
Computational Design of Walking Automata

Gaurav Bharaj1∗ Stelian Coros2 Bernhard Thomaszewski3 James Tompkin1 Bernd Bickel4 Hanspeter Pfister1
1Harvard SEAS 2Carnegie Mellon University 3Disney Research Zürich 4IST Austria

Figure 1: Two walking automata designed with our system and the corresponding fabricated prototypes.

Abstract

Creating mechanical automata that can walk in stable and pleasing
manners is a challenging task that requires both skill and expertise.
We propose to use computational design to offset the technical
difficulties of this process. A simple drag-and-drop interface allows
casual users to create personalized walking toys from a library of
pre-defined template mechanisms. Provided with this input, our
method leverages physical simulation and evolutionary optimization
to refine the mechanical designs such that the resulting toys are
able to walk. The optimization process is guided by an intuitive set
of objectives that measure the quality of the walking motions. We
demonstrate our approach on a set of simulated mechanical toys with
different numbers of legs and various distinct gaits. Two fabricated
prototypes showcase the feasibility of our designs.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics And Realism—Animation

Keywords: Mechanical characters, animation, fabrication

1 Introduction

Stories of walking automata date back to ancient Greece, with the
Renaissance reviving the tradition and providing prominent histori-
cal examples: da Vinci’s mechanical Lion, from the 15th century,
delighted audiences upon its rebuilding in 2009. Although toy stores
abound with mass-produced walking automata, their design remains
challenging. It is arguably for this reason that many commercial
walking automata are based on a small number of template mech-
anisms such as the famous Klann or Jansen linkages. But, even
in this restricted setting, the design problem is still far from obvi-
ous: in addition to satisfying kinematic requirements on individual
mechanisms (i.e., producing desired end-effector motion), the de-
signer must carefully select parameters for all mechanisms, includ-
ing timing and inertia, to obtain stable walking motion. This task is
challenging for experts, and so is often beyond the capabilities of
average users.

∗Email: bharaj@g.harvard.edu

Modern rapid and additive manufacturing techniques expand the
scope of mechanical design and construction. Motivated by this
tremendous progress, the graphics community has started to em-
brace the challenge of translating digital characters into physical
artifacts [Zhu et al. 2012; Coros et al. 2013; Ceylan et al. 2013;
Thomaszewski et al. 2014]. These methods can create virtual charac-
ters with a broad range of complex motions, such as an in-air mimic
of a walking motion, but their fabricated physical counterparts have
yet to demonstrate an ability to actually walk stably. This is because
neither the mechanics nor the geometry of stable locomotion are con-
sidered during the design. Considering these constraints would allow
users to explore the space of feasible linkages for stable walking,
and so to more easily design walking automata.

Capitalizing on this work, our method allows users to intuitively
create unique automata designs that walk stably once fabricated.
First, we learn a space of linkage configurations which are likely to
lead to stable walking. Then, the user designs the automata by plac-
ing 2–4 linkage templates onto a body at arbitrary positions. From
this initialization, we optimize the overall mechanical structures of
the automata, allowing them to automatically discover how to walk
with the same intuitive set of objective functions. This approach
integrates physics-based simulation of mechanical assemblies with
an evolutionary optimization algorithm that is able to explore the
complex design space of these structures. We demonstrate our ap-
proach with simulated designs, and we validate our simulations by
fabricating two very different walking designs for a dog and a crab.

2 Related Work

Character Animation One major inspiration is Sims’ [1994] pi-
oneering work on virtual creatures that discover how to locomote.
Sims uses genetic algorithms — a class of evolutionary optimization
methods inspired by natural selection — to discover the structure
and morphology of virtual creatures, and to discover time-varying
actuation forces that lead to crawling or jumping motions. This
general approach has been successfully adapted to a large range of
additional animation domains, such as realistic control of swimming
[Tan et al. 2011], muscle-driven biped simulation [Geijtenbeek et al.
2013], gait discovery for quadrupeds [Lee et al. 2013], or learning
bicycle stunts [Tan et al. 2014].

Translating virtual walk simulations into the real world is non-trivial.
For humans and animals, hundreds of muscles have to act in unison
via a central nervous system for stable and efficient gaits. In a robot,
the orchestration of actuators as muscles requires many sensors and
a complex controller. In this context, Sims-like virtual characters are
difficult to fabricate as, even if one could find physical actuators and

 Interactive
Automata Creation Stochastic Optimization

Optimized
Walking Automata

Preconfigured Linkage
Database

Drag-n-drop
linkages

Automata Sampling

Offline Function Learning Metric Weights

Physical
Simulation

Metric Cost

Distance
Time

Smoothness
Effort

Shape-Regularizer

Figure 2: Overview: Left: We learn valid linkage configuration functions from a database of prefigured linkages. Mid-left: The user designs
an automata with a drag-and-drop interface, and specifies a metric by changing weights. Mid-right: Stochastic optimization using the valid
linkage functions and physical simulation allows the automata to walk. Right: The user analyzes the final walk optimized by our system.

joints for all virtual motors, the resulting cost would exceed what
is acceptable for most applications, and especially for the simple
automata that we consider: for toy and educational use, they have
one motor per limb, no sensors, and no high-level controller; yet,
they can walk successfully once fabricated.

Walking Motions Control in Animation and Robotics A variety
of advanced control methods have been proposed for antropomor-
phic physically-simulated humans [Geijtenbeek et al. 2013; Lee et al.
2010] and animals [Wampler and Popović 2009; Coros et al. 2011].
Such methods have been applied to sophisticated legged robots to
generate controllers [Gehring et al. 2013], or to increase the agility
of locomotion controllers [Gehring et al. 2014]. However, complex
control strategies require complicated mechanics, sensors, and ac-
tuators, and the StarlETH robot is well beyond the complexity and
cost of our target of automata as toys. Our designs are significantly
simpler in nature, yet are still able to perform walking motions.
As such, our work is much closer to recent work in computational
design than to the general field of robotics.

Computational Design and Fabrication This field reduces the dif-
ficulty of design and manufacturing problems by creating tools
which forego or reduce the need for expert domain knowledge.
For instance, recent works present custom-shaped objects that can
fly [Umetani et al. 2014], stand on their own [Prévost et al. 2013],
or spin stably [Bacher et al. 2014]. Some methods aim to bring
virtual characters to the real world, and it is now possible to create
3D printable representations of virtual characters with joints [Bächer
et al. 2012; Calı̀ et al. 2012], to design mechanical toys capable
of interesting (non-walking) motions [Coros et al. 2013; Ceylan
et al. 2013; Thomaszewski et al. 2014], or to manufacture physical
characters using elastic materials such that their deformation under
the influence of external forces can be controlled.

Coros et al. [2013] note that even if the motion of a mechanical
character at first glance resembles walking, this does not mean that
the character would actually walk if fabricated. In initial experi-
ments, we were not able to create any automata in this way that
were capable of walking stably, unless we used a large number of
legs (i.e., hexapod). This highlights the need for automated methods.
To our knowledge, our work is first to investigate the challenge of
designing automata that can walk stably.

3 Overview

Each of our automatons has a body with 2–4 linkages attached. Each
linkage belongs to a set of linkage classes, with each parameterizable

by pin joints and timings (Fig. 3). The 12-16 kinematic parame-
ters pk, encode the location of each pin joint, and so define the
mechanical configuration of the automata. Each linkage is assumed
to be driven by a single servo motor with speed control, so the four
timing parameters pt per timing mechanism are used to control the
relative phase between different linkages by directly specifying the
phase profile functions of the virtual actuators. These linkages can
be standard mechanisms, such as Klann or Jansen linkages, or de-
signed automatically [Coros et al. 2013; Thomaszewski et al. 2014].
Our initial database of pre-configured linkages was created using
the method of Coros et al. [2013]. We show two initial linkage
configurations in supplemental appendix B.

Initially, we provide a simple drag-and-drop design tool to the user,
who chooses and places linkage classes at arbitrary positions on the
body (Fig. 2a, and supplemental video). Following this, we employ a
stochastic genetic algorithm (CMA) and a walking objective function
(§4) to optimize the linkage instance parameters with respect to the
body in a rigid-body physical simulation (Supplemental appendix
A). The simulation measures the quality of walking motions as the
parameters of the automata — the mechanical linkage structures —
change. It also previews the physical prototype output.

Not all linkage parameterizations are valid configurations which will
move or lead to smooth motion, and so to speed up this optimiza-
tion, we precompute within linkage space a subset of good linkage
configurations. This data-driven approach is a reparameterization
equivalent to learning and navigating a manifold on the original
high-dimensional space (§5).

Finally, we fabricate the optimal automata. The fabrication process
is manual, with all kinematic parameters and motor controls output
directly by the optimization process. Physical prototypes are manu-
factured using a laser cutter and plywood, with metal bolts for joints,
and servo motors for drive (§6).

4 Quantifying Walking

Starting from the input configuration created by the user with our
simple interface, which is unlikely to walk, we must automatically
optimize the design to walk. Walking is complex, requiring muscles
(or motors and sensors) to act in unison for stable and efficient gaits.
We assume arbitrary kinematic configurations, formed from high-
dimensional parameterizations. Rather than attempting the very
difficult task of explicitly applying locomotion control knowledge
from robotics, instead we describe an intuitive set of sub-objectives,
which allows for stable, efficient, and sometimes interesting gaits to

Pin-Joint

Crank

Linkage

Traced-Curve

Figure 3: The locations of the pin joints (yellow circles), which de-
fine the kinematics of the mechanical toys, are parameters optimized
by our method. Changing the location of a pin joint (yellow arrow)
leads to a change in the structure of the mechanical leg, as well as
to a change in the motion of its end effector (red curves).

arise. We define the walking objective as the weighted sum:

Stotal = ωdSdist + ωtSupright+

ωsSsmooth + ωeSeffort + ωrSregularizer (1)

During optimization, for each explored set of parameters, i.e., each
automaton configuration, we compute the mass and moment of
inertia of each rigid body part, and then physically simulate the
automaton. The simulation proceeds until a failure mode is en-
countered, or until a fixed amount of simulation time T = 30s has
elapsed. Simulation position and orientation states and derivatives,
s = (q, q̇), are recorded for each timestep t. The recorded simula-
tion states are used to evaluate each individual sub-objective (below).
Some parameter settings will result in infeasible mechanisms, so we
monitor constraint values and terminate the simulation early if they
exceed a threshold value.

Distance: We wish the mechanism to walk forwards, not on the
spot, and so we measure the vector d between the center of mass
at the beginning and at the end of the simulation, and define Sdist

simply as −vTd, where v is a unit vector that points along the
desired walking direction. The negative sign is used to promote
walking longer distances, since we minimize the total score Stotal.

Upright: In early experiments, the automaton would often perform
a somersault, as this quickly increases the distance traveled. This
is not successful walking, nor is it an incremental solution towards
better walking. Worse, we found that the optimization could not
recover from such local minima. To avoid these solutions altogether,
we add a term which encourages the automaton to remain upright
for as long as possible. We define Supright = (T − t)2, where t is
the time when the simulation is stopped. The simulation is stopped
early (i.e., t < T) if parts of the automaton other than the feet or
bottom of the body touch the ground.

Smoothness: We penalize the acceleration of the center of mass
at every timestep. The acceleration a is estimated using finite dif-
ferences on the generalized velocity vectors q̇ at consecutive time
steps. The penalty term is defined as Ssmooth = ata. Increasing

the weight of this term leads to more conservative motions which we
posit increases the likelihood of successful walking once fabricated.

Effort: While infeasible mechanisms (i.e., singular configurations)
are pruned early on, this does not mean that all mechanisms are
equally desirable. For instance, small moment arms require larger
motor torques and result in large internal forces acting on the me-
chanical structures, increasing the likelihood of mechanical failure.
Thomaszewski et al. [2014] analyzed the singular values of the
constraint Jacobian ∂C/∂q (see Supplemental appendix A) as a
continuous measure of the distance away from singular configu-
rations. Since we physically simulate, we have direct access to
the magnitudes of the forces needed to satisfy the joint and motor
constraints (i.e., λ in Supplemental appendix A, eq.1).

Therefore, we define Seffort = λTλ and add it to Stotal to mini-
mize the net internal forces acting throughout the mechanisms.

Regularizer: Since the input to our system consists of a user-
created automaton, we would like to change the design as little
as possible. Therefore, we introduce a simple regularizer for the
kinematic parameters pk: Sregularizer = (pk − p0

k)T (pk − p0
k),

where p0
k represents the initial parameter values.

5 Optimization

The optimization problem introduced in the previous section is high-
dimensional, non-linear, and non-smooth due to the unilateral and in-
termittent nature of the contact forces. Consequently, gradient-based
methods are ill-suited, and we resort to a derivative-free stochastic
evolutionary optimization technique based on the Covariance Ma-
trix Adaptation algorithm [Hansen 2006]. Some works attempt to
improve CMA by adding derivative-based local constraint satisfiers
[Wampler and Popović 2009]; however, for our problem this would
make little improvement as the spaces are not smooth.

CMA generates parameter samples according to an internal Gaussian
distribution. After evaluating the objective value for each sampled
point, the Gaussian distribution is updated, and the process repeats
until convergence. However, as noted by Coros et. al. [2013], the
parameter spaces of mechanical linkages are highly non-linear and
random sampling, even around valid configurations, can quickly
lead to degenerate mechanism that grind to a halt in mid-step or
cannot move at all. Our experiments confirmed these observations,
indicating that only ≈30–40% of the randomly generated samples
correspond to valid configurations. To not waste computation time,
it would be desirable to rule out such degenerate configurations even
before running any simulations. One solution might be to first check
all linkages of the automaton in isolation and reject samples for
which at least one degenerate linkage was detected. However, while
seemingly simple and efficient, this strategy would not allow CMA
to adapt its internal distribution and ultimately prevent the algorithm
from exploring more relevant regions of the parameter space (see
also Xu et al. [2012]).

To alleviate this problem, we note that linkages can be analyzed
for validity before optimization to learn valid configurations for
walking. For example, an errant pin joint configuration which locks
linkages is unlikely to lead to a successful walk. We would like to
construct a reparameterization of the space of linkages such that
(almost) all samples generated by CMA correspond to valid linkage
configurations. Therefore, we compartmentalize the valid linkage
kinematic parameter problem, and attempt to learn a function of
valid kinematics parameters from which to draw more useful samples
during CMA. To this end, we turn to Gaussian Mixture Models.

5.1 Linkage Configuration Function Learning

Learning Parametric Function We observe that there are many
pockets of space in which valid samples exist. As such, we use a
multivariate Gaussian mixture model (GMM) [Bishop et al. 2006]
to create a parametric function over valid spaces:

f(x) =

M∑
m=1

πmN (x | µm,Σm) (2)

Here, 0 ≤ πm ≤ 1 and
∑M

m=1 πm = 1 are the mixing coefficients,
µm is an n-dimensional mean vector, and Σm is an n×n covariance
matrix of the mth multivariate Gaussian in the mixture.

We want to model the space of valid configurations with multiple
Gaussians in a mixture. Given a number of mixtures (which we
discuss discovering later on), we introduce a random latent variable
C which assigns a linkage configuration to a Gaussian in the mixture.
This is indicated by an m-dimensional binary variable where only
one element is ever one, with all others zero (1-of-M representation).
C is modeled as a distribution p(C) =

∏M
m=1 π

cm
m s.t. the marginal

distribution over C is given by the mixing coefficients, p(cm =
1) = πm . Random variable K is a continuous and observed, and
is given by a multivariate GMM,N (x | µm,Σm), and models the
kinematic parameters of the linkage configuration.

Data Preprocessing For a linkage, each pin joint location, i.e.,
the kinematic parameter pk between two bars, can vary over the
lengths of the connecting bars. We vary these points of location
within − l

4
≤ pk ≤ l

4
, where l is a vector of lengths of the cor-

responding bars in the linkage. Using these box limits, we draw
samples D from the space of possible linkage configurations using
Latin-Hypercube Sampling [McKay et al. 1979]. This sampling
strategy uniformly subdivides the sample space and ensures that a
sample is drawn from each division, thus sampling the whole space.
Then, for each sample, we simulate the motion of the corresponding
linkage by minimizing the constraint energy (see supplemental Ap-
pendix A) for pin-joints and motor-constraints. We sum the energies
for each step of a full motion cycle and label a sample as valid, if
the summed energy is below a given threshold value (we use 10−2).

Parameter Learning Given sampled data D, we would like to
calculate Gaussian parameters Θm = {µm,Σm} and πm which
best model it: we wish to maximize the likelihood of D given
Θm,πm. Mathematically (in log space) this is defined as:

N∑
i=1

ln

(M∑
m=1

πmN (di | µk,Σk)

)
(3)

Initially, the dimensionality of the 1-of-M representation of C is
unknown, so we use Expectation Maximization [Bishop et al. 2006]
to find the maximum likelihood estimation of the random variable
parameters.

Number of Mixtures & Over-Fitting The number of components
in the mixture plays an important role in determining the effective-
ness of the learned model. Depending on the dimensionality of the
problem, using too few mixture components can lead to inaccurate
model-parameters, while too many mixture components can lead
to over-fitting. Hence, we use the Bayesian Information Criteria
[Schwarz et al. 1978] to determine the number of categories, i.e.,
the dimensionality of C, and thereby the number of Gaussians in the
mixture. Similar to [Chaudhuri et al. 2011], we penalize Equation 3
by 1

2
Mlog(|D|), the BIC criteria, by sequentially varying the num-

ber of mixtures, and use the one that maximized the cost. For a given

-1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

First Principal Component

Se
co

nd
 P

rin
ci

pa
l C

om
po

ne
nt

Figure 4: We show a sampling of the learned linkage space, with
examples from three different Gaussians in the mixture (color coded).
As this is a high-dimensional space, we perform PCA on the learned
space and show only the first two principal components.

linkage, we found that 6 − 12 mixtures gave us good results. For
example for the linkage configuration given in Figure 4, we found
that six components maximized the EM energy in Equation 3.

Another method that we employ to avoid over-fitting the data is
Leave-p-out cross validation [Hastie et al. 2009], we perform this
over multiple ps. This validation indicates how well the test sam-
ples fit the GMM model’s probability-density function. It is noted
that full covariance matrices Σm can lead to data over-fitting, we
experimented with only diagonal covariance matrices, when number
of Gaussians was twice as large as the number of mixtures in the
GMM. However, for our problem using 6− 12 mixtures with full
covariance matrices gave us the better results while still satisfying
the above mentioned over-fitting checks. Finally, for a given linkage,
we found that using |D| = 25, 000 samples sufficed.

Sampling by Inference We have learned a GMM over the space
of kinematic parameters for a linkage, and now need a structured
way to sample from the GMM for use in CMA. One advantage
of this probabilistic approach is that the learned random variable
parameters encode the joint probability distribution P (X), where
X = {C,K} and factorizes as P (X) = P (K|C)P (C). Hence, this
can be used to answer queries such as:

p(x | cm = 1) = Nm(x | Θm) (4)

More intuitively, this means that it is highly likely that a given
linkage parameter x belongs to the valid space and is modeled
by the mth Gaussian (a conditional distribution). Using similar
inference queries for all valid m mixtures, we precompute M multi-
variate distributions modeled by the GMM. This gives us the desired
linkage-configuration parametric function (equation 2). Next, in an
automaton, the kinematic parameters of a linkage pk are replaced by
the following vector:

p∗
k = [m,x] (5)

Here, m gives the mixture index and x (a bijective mapping to pk)
are the multivariate Gaussian function parameters. When the mth

index is selected, we set cm = 1, which selects the corresponding
precomputed Gaussian (Eq. 4). Since all the covariance matrices are
symmetric positive definite, first we perform eigenvalue decompo-
sition and extract the eigenvectors (Em) and eigenvalues (Am) of

No. of Iterations (x Populations-size)

Lo
g

Sc
or

e

Average CMA

Average CMA + GMM
Trial CMA + GMM

Trial CMA

Figure 5: Trial runs with CMA vs. CMA-GMM.

Σm. Then second, a sample is draw as:

pk = µm + (x
√
Am)Em (6)

Since the mixture weights πm give the probability that a sample from
the valid configuration space belongs to Gaussian, it makes sense
that Gaussians with higher probability are sampled more. Hence,
the mixture-index parameters m are weighted by πm and mapped.
Figure 4 shows samples with random x inputs, drawn from three
such Gaussians in the mixture.

Optimization Summary We precompute a database of linkage
configurations, over which we learn an M -dimensional GMM. For
each initial user design, we run CMA, but now in each iteration,
CMA’s internal multivariate Gaussian is sampled giving p∗

k. Then,
the linkage parameters pk are discovered using p∗

k and Equation 6.
This process is transparent to any other workings of CMA, so is a
drop-in replacement. With this procedure, the walking optimization
can quickly move between different Gaussians and can explore valid
configuration spaces quickly and effectively. This strategy of opti-
mization can also be interpreted as a discrete (mixture-component
selection)-to-continuous (Gaussian) sampling.

6 Experiments

We validate our CMA-GMM improvements over many trials, and
design five walking automata, for two of which we also create
physical prototypes. As suggested by Auger and Hansen [2012],
we generate 4 + b3 × log(N)c samples for every CMA iteration,
where N is the number of parameters that are optimized in parallel.
Statistics for all examples are listed in Table 1.

CMA vs. CMA-GMM To validate the proposed alternative data-
driven sampling strategy for our linkages, we ran eight trails for
each optimization strategy for the Dog automaton. Figure 5 shows a
comparison of the convergence rates for CMA and CMA with GMM
linkage sampling. We seen that, on average, CMA-GMM converges
both faster and produces solutions with better scores—a trend that
was confirmed in all examples that we considered.

Dog Our first example is a quadrupedal automata with dog-like
appearance. Its four legs consist of 6 bars each, with the two front
and hind legs having the same mechanical structure. While each leg
can have a different phase, we enforce a symmetry relation between
left and right legs to reduce the complexity of the design. Accord-
ingly, the set of parameters exposed to the optimization consist of

Robot # Compo- Timing # Params CMA-GMM Time
Name nents Mecha- Iterations (hrs)

nisms

Dog 34 4 20 (Purple) 450 3
40 (Blue) 500 4

Grandpa 20 2 13 (Purple) 350 2
Bot 16 (Blue) 350 2

Lobster
18 2 17 (Purple) 450 2

31 (Blue) 450 2.5
31 (Green) 600 3

Gorilla 38 3 12 300 2
Giraffe 38 4 36 550 4.5

Table 1: Statistics for all examples.

14 structural and 4 velocity profile parameters for the two front
and hind legs, as well as 4 phase offset, making for a total of 40
parameters. The initial design created by the user, and the starting
configuration for the optimization, can be seen in Fig. 6a, left. While
this starting configuration falls over immediately at the beginning of
the simulation, our optimization automatically discovers a gait with
a lowered center of mass (Fig. 6a, right), which increases stability
and thus leads to a successful walking motion.

It is worth noting that the optimization of the structural parameters
is essential for obtaining a successful gait: as can be seen in the
accompanying video, optimizing only for the timing parameters, i.e.,
the 4 phase offsets and the 8 velocity profile parameters, leads to a
very inefficient gait with the dog essentially moving in place.

Lobster Our second example, a lobster automata, consists of two
legs with identical structure, each comprising 6 bars and 10 pa-
rameters. Again, the initial design, shown in Fig. 6b (a), is not
able to walk. Optimizing for the full set of 20 structural and 10
timing parameters leads to a walking motion, but the gait is very
dynamic with the center of mass shifting back and forth (see ac-
companying video). While this is not a problem in simulation, the
various imprecisions introduced through simplifying assumptions
and manufacturing make such dynamic motions more susceptible to
instabilities. To obtain a less dynamic gait, we increased the weights
of the smoothness and effort objective and introduced the height of
the body as an additional parameter for the optimization. As a result,
the optimization discovered a new, less dynamic gait that uses the
body as a third leg.

As an additional observation, we found that, when enforcing a sym-
metry relation between the two legs, the resulting motion was in-
efficient, i.e., led to a slow propulsion of the center of mass. By
allowing for an asymmetric structure, we invite configurations in
which the hind leg pushes while the front leg pulls, leading to a more
efficient gait.

Grandpa-Bot, Gorilla, and Giraffe We designed three additional
automata in simulation to further explore the behavior of our method.
Our Grandpa-Bot is based on an example used by Coros et al. [2013].
Although conceived with the intent to walk, having no notion of the
physics or geometry of locomotion, their kinematic design tool did
not produce a walking motion for this character. While our initial
design (Fig. 7a, top) was also not able to walk, the optimization
discovered a parameter set that leads to a succesful and aesthetically
pleasing gait (see Fig. 7a, bottom, and video).

The fourth example is our Gorilla-inspired autoamata (Fig 7b), we
explore a three-legged design for which our optimization discovers a
gait that alternates between swing-through and support for the outer
legs and the middle leg, respectively.

(a) (b)

(a) Dog Model: (a) initial configuration that is unable to walk; (b) optimized automata

(a)

(b)

(c)

(b) Crab Model: a) the initial configuration is unable to walk; b) a dynamic walking motion is found if only the leg parameters are optimized; c) allowing the body to also change its
shape, an alternate locomotion mode is discovered.

Figure 6: The two automata for which we fabricate results.

Finally, we show our Giraffe-inspired automata. We explore how
the optimization adapts to asymmetric design with a shifted center
of mass. As can be seen in the video, with a long neck, the initial
design for the automata falls over and hits the head (Fig. 7c, top).
Our system is able to adapt the front linkages and make the automata
walk with a smooth symmetric motion while balancing the heavy
neck (Fig. 7c, bottom).

Physical Prototypes To validate the feasibility of our designs,
we created physical prototypes for the Lobster and the Dog charac-
ter, representative photographs of which are shown in Fig. 1. All
body parts were laser-cut from a plywood material with 5mm thick-
ness. We used metal bolts and quicklock rings for the pin joints
as well as Dynamixel MX-64 servo motors and a Robotis CM-700
controller board for actuation. The resulting walking motion for
these two prototypes can be observed in the accompanying video.
Although our simulation—and especially the treatment of frictional
contacts—is inevitably approximate, we observed agreement be-
tween the walking motion of the prototypes and their simulated
counterparts. Finally, it should be noted that we show simulation
results for geometrically more elaborate models to better portray
the artistic intent of the characters. However, simplified geometries
that are consistent with the fabricated prototypes were eventually
used for optimization. While 3D printing the robots is technically
possible (ignoring the motors), pin joints may break due to internal
strains. Laser-cutting linkages and using metal pins proved to be
sufficiently robust.

Robustness To investigate the robustness and convergence prop-
erties of our method, we reran the optimization for the dog charac-
ter with three slightly perturbed initial guesses (by 5% in relative
magnitude). As can be seen in the accompanying video, each run
converges to a different solution, although each one results in a
successful walking motion. We conjecture that this behavior is owed
to the complexity of the problem and the randomized nature of our
evolutionary optimization scheme.

7 Limitations And Future Work

Our work succesfully demonstrates that computational design can
create walking automata from initial non-walking designs. A
physics-based simulation framework is used in conjunction with
an intuitive set of objectives to measure the quality of the walking
motions as the mechanical structure of the automata is automatically
adapted. The framework takes advantage of learned valid linkage
spaces to explore the parameters more efficiently. However, there
are limitations to our approach and these are only the first steps.

Due to the non-linear nature of the problem, we adopted a stochastic
sampling strategy to search for a global minima. However, experi-
ments suggest that the optimization landscape exhibits a multitude
of local minima. Therefore, we would like to experiment with con-
tinuation methods that incrementally increase the difficulty of the
problem to increase the chance of finding global optima. One way
to do this, for instance, is to employ external hand-of-god forces that
initially support the weight of the mechanism but are progressively

(a) Grandpa-Bot: A human-like automata that exploits a walker for additional support.

(b) Gorilla: A three-legged design with each leg alternating between support and swing-through phase.

(c) Giraffe: Heavy neck makes the optimization adapt the automata-linkages accordingly.

Figure 7: Various automata produced by our system. In red are inital configurations, while blue are optimized walking automata.

made weaker until they eventually vanish altogether. This strategy
is akin to a child learning to ride a bicycle, and could allow the opti-
mization process to more thoroughly explore the parameter space,
as fewer trials would lead to failures.

The complexity of the optimization leads to longer convergence
rates, and so the user cannot directly interact with the system during
the gait design and optimization process. Hence, we would also like
to investigate methods that allow users to control the gaits at a finer
level of granularity. This could be investigated with additional style
objective terms, or by pre-computing a library of walking templates
to use as a starting point for the optimization.

To decrease the discrepancy between simulated and fabricated mo-
tion, we could accurately estimate the force output of the motors, as
well as the static and dynamic friction coefficients of the fabricated
material and floor — currently these are generic. To improve motion
quality in general, we could add on-board sensors and additional
actuators to monitor and control the gait cycle dynamically as the
robot moves across different surfaces.

Finally, our simulation has no knowledge of intra- or inter-linkage
collisions, and so when fabricating the robots these conflicts are
resolved manually by stacking linkage bars along the crank rotation
axis. For example, the legs of our fabricated lobster are broader than
those in the simulation. For novice users, these collision conflicts
must be automatically resolved, and is an area of future work.

Acknowledgments

A warm thank you to Mélina Skouras and Rocco Ghielmini for fab-
ricating the robots, without which this paper would not be possible.

References

AUGER, A., AND HANSEN, N. 2012. Tutorial CMA-ES: Evolution
strategies and covariance matrix adaptation. In Proceedings of
ACM GECCO, 827–848.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H. 2012.
Fabricating articulated characters from skinned meshes. ACM
Trans. Graph. (Proc. SIGGRAPH) 31, 4.

BACHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia for
spinnable objects. ACM Trans. Graph. 33, 4.

BISHOP, C. M., ET AL. 2006. Pattern Recognition and Machine
Learning, vol. 4. Springer.

CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3d-printing of non-
assembly, articulated models. ACM Trans. Graph. 31, 6, 130:1–
130:8.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND PAULY,
M. 2013. Designing and fabricating mechanical automata from
mocap sequences. In ACM Trans. Graph. (Proc. SIGGRAPH
Asia).

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND KOLTUN,
V. 2011. Probabilistic reasoning for assembly-based 3d modeling.
ACM Trans. Graph. 30, 4, 35:1–35:10.

COROS, S., KARPATHY, A., JONES, B., REVERET, L., AND
VAN DE PANNE, M. 2011. Locomotion skills for simulated
quadrupeds. In ACM Trans. Graph. (Proc. SIGGRAPH), 59:1–
59:12.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4, 83:1–83:12.

GEHRING, C., COROS, S., HUTTER, M., BLOESCH, M.,
HOEPFLINGER, M., AND SIEGWART, R. 2013. Control of
dynamic gaits for a quadrupedal robot. IEEE ICRA.

GEHRING, C., COROS, S., HUTTER, M., BLOESCH, M.,
HOEPFLINGER, M., AND SIEGWART, R. 2014. Towards au-
tomatic discovery of agile gaits for quadrupedal robots. IEEE
ICRA.

GEIJTENBEEK, T., VAN DE PANNE, M., AND VAN DER STAP-
PEN, A. F. 2013. Flexible muscle-based locomotion for bipedal
creatures. ACM Trans. Graph. 32, 6.

HANSEN, N. 2006. The cma evolution strategy: a comparing review.
In Towards a new evolutionary computation. Springer, 75–102.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., HASTIE, T., FRIED-
MAN, J., AND TIBSHIRANI, R. 2009. The elements of statistical
learning, vol. 2. Springer.

LEE, Y., KIM, S., AND LEE, J. 2010. Data-driven biped control.
ACM Trans. Graph. 29, 4, 129:1–129:8.

LEE, S., YOSINSKI, J., GLETTE, K., LIPSON, H., AND CLUNE,
J. 2013. Evolving gaits for physical robots with the hyperneat
generative encoding: The benefits of simulation. Springer.

MCKAY, M. D., BECKMAN, R. J., AND CONOVER, W. J. 1979.
Comparison of three methods for selecting values of input vari-
ables in the analysis of output from a computer code. Technomet-
rics 21, 2, 239–245.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: Balancing shapes for
3d fabrication. ACM Trans. Graph. 32, 4, 81:1–81:10.

SCHWARZ, G., ET AL. 1978. Estimating the dimension of a model.
The annals of statistics 6, 2, 461–464.

SIMS, K. 1994. Evolving virtual creatures. In ACM SIGGRAPH,
15–22.

TAN, J., GU, Y., TURK, G., AND LIU, C. K. 2011. Articulated
swimming creatures. In ACM SIGGRAPH 2011 papers, ACM,
SIGGRAPH ’11, 58:1–58:12.

TAN, J., GU, Y., LIU, C. K., AND TURK, G. 2014. Learning
bicycle stunts. In ACM Trans. Graph. (Proc. SIGGRAPH), ACM.

THOMASZEWSKI, B., COROS, S., GAUGE, D., MEGARO, V.,
GRINSPUN, E., AND GROSS, M. 2014. Computational design of
linkage-based characters. ACM Trans. Graph. 33, 4, 64:1–64:9.

UMETANI, N., KOYAMA, Y., SCHDMIT, R., AND IGARASHI,
T. 2014. Pteromys: Interactive design and optimiza-
tion of free-formed free-flight model airplanes. ACM
Trans. Graph. (Proc. SIGGRAPH) 34, 4.

WAMPLER, K., AND POPOVIĆ, Z. 2009. Optimal gait and form for
animal locomotion. In ACM Trans. Graph. (Proc. SIGGRAPH),
60:1–60:8.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3d shape galleries. ACM
Trans. Graph. 31, 4, 57:1–57:10.

ZHU, L., XU, W., SNYDER, J., LIU, Y., WANG, G., AND GUO,
B. 2012. Motion-guided mechanical toy modeling. ACM Trans.
Graph. 31, 6, 127:1–127:10.

