Zusammenfassung Kinematik & Statik HS 15

Kurze Bemerkungen:

- ❖ Diese ZF habe ich während der Vorbereitung auf die Zwischenklausur im HS15 geschrieben. Das Niederschreiben der wichtigsten Erkenntnisse aus der Vorlesung hat mir sehr geholfen, den Stoff zu verstehen. Ich empfehle daher jedem seine Formelsammlung selbst zu verfassen.
 - Ungeachtet dessen bin ich natürlich froh, euch mit dem Folgenden bei der Vorbereitung auf die Prüfung zu unterstützen!
- * Ausserdem ist die ZF sehr ausführlich, womit sie in einem Fach, bei dem der Zeitdruck erheblich ist, vielleicht einige Nachteile gegenüber übersichtlicheren Formelsammlungen aufweist. Im Gegenzug kann sie allerdings hier und da auch als kurzer Theorie Recap nutzen falls nach dem 2. Semester nicht mehr alles präsent ist.
- * Wie immer: Ich gebe keine Garantie für Korrektheit! Falls ihr Fehler entdeckt könnt ihr das Word-Dokument von folgendem Link downloaden:

https://n.ethz.ch/~brunnerg/ZFs/

Ich wünsche euch viel Spass & Erflog beim Lernen Georg Brunner – 16

Trigonometrie										
φ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	0 - Stellen
$\sin \varphi$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	n·π
$\cos \varphi$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$\frac{\pi}{2} + n \cdot \pi$
tan φ	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	/	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	n·π

$\sin^2 \varphi + \cos^2 \varphi = 1$	$\sin(\arccos x) = \sqrt{1 - x^2}$	$\sin(-\varphi) = -\sin\varphi$
$\cos^2 \varphi - \sin^2 \varphi = \cos 2\varphi$	$\sin(\arctan x) = \frac{x}{\sqrt{x^2 + 1}}$	$\sin(\frac{\pi}{2} \pm \varphi) = \cos \varphi$
$\sin^2\frac{\varphi}{2} = \frac{1 - \cos\varphi}{2}$	$\cos(\arcsin x) = \sqrt{1 - x^2}$	$\sin(\pi \pm \varphi) = \mp \sin \varphi$
$\cos^2\frac{\varphi}{2} = \frac{1 + \cos\varphi}{2}$	$\cos(\arctan x) = \frac{1}{\sqrt{x^2 + 1}}$	$\cos(-\varphi) = \sin\varphi$
$\sin 2\varphi = 2\sin\varphi\cos\varphi$	$\tan(\arcsin x) = \frac{x}{\sqrt{1 - x^2}}$	$\cos(\frac{\pi}{2} \pm \varphi) = \mp \sin \varphi$
$1 + \tan^2 \varphi = \frac{1}{\cos^2 \varphi}$	$\tan(\arccos x) = \frac{\sqrt{1 - x^2}}{x}$	$\cos(\pi \pm \varphi) = -\cos\varphi$

Geometrie

$$h = \frac{\sqrt{3}}{2}a$$
$$a = 60^{\circ} =$$

Cosinus – Satz: $c^{2} = a^{2} + b^{2} - 2ab \cdot \cos \gamma$ Sinus – Satz: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$$

Vektorrechnung

Allgemeines:

$$|\overrightarrow{a}| = \sqrt{a^2 + b^2 + c^2}$$

$$\overrightarrow{a_0} = \frac{1}{|\overrightarrow{a}|} \cdot \overrightarrow{a}$$

$$\cos \varphi = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| \cdot |\overrightarrow{b}|}$$

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}$$

Skalarprodukt:

$$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$
 Rechtssystem

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \cos \varphi$$

$$\overrightarrow{b_a} = \overrightarrow{a} \cdot \overrightarrow{b_0}$$

Kreuzprodukt:

Kreuzþrodukt:

$$|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$$

$$\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$$

$$\vec{a} \times (\vec{b} + \vec{c}) = (\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c})$$

$$\overrightarrow{a} \times \overrightarrow{b} | = |\overrightarrow{a}| \cdot |\overrightarrow{b}| \cdot \sin \varphi$$

$$\overrightarrow{a} \times \overrightarrow{b} = -(\overrightarrow{b} \times \overrightarrow{a})$$

$$\overrightarrow{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$

$$\overrightarrow{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = (\overrightarrow{a} \times \overrightarrow{b}) + (\overrightarrow{a} \times \overrightarrow{c})$$

$$(k\overrightarrow{a}) \times \overrightarrow{b} = k \cdot (\overrightarrow{a} \times \overrightarrow{b})$$

Flächeninhalt des Parallelogramms

KARTESISCH	ZYLINDRISCH	SPHÄRISCH
2	$\varrho = \sqrt{x^2 + y^2}$ $\varphi = \arctan\left(\frac{y}{x}\right)$ $z = z$	$r = \sqrt{x^2 + y^2 + z^2}$ $\vartheta = \arctan\left(\frac{\sqrt{x^2 + y^2}}{z}\right)$ $\psi = \arctan\left(\frac{y}{x}\right)$
$x = \varrho \cdot \cos \varphi$ $y = \varrho \cdot \sin \varphi$ $z = z$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	$r = \sqrt{\varrho^2 + z^2}$ $\vartheta = \arctan\left(\frac{\varrho}{z}\right)$ $\psi = \varphi$
$x = r \cdot \sin \vartheta \cdot \cos \psi$ $y = r \cdot \sin \vartheta \cdot \sin \psi$ $z = r \cdot \cos \vartheta$	$\varrho = r \cdot \sin \vartheta$ $\varphi = \psi$ $z = r \cdot \cos \vartheta$	F(C) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4

Allgemein	$\underline{v} = \underline{\dot{r}} = \lim_{\Delta t \to 0} \frac{\underline{r}_{(t+\Delta t)} - \underline{r}_t}{\Delta t} = \frac{dr}{dt} (dr \; (Differential) = lineare \; Approximation)$			
Kartesisch	$\underline{r} = x\underline{e}_x + y\underline{e}_y + z\underline{e}_z$	$\underline{v} = \dot{x}\underline{e}_x + \dot{y}\underline{e}_y + \dot{z}\underline{e}_z$		
Zylindrisch	$\underline{r} = \varrho \underline{e}_{\varrho} + z \underline{e}_{z}$	$\underline{v} = \dot{\varrho}\underline{e}_{\varrho} + \varrho\dot{\varphi}\underline{e}_{\varphi} + \dot{z}\underline{e}_{z}$		
Sphärisch	$\underline{r} = r\underline{e}_r$	$\underline{v} = \dot{r}\underline{e}_r + r\dot{\vartheta}\underline{e}_{\vartheta} + r\sin\vartheta\dot{\psi}\underline{e}_{\psi}$		

Bemerkung:

 \underline{v} ist definiert als $\underline{v} = |\underline{\dot{s}}| \cdot \underline{\tau}$, wobei | s | den Betrag der Ableitung von s(t), welche die Bogenlänge eines Punktes beschreibt, und au den Einheitsvektor tangentialen an die Bahnkurve im Punkt angibt.

Kreisbewegung

 $(\rho, z \text{ sind konstant})$ $\underline{v} = \varrho \dot{\varphi} \underline{e}_{\varphi}$ wobei $\underline{e}_{\varphi} = \underline{e}_z \times \underline{e}_{\varrho}$

 $\underline{v} = \varrho \dot{\varphi} \cdot (\underline{e}_z \times \underline{e}_\varrho)$

 $=\dot{\varphi}\underline{e}_z \times \varrho\underline{e}_\rho$ mit $\underline{\omega}=\dot{\varphi}\underline{e}_z$

 $\underline{v} = \underline{\omega} \times \underline{r}$

Starrer Körper

Die Beträge und Winkel der Vektoren zwischen drei Punkten im Körper bleiben stets konstant.

 $\underline{a} \cdot \underline{b} = |\underline{a}||\underline{b}| \cdot \cos \varphi$ = Konstant

SdpG

$$\underline{v}_N \cdot \underline{a} = \underline{v}_M \cdot \underline{a} \quad \forall_{N,M}$$

$$|\underline{v}_N| \cdot \cos \alpha = |\underline{v}_M| \cdot \cos \beta$$
 Kongr

Translation

 $\underline{v}_N = \underline{v}_M$

 $\underline{v}_M = \underline{v}_B + \underline{\omega} \times \underline{BM}$

Kongruente Bahnkurven

Rotation

Zwei Punkte ($\in \mu$) sind stets in Ruhe!

$$\underline{v}_{(r,t)} = \underline{\omega}_{(t)} \times \underline{r} \qquad |\underline{\omega}| = 2\pi \cdot \frac{n}{60}$$

Allgemeinste Bewegung

Kinemate: $\{\underline{v}_B/\underline{\omega}\}$

Invarianten: i) $\underline{\omega}$

$$ii) \ \underline{v}_{\omega} = \underline{v}_{B} \cdot \frac{\underline{\omega}}{|\omega|}$$

Spezialfälle $\underline{v}_B \cdot \underline{\omega} = 0$

 $\underline{\omega} = 0$ Translation

 $v_B = 0$ Rotation

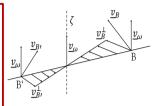
 $v_B \perp \omega$ Ebene Bewegung

Rollen/Gleiten

- i. Mom. Rotation μ = Berührungslinie $\Rightarrow v = 0$
- ii. Es gibt Punkte auf der Berührungslinie $mit v \neq 0$

Kreiselung

Ein Punkt P des Körbers ist stets in Ruhe ⇒ Momentane Rotation (u geht durch P) (Bew.: Zwei Ebenen senkrecht zu \underline{v}_N , \underline{v}_M . Schnittgerade hat wegen Sdpg v = 0



Schraubung

Die allgemeinste Bewegung ist gegeben durch eine Vektorfunktion, linear abhängig vom Verbindungsvektor (BM). Die Linearität zeigt sich in v_R^{\perp} . Alle Punkte mit $v_R^{\perp} = 0 \in \zeta$. $Z = \{v_{\omega}/\omega\}$ (Schraube) $\zeta \parallel \omega$, und alle Punkte $\in \zeta$ haben dieselbe Geschwindigkeit (denn der Term $\underline{\omega} \times \underline{ZZ'}$ verschwindet)

Der Abstand zur Zentralachse d_{BZ} ist gegeben durch $d_{BZ} = \frac{|v_B^{\perp}|}{|\omega|}$

Ebene Bewegung & Fachwerke (Def.: Bahnkurven in parallelen Ebenen sind kongruent)

i.
$$v_B \perp \omega \Rightarrow v_\omega = 0$$

ii. $\zeta \rightarrow \mu$

SvM: i. Z (Momentanzentrum) ist in Ruhe

iii. Durchstoβpunkt von ζ durch die Ebene → Momentanzentrum ii. Geschwindigkeiten ⊥ auf ZA

iii. $Z \rightarrow Schnittpunkt der Senkrechten$ auf die Geschwindigkeiten

Parallelogramm Regel: Bei Fachwerken haben parallele Stäbe im Parallelogramm das gleiche |ω| Bemerkung: Stehen zwei Geschwindigkeiten eines Stabes senkrecht auf diesen: Verbinde die Spitzen. Das Momentanzentrum ist dann der Schnittpunkt mit dem Stab!

Beweise

SdpG	Zylindrische v–Komponenten	Parallelogramm Regel
$\underline{a} \cdot \underline{a} = Konstant$	$\underline{r} = \varrho \underline{e}_{\varrho} + z \underline{e}_{z}$	$\underline{v}_A = \underline{v}_B + \underline{\omega}_1 \times \underline{BA}$
$\underline{a} = \underline{r}_{N} - \underline{r}_{M}$	$\underline{v} = \dot{\varrho}\underline{e}_{\varrho} + \varrho\underline{\dot{e}}_{\varphi} + \dot{z}\underline{e}_{z}$	$\underline{v}_B = \underline{v}_C + \underline{\omega}_2 \times \underline{CB}$
$\underline{\dot{a}} = \underline{\dot{r}}_N - \underline{\dot{r}}_M$	$\underline{e}_{\varrho} = \cos \varphi \cdot \underline{e}_{x} + \sin \varphi \cdot \underline{e}_{y}$	$\underline{v}_C = \underline{v}_D + \underline{\omega}_3 \times \underline{DA}$
$2\underline{\dot{a}} \cdot \underline{a} = 0$	$\underline{\dot{e}}_{\varrho} = \dot{\varphi} \left(-\sin \varphi \cdot \underline{e}_{\chi} + \cos \varphi \cdot \underline{e}_{y} \right)$	$\underline{v}_D = \underline{v}_A + \underline{\omega}_4 \times \underline{AD}$
(Produktregel)	$\underline{e}_{\varphi} = -\sin \varphi \cdot \underline{e}_{x} + \cos \varphi \cdot \underline{e}_{y}$	$\underline{v}_A = \underline{v}_A + (\underline{\omega}_4 - \underline{\omega}_2) \times \underline{BC}$
$\underline{\dot{r}}_{N} \cdot \underline{a} = \underline{\dot{r}}_{M} \cdot \underline{a}$	$\underline{\dot{e}}_{\varrho} = \dot{\varphi} \cdot \underline{e}_{\varphi}$	$+(\omega_3-\omega_1)\times BC$
$\underline{v}_N \cdot \underline{a} = \underline{v}_M \cdot \underline{a}$	$\underline{v} = \dot{\varrho}\underline{e}_{\varrho} + \varrho\dot{\varphi}\underline{e}_{\varphi} + \dot{z}\underline{e}_{z}$	↑(<u>@</u> 3 <u>@</u> 1) · · <u>20</u>
Seilreibung übe	r ein infinitesimales Seilstück dS	Kräftemittelpunkt S
dS = Ra		Für eine gleichgerichtete Kräftegruppe
Aufstellen der Ko	mponenten- $\frac{d^{\frac{\varphi}{2}}}{dF_R}$ $\frac{d^{\frac{\varphi}{2}}}{dF_R}$	sei <u>F</u> _i = F _i · <u>e</u> . Es gilt sicher
bedingungen	3 3+43	$\underline{R} \cdot \underline{M}_O = 0$ und $\underline{R} \neq 0$. Reduktion:
$dF_R = dS$	$dN = Sd\varphi \qquad \Big\backslash \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$R = \sum F_i \cdot \underline{e}$ mit (unbekanntem)
Da die Trommel n		Angriffspunkt A. Moment bzgl. O:
gilt das Gleitreib	ungsgesetz: \dφ/	$r_A \times R = \sum r_i \times F_i$ Einsetzen ergibt:
$dS = \mu_1 S$	$sd\varphi$ $cos\left(d\frac{\varphi}{2}\right) = 1$	$(r_A \sum F_i - \sum F_i r_i) \times e = 0$ Es muss
Nach Integration	. Z.	also r _A entweder Null oder parallel zu e
ergibt diese Differen	tialbeziehung $\sin\left(d\frac{\varphi}{2}\right) = d\frac{\varphi}{2}$	sein: $\underline{r}_A = \frac{\sum F_i \underline{r}_i}{\sum F_i} + \lambda \underline{e}$. Für $\lambda = 0$: S
$S_2 = S_1 \cdot \epsilon$	$e^{\mu_1 \cdot \varphi}$ $\stackrel{\checkmark}{}$ $\stackrel{?}{}$ $\stackrel{?}{}$	$\sum_{F_i} \frac{1}{N_i} \frac{1}{N$

Kräfte

Punktgebundener Vektor $\{A_i/F_i\}$ (Ursache für Beschleunigung, Deformation, etc.) [N] $\left(:=kg\cdot\frac{m}{2}\right)$

Reaktionsprinzib (Newton): Jede Actio erzeugt eine Reactio!

Kräfte mit gleichem Angriffspunkt: $R = \sum_{i=1}^{n} F_i$

Einteilung: i) Fernkräfte (keine Berührung, z.B.: Gravitation)

- ii) Kontaktkräfte (Wechselwirkung ber Berührung)
- iii) Innere Kräfte (Reactio liegt innerhalb vom betrachteten System)
- iv) Äußere Kräfte (Reactio liegt außerhalb vom betrachteten System)

Momente [Nm]

 $M_O = OA \times F$ (vgl. Rotation)

 $\underline{M}_{\nu} = M_B \cdot e_{\nu}$ (Projektion von \underline{M}_B auf die Achse in Richtung e_{ν})

 $\underline{M}_P = \underline{M}_O + \underline{R} \times OP$ (vgl. Starrkörperformel)

Verschiebungssatz: Abstand zw. Kraft und Achse entscheidend

→ Kraft kann verschoben werden

Momente können Ursache für eine Rotation sein Bestimmung des Drehsinnes per Rechte-Hand-Regel

Leistung [Watt $(:= N \cdot \frac{m}{})$]

 $\mathcal{P} = \underline{F} \cdot \underline{v}_B$

 $\mathcal{P} = \overline{M_R \cdot \omega}$

 $\mathcal{P}_{qes} = \sum (\overline{R} \cdot v_i + M_i \cdot \omega)$

Leistungslose Kraft: $\underline{F} \perp \underline{v}_B$ Antriebskraft: $\alpha < 90^{\circ}$

Widerstandskraft: $\alpha > 90^{\circ}$

Statische Äquivalenz

Def.: $\{G\}$ stat. äqu. zu $\{G^*\}$ falls $\mathcal{P}_G = \mathcal{P}_{G^*}$ Gleichbedeutend zu: $R = R^* \wedge M_O = M_O^*$

- i) Kräfte in der Ebene: Je R für zwei Kräfte bestimmen mit A = Schnittpkt. Wirklin.
- ii) Parallele Kräfte mit $R \neq 0$: R berechnen, A per Hebelgesetz: $a_1 \cdot |F_1| = a_2 \cdot |F_2|$
- iii) Kräftepaar (Parallele Kräfte mit R = 0): Nicht auf Einzelkraft reduzierbar! Konstantes Moment $(|M| = |M| \cdot b)$ (b...Abstand Wirklin.)

Reduktion einer Kräftegruppe

Dyname in O: $\{R/M_0\}$

- 1. Invariante: R
- 2. Invariante: $\underline{M}_R = \underline{R} \cdot \underline{M}_O = \underline{R} \cdot \underline{M}_B$

Reduktion auf die Dyname:

Möglichst einfache stat. ägu. Kräftegruppen finden. Besteht maximal aus einer Einzelkraft (R mit A im Kräftemittelpkt. S) und einem Kräftepaar mit Moment M_S .

Gleichgewichtsbedingungen

Gleichgewicht: R = 0, $M_R = 0$

$$\sum \underline{F}_X = 0 \qquad \underline{M}_X^B = 0$$

$$\sum \underline{F}_Y = 0$$
$$\sum F_Z = 0$$

$$\underline{M}_{Y}^{B}=0$$

$$\underline{M_Z^B} = 0$$

2D-Problem: 3 Gl. 3D-Problem: 6 Gl.

(Nullgruppe: Kräftepaar mit gleicher Wirkungslinie)

Spezialfälle

i) $R \cdot M_0 = 0$ Reduktion auf Einzelkraft ii) R = 0 Reduktion auf Kräftepaar

Linienverteilte Kräfte $q_{(x)}$

Allgemein	Uniforme Verteilung	Dreiecksverteilung
Linienverteilte Kräfte $q_{(x)} \cdot \underline{e}_q$ $\underline{R} = \int_0^L q_{(x)} dx \cdot \underline{e}_q$ $x_S = \frac{1}{R} \cdot \int_0^L x \cdot q_{(x)} dx$	können auf eine Einzelkraft mit	Dreieckswerteilte Kräfte können auf eine Einzelkraft mit $ \underline{R} = L \cdot \frac{q_0}{2}$ und Angriffspunkt bei $x_S = \frac{2L}{3}$ reduziert werden.

Kräftemittelpunkt & Schwerpunkt (für gleichgerichtete Kräftegruppen)						
Resultierende	Kräftemittelpunkt	Linien–/Flächen–/Körper– Schwerpunkt/Mittelpunkt	Bemerkungen			
$R = \sum F_i$	$S = \frac{\sum F_i \underline{r_i}}{\sum F_i}$	*	Teilkörpern (mit Teilgewichten verpunkte S_i mit dem Gesamt $\sum G_i \underline{r_i}$			
$R = \int q_{(x)} dx$	$S = \frac{\int x \cdot q_{(x)} dx}{\int q_{(x)} dx}$	$S = \frac{1}{L} \cdot \int \underline{r} dL$	Polarkoord.: Über die Bogen- länge dl integrieren $(\int_0^\pi x \ dl)$. Ersetze dl durch R d φ und drücke x mit φ aus (Grenzen!).			
$R = \iint s_{(\underline{r})} dA$	$S = \frac{\iint \underline{r} s_{(\underline{r})} dA}{\iint s_{(\underline{r})} dA}$	$S = \frac{1}{A} \cdot \iint \underline{r} dA$	Ist eine Richtung konstant: Drücke dA durch dx aus!			
$R = \iiint f_{(\underline{r})} \ dV$	$S = \frac{\iiint \underline{r} f_{(\underline{r})} dV}{\iiint f_{(\underline{r})} dV}$	$S = \frac{1}{V} \cdot \iiint \underline{r} \ dV$				

 $q_{(x)}, s_{(r)}, f_{(r)}$ seien die jeweils entsprechenden Kraftdichten.

Bindungen

Festlager		$2D: A_X A_Y$ $3D: A_X A_Y A_Z$
Auflager	777777777	2D und 3D: A _Y (muss nach oben zeigen, sonst nicht in Ruhe)
Einspannung		$2D: A_{X} A_{Y} M_{Z}^{A} 3D: A_{X} A_{Y} A_{Z} M_{Z}^{A} M_{Y}^{A} M_{X}^{A}$
Kurzes Querlager		$2D: A_{Y}$ $3D: A_{Y} A_{Z}$
Langes Querlager	XX	2D: A _Y M _Z ^A 3D: A _Y A _Z M _Z ^A M _Y ^A
Längslager		2D und 3D: A _Y (Kraft darf in beide Richtungen wirken)
Seil		Kraftübertragung nur in Seilrichtung. Nur Zugbelastung!

Bemerkung zum hydrostatischen Druck:

Bei der Reduktion einer Kraftdichte $p_{(h)}$ die vom hydrostatischen druck stammt $(p_{(h)} = \varrho gh)$ beachten, dass dieser Richtungsunabhängig ist: Immer Normal auf die Ebene, egal unter welchem Winkel diese geneigt ist.

Lagerkräfte bestimmen

- i. Freischneiden
- ii. Kräfte eintragen
- iii. GGB (Bestimmtheit?)
- iv. (Systemtrennung)
- v. Lagerkräfte bestimmen
- vi. Diskussion (Kippen,...)

Hauptsatz der Statik

Ein System in Ruhe (keine Änderung der Geschwindigkeit) hat die notwendigen Bedingungen $R^{(a)} = 0 \wedge M_0^{(a)} = 0$ Nicht hinreichend!

Folgt aus dem Grundprinzip der Statik: Für ein System in Ruhe sind die Leistungen bei jedem virtuellen Bewegungszustand innerer und äußerer Kräfte gleich Null.

Ruhelage bestimmen

- i. Gleichgewichtsbedingungen (nach Hauptsatz)
- ii. PdvL: Wähle einen zulässigen virtuellen Bewegungszustand und setze $\mathcal{P}_{Ges} = 0$ (zulässig, um Bestimmung vieler Kräfte zu vermeinden)

Standfestigkeit

Standfläche As: Kleinste konvexe Berührungsebene Angriffsbunkt der reduzierten Normalkraft zwingen in As, außerdem muss N größer 0 sein.

Fachwerke & Bestimmung der Stabkräfte

Ideales Fachwerk:

Stäbe = Pendelstützen (Stäbe: gewichtslos: Knoten: reibungsfreie Gelenke an Stabenden: Belastung nur dort)

- i. Knotengleichgewicht:
- Lagerkräfte bestimmen
- * Knoten freischneiden und GGB für Komponenten
- Stabkräfte als Zugkräfte (vom Knoten weg)
- ii. Dreikräfteschnitt:
- Lagerkräfte bestimmen
- Systemtrennung durch 3 Stäbe (Stabkräfte auf Zug). s.d. nur zwei Stäbe vom gleichen Knoten kommen
- Momentenbedingung, bzw. Komponentenbedingung senkrecht auf die beiden parallelen Stabkräfte

- * Bestimmung der Lagerkräfte nicht nötig
- * Entferne den Stab mit gesuchten Stabkräften
- (Zulässigen) virtuellen Bewegungszustand einführen
- * Kinematik lösen (SdpG, SvM, Parallelogrammregel)
- $\mathcal{P}_{Ges} = 0$

Statische Bestimmtheit

System: m Gleichungen, n Variablen

- m = n Stat. bestimmt
- ❖ m > n Stat, überbestimmt (Zu wenig Lagerkräfte: beweglich)

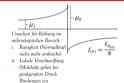
Beurteilung ber Kinematik:

Wie viele Bindungen müssen aufgehoben werden, damit beweglich: Genau eine, d.h. statisch bestimmt.

Bei Fachwerken:

- ❖ 2D: s + r = 2K
- ❖ 3D: s + r = 3K

(s: #Stäbe, r: #Lagerkräfte, K: #Knoten)



Reibungskraft FR

Reibungszahlen: Empirisch ermittelte Konstanten (werk-

stoffabhängig). Kraftaufwand Bewegung zu verursachen, ist größer als Bewegung

aufrecht zu halten: $\mu_0 > \mu_1$

i. Haftreibung: Ein System bleibt solang in Ruhe sofern

 $|F_R| < \mu_0 \cdot |N|$

ii. Gleitreibung: Gleitet ein System über ein anderes, erkennt man (näherungsweise) aus dem

Diagramm: $|\underline{F}_R| = \mu_1 \cdot |\underline{N}|$

iii. Rollreibung: Wegen Verformbarkeit der Räder (N ist nicht mehr gleichmäßig verteilt).

 $|M_R| < \mu_2 \cdot |N|$ für Ruhe

 $|M_R| = \mu_2 \cdot |N|$ für Rollen

Beachte: μ_0, μ_1 Sind dimensionslos; μ_2 hat Einheit [L]

Seilstatik

Ein reibungsfreies Seil, das auf einer Rolle haftet, überträgt Kräfte in Seilrichtung ohne Verluste.

Mit Reibung ergibt sich für $S_2 > S_1$: Für Haftung: $S_2 < S_1 \cdot e^{\mu_0 \cdot \varphi}$ Für Reibung: $S_2 = S_1 \cdot e^{\mu_1 \cdot \varphi}$

Qz **⊗ ®** Mz Einführung der Beanspruchung in Abhängigkeit von N: In positive x-Richtung, dann auch alle anderen Kräfte & Mom. in pos. Richtung

Beanspruchung

Schnitt bei x: Innere Kräfte → Äußere. Mit Kräfte-gruppe am gleichen Teilsys. GGB. Stat. ägu. zur Kräftegruppe am anderen Teilsys. Die Red. der stat. ägu. Kräftegruppe auf Flächenmittelpkt. vom Schnitt $\{R/M_0\}$ nennt man Beanspruchung.

Bestimmung:

- i. Lagerkräfte (falls nötig)
- ii. Schnitt bei x (Vorsicht: Einzelkraft)
- iii. Basis (gekrümmten Stab: zyl.)
- iv. Laufvariablen
- v. GGB bzw. Reduktion
- vi. Diagramme, Diskussion, Randbedingungen (z.B.: Gelenk: M_O=0)

Differentialbeziehungen:
$Q_{y(x)}' = -q_{y(x)}$
$M'_{z(x)} = -Q_{y(x)}$
$Q_{Z(x)}' = -q_{Z(x)}$
$M_{v(x)}' = Q_{v(x)}$

N	Zug/Druck	
$Q_Y Q_Z$	Schub	
T	Torsion	
M_YM_Z	Biegemoment	