin edge
because lateral variations of seismic velocities are not too large
at that location within the basin. We then build our “box”
model (Fig. 13b) using the 1D profile beneath each station
to compute the semi-analytic predictions from the purely
1D theory as well as from the transmission coefficients (con-
sidering the single boundary defined by the dashed line).
Compressional and density profiles are provided in the supple-
mentary material. Finally, we then compare those predictions,
based on the box model in Figure 13b, to both the purely 1D
theory and to a full 2.5D spectral element simulation based on
the full model showed in Figure 13a.

Figure 13b shows three main discontinuities around depths
z1 � 1:5 km, z2 � 3:8 km, and z3 � 5:2 km. These disconti-
nuities will affect the basin-amplification spectrum over a lim-
ited frequency range that can be derived from estimates of the
associated dominant frequencies, similar in the Influence of
Basin Structures on Surface-Wave Propagation section. By
considering the shear-wave velocity right above each disconti-
nuity, the dominant frequencies defined in equation (6) read

TABLE 1
Relative Error in Maximum Amplification between the 1D Theory with Transmission Coefficients and the Simulations

Impedance Contrast VS;rock
VS;basin

2 5 6.7 10

Vertical relative error in maximum amplification 1% 1% 7.5% 18%
Vertical relative error in dominant frequency 1% 4% 56.5%
Horizontal relative error in maximum amplification 5% 10% 18% 25%
Horizontal relative error in dominant frequency 5% 9% 10% 11%

Average relative error in maximum amplification in the basin-edge far-field max�A1D;trans�−max�Asimu�
max�A1D;trans� , in which A1D;trans is the amplification spectrum from the transmission coefficients

for the fundamental and first higher-order mode and Asimu is the amplification spectrum from simulation and average relative error in frequency peak in the basin-edge far field for
various velocity contrasts f1D;transmax −f simu

max

f1D;transmax
in which fmax is the frequency at maximum amplification. Results are given for a Poisson’s ratio ν � 0:25 and constant density ρ � 3 kg m−3.
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f h;1 ≈ 0:5 Hz, f h;2 ≈ 0:32 Hz, and f h;3 ≈ 0:25 Hz. Therefore, to
show the impact of the different discontinuities on the ampli-
fication spectrum, we will show results in the frequency
range f � �0:1; 0:75� Hz.

Simulation results and analytic predictions are shown in
Figure 14. The spectra are given in Figure 14a,b in terms of
actual frequencies and not normalized frequencies. Using only
the two first higher-order modes, we capture most of the var-
iations of the amplification spectrum even for a highly discon-
tinuous structure. We observe that for frequencies f < 0:4 Hz,
all three approaches give similar amplification spectra because
reflections and higher-order mode conversions are less signifi-
cant. The horizontal amplification is significantly stronger than
the vertical amplification, owing to a strongly horizontally
polarized fundamental mode, visible in Figure 14d, which is
expected from sedimentary basins (Tanimoto and Rivera,
2005). The discrepancies between the purely 1D prediction

and the predictions using the
transmission coefficients and
numerical methods are depen-
dent on the distance from the
basin edge as well as the pres-
ence of strong lateral hetero-
geneities within the basin. To
illustrate the impact of lateral
heterogeneities we show, in the
supplementary material, com-
parisons further away from the
basin edge, at x � 25 km, that
show stronger discrepancies
between predictions using the
transmission coefficients and
those of the numerical solu-
tion. Higher-order modes are
generated because of the large
lateral shear-velocity variations
over the first 20 km within the
basin (e.g., discontinuity at
depth z1 presented earlier) that
are not captured by the trans-
mission coefficients computed
from velocity profiles at
x � 25 km from the basin
edge.

CONCLUSIONS
The purely 1D theory for sur-
face-wave propagation pro-
vides a simple way to
analytically predict the sur-
face-wave amplification in
basin structures (Bowden and
Tsai, 2017). However, several

strong assumptions are made regarding transmission and con-
version of waves at the basin edge. To account for such effects,
we use a semi-analytic surface-wave Green’s function formu-
lation that can account for a discontinuity between two arbi-
trary velocity profiles, as described and implemented by Datta
(2018). This semi-analytic tool is used to explore a variety of
wave propagation effects and to begin to quantify their relative
contribution to the total amplification spectrum. All earth-
quakes are assumed to occur near the surface, with waves
propagating laterally into the basin.

We first investigated the discrepancy between the pure 1D
theory and the full amplification spectrum in simple basin
structures that exhibit strong velocity contrasts. We find that
the main reason for this discrepancy is that the 1D theory does
not account for coupling between higher-order Rayleigh-wave
modes at the basin edge. Higher-order mode transmission
coefficient amplitudes become larger than for the fundamental
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Figure 13. (a) Initial shear-velocity profile extracted from the Southern California Earthquake Center (SCEC) 4.26
model used for the simulation and (b) the corresponding block model used for computing the transmission
coefficients. Black and red triangles represent the rock-site and basin stations, respectively. (c) Map of the Los
Angeles basin showing the profile geometry extracted to run the simulation which boundaries are denoted by labels
A and A′. The color version of this figure is available only in the electronic edition.

Volume 110 Number 3 June 2020 www.bssaonline.org Bulletin of the Seismological Society of America • 1319

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/110/3/1305/5048503/bssa-2019161.1.pdf
by walryd 
on 07 June 2020



mode, specifically when velocity contrasts are greater than four.
However, at worst, the discrepancy in maximum amplification
remains roughly <35% for the velocity contrasts and Poisson’s
ratios considered. Other factors such as reflections at basin
boundaries, lateral resonance, and basin slope angles play a role
in determining the energy distribution to a lesser extent.
Moreover, for simple homogeneous basins, the amplification
for the vertical component tends to be larger than for the hori-
zontal component at high frequencies (f > 0:75f h) and smaller
at lower frequencies (f < 0:75f h). Because of polarity differences
between the vertical and the horizontal component, the inter-
action between the fundamental and higher-order modes can
lead to larger frequencies at maximum amplification for the
horizontal component than for the vertical component.

The semi-analytic formulation used here—intermode cou-
pling transmission coefficients calculated through displace-
ment and stress continuity equations—provide a remedy to
account for reflections and mode conversions at the basin edge.
Despite not accounting for diffracted body waves, amplifica-
tion spectrum amplitudes, and shape are well captured for a
large range of velocity contrasts. Moreover, by running simu-
lations in a realistic, complex tomographic model, we find that
reducing the problem to a simple vertical boundary between
inside and outside the basin can capture the most salient fea-
tures of the amplification spectrum.

To complete the description of the wave physics in the basin,
future studies will focus on nonorthogonal wave incidence lead-
ing to Rayleigh-to-Love-wave conversions that are already

included in the theory devel-
oped by Its (Its and
Yanovskaya, 1985), body-wave
to surface-wave coupling
(Molina-villegas and Jaramillo-
fernández, 2018), as well as res-
onances in 3D structures (Qin
et al., 2012; Kamal and
Narayan, 2015). We believe that
a flexible, efficient, physics-
based description of basin
effects can be used to provide
microzonation estimates of
amplification in regions where
a fine-scale and fully 3D veloc-
ity model is not available or too
expensive to produce and run
simulations for (similar in goal
to work by Panza et al., 2001).
The accuracy and efficiency of
the tool also provides opportu-
nities for future probabilistic
hazard estimates, for which
numerous possible earthquake
sources must be considered.

DATA AND RESOURCES
The velocity and density profiles used in this study were extracted
from the Southern California Earthquake Data Center (SCEDC),
model CVMS4.26 https://scec.usc.edu/scecpedia/UCVM/ (last
accessed March 2020). Scripts to compute surface-wave transmission
and reflection coefficients (SWRT) are available at https://github.com/
arjundatta23/SWRT/ (last accessed March 2020). The SPECtral Finite
EleMents (SPECFEM) package is available at https://
geodynamics.org/cig/software/specfem2d/ (last accessed March
2020). The supplementary material contains additional information
about the Green’s functions analytical expressions and extra figures
describing near-field effects, the variations of dominant frequency
with velocity ratios, the horizontal maximum amplification sensitivity
against basin-shape ratio and location within the basin, and compar-
ing amplification spectra from the different theories at another loca-
tion in the Los Angeles basin. The supplementary material also
describes the wavefield composition in semi-infinite basins and the
spatial and frequency dependence of vertical and horizontal amplifi-
cation spectra for semi-infinite and closed basins.
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