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Abstract

Algorithms at the intersection of computer graphics and medicine have recently gained renewed attention. A particular interest
are methods for virtual surgery planning (VSP), where treatment parameters must be carefully chosen to achieve a desired
treatment outcome. FEM simulators can verify the treatment parameters by comparing a predicted outcome to the desired one.
However, estimating the optimal parameters amounts to solving a challenging inverse problem. In current clinical practice it
is solved manually by surgeons, who rely on their experience and intuition to iteratively refine the parameters, verifying them
with simulated predictions.
We prototype a differentiable FEM simulator and explore how it can enhance and simplify treatment planning, which is ulti-
mately necessary to integrate simulation-based VSP tools into a clinical workflow. Specifically, we define a parametric treatment
model based on surgeon input, and with analytically derived simulation gradients we optimise it against an objective defined
on the visible facial 3D surface. By using sensitivity analysis, we can easily explore the solution-space with first-order approx-
imations, which allow the surgeon to interactively visualise the effect of parameter variations on a given treatment plan. The
objective function allows landmarks to be freely chosen, accommodating the multiple methodologies in clinical planning. We
show that even with a very sparse set of guiding landmarks, our simulator robustly converges to a feasible post-treatment shape.

1. Introduction

A long-standing goal at the intersection of computer graphics, me-
chanical engineering and medicine is to create accurate, robust and
easy-to-use surgical simulators [Gro98]. Their physics-based out-
come predictions allow surgeons to test different treatment plans in
silico, and assure the patient of their post-treatment appearance,
thus facilitating informed decision-making. In orthognathic and
maxillofacial surgery, even minor changes in facial symmetry and
proportion can have a large impact on perceived beauty and qual-
ity of life [Far94]. To guarantee the optimal outcome, the treatment
plan must be especially precise [BH13]. This creates a need for ad-
vanced planning tools, which must nonetheless easily integrate into
the clinical process [CMF∗21].

Planning orthognathic surgery is labour intensive, and necessi-
tates the collaboration of an interdisciplinary medical and tech-
nical team [CMF∗21, LYW∗21]. This team determines the goals
of the treatment, i.e. the desired post-treatment state which max-
imises the patient’s dental and facial aesthetics and function. Vir-
tual surgery planning (VSP) provides a systematic and mathemati-
cally principled way of evaluating treatment plans, leading to bet-
ter predictions of post-treatment outcome when compared to tradi-
tional methods [CMF∗21]. Unfortunately, VSP workflows are al-

ready time-intensive in the measurement and planning stages. This
has become the new barrier to adoption; for "simple" cases, tradi-
tional methods are still preferred [CMF∗21].

Meanwhile, research on medical applications of FEM contin-
ues to enhance forward simulation, focusing on more accurate
modelling of materials and physical effects [YDX∗14, KKR∗19,
VWWSGB21]. A predetermined treatment plan serves as the input
to these methods. However, when we take a broader look at the VSP
workflow, we see that the initial step of VSP is determining a treat-
ment target. It is then the treatment target which implicitly defines
the treatment plan. In practice, several iterations of the treatment
plan are created, each aiming to more accurately reach the target.

From this perspective, treatment planning becomes an inverse
problem, where the treatment parameters which act as input to the
simulator need to be optimised to yield an outcome as close as pos-
sible to the desired target. Developing an automatic method to op-
timise the treatment plan from a given target promises to simplify
the way the tool is used in practice. Differentiable simulation offers
a methodology for solving such problems, with many recent exam-
ples in graphics and robotics [IKKP17, KK19, SWR∗21, HHD∗21,
ZKBT17, ZCT22].
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We explore how to apply these techniques in the medical do-
main, and analyse the benefits they can yield. Specifically, we start
with a parameterised model of double jaw surgery, and and define
an objective function based on commonly measured clinical land-
marks. We optimise the parameters of our treatment model, and
show that the common landmarks are sufficient for driving an opti-
misation process. Further, we use sensitivity analysis to give first-
order estimates of surgical outcome around a given equilibrium
point. With this technique, the surgeon can rapidly explore the sim-
ulation space, which can benefit collaborative treatment planning
and patient communication.

Our work’s main contribution lies in formulating and solving
an inverse treatment planning problem via differentiable simula-
tion. This formulation is agnostic to the forward simulation model
we have used—an improvement in simulation accuracy will yield
corresponding improvements to the inverse problem solution. This
has allowed us to test our method on a simple set of plausible sur-
gical meshes from two models, which were crafted under the su-
pervision of medical experts. Nonetheless, it means that validation
against data from a diverse patient population is necessary before
this method can be used clinically. Such diverse testing data would
allow the forward simulation model to be tuned—taking into ac-
count material parameters and physical effects—and it would allow
the treatment model to be validated against the full range of clinical
conditions.

We are hopeful that differentiable simulation can be one of the
keys to creating easy-to-use, widely available surgical simulation
tools for future doctors.

2. Background and Related Work

Orthognathic surgery.

Orthognathic surgeries are standard treatments used to correct se-
vere cases of jaw malocclusion - commonly categorised by An-
gle’s classes - or facial asymmetry [RE14,Rey10,HNGK19]. These
conditions, if left untreated, negatively affect oral and emotional
health [Lar17, TLTdL22]. An example illustrating the occlusion
classes is shown in Figure 1.

The treatment which we model, the double jaw osteotomy, can
be used to address both Class II, Class III and asymmetric cases
due to its powerful long-term effect on the facial profile, and low
complication risk [BH13]. During this procedure, a section of the
mandible (lower jaw-bone) and maxilla (upper jaw-bone) are cut,
moved into a new position, and fixed in place with metal braces
[Rey10].

Virtual surgery planning (VSP).

Orthognathic surgery is planned by an interdisciplinary team of
surgeons, orthodontists and technicians. In its first stage, land-
marks are identified on the soft-tissue and bony surface [RMV∗20,
LYW∗21, Rey10]. The inter-landmark distances are compared to
optimal reference values, which allows the treatment goal to be de-
fined [PP70,Ste60,And15]. The treatment goal can be defined with
respect to different sets of landmarks, which inadvertently priori-
tise different surgical outcomes [RMV∗20]. To support the range

Figure 1: Visualisation of occlusion classes and the landmarks
which are used during treatment planning. The labelled landmarks
are the nasion (N), pronasale (Prn), upper lip (Ls), lower lip (Li),
Pogonion (Pg) and Tragion (T) [PP70]. The bipupilary and mid-
sagittal lines are also labelled.

of clinical methods, we do not rely on specific landmarks, but allow
them to be freely chosen. For our experiments, we use a landmark-
ing procedure based on [PP70] and [HNGK19] for malocclusion
and asymmetry correction. The landmarks used are visualised in
Figure 1, and are further discussed in Section 3.2.

Many software products have been built to facilitate VSP
[LL15]. There are ongoing efforts to create a unified environment
for performing all the necessary tasks of VSP, including medical
image registration, 3D surface extraction, cephalometric analysis,
virtual osteotomy, interactive bone movement, and post-operative
soft-tissue prediction [LYW∗21, YML∗17]. Despite the value pro-
vided by outcome predictions, clinical software seldom supports
the generation of simuation-based predictions. This can partly be
attributed to the difficulty inherent to setting up and running the
simulation [LL15]. Differentiable simulation offers a larger feature
set, and the promise to simplify existing simulator functions, which
incentivises its inclusion into future medical software.

Facial tissue modelling and outcome prediction.

Modelling and simulation of facial tissues in orthognathic surgery
has been accomplished using data or biomechanics based methods.
Early data-driven work relies on statistical analysis of the relation-
ship between the displacement of soft and hard tissue landmarks
in pre- and post- surgical states [AKFT15]. Modern approaches
use machine learning to predict healthy bone shape [XDK∗21] or
soft-tissue [LKF∗22]. Inference is usually fast and easy to per-
form. However, it comes at the cost of prohibitively large training
datasets, the loss of an interactive environment for exploring the
solution space, and no hard constraints on the physical viability of
the predictions.

Physics-based mass-spring [KGC∗96] and hyperelasitc [CLP03]
models of soft tissue were amongst the first simulation approaches
to be developed and tested. Hyperelastic modelling continues to
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Figure 2: An overview of our data, and pipeline. a) The anatomic model: tetrahedral mesh X and surface scan. b) Landmarks used dur-
ing treatment planning (grey), and their goal positions (yellow) [PP70, Rey10] set the target vector xT. c) Treatment parameters p define
blendshape-based deformation of surgically affected regions, shown in colour. The remaining bone surface is fixed in place. d) The forward
simulator (blue arrows) predicts post treatment outcome x(p). The differentiable solver (green arrows) optimises p to minimise T (x(p), x̂T),
the difference between prediction and goal.

be used for recent works [APG∗21, KKR∗19, VWWSGB21]. Re-
cent works often investigate previously unmodelled physical phe-
nomena, such as time-dependent bone healing [VWWSGB21], lip
and mucosa sliding [KKR∗19], bone-cutting forces [YDX∗14],
or constrained motion models of the TMJ [OVT∗08]. Several of
these lines of enquiry parallel problems from computer graphics
[ZBBB18]. Most commonly, material parameters are set from val-
ues reported in medical literature [XY15], and treatment parame-
ters (i.e. bone movement) are assumed to be the input.

Differentiable simulation.

Differentiable physics solvers allow for complex inverse problems
to be solved using gradient-based methods, and have found many
applications in computer graphics and engineering. They have been
used for shape optimisation [ZKBT17], or for estimating material
parameters of soft robots [HBBC19] or cloth [LLK19]. There is
increasing support for differentiable models of phenomena such as
contact [GHZ∗20], cutting [HMN∗21], and plasticity [HHD∗21].

In facial applications, Sifakis et al. develop an anatomic mus-
cle model whose activations are optimised through a differentiable
finite element simulation to match motion capture data [SNF05].
Ichim et al. generalise the muscle models and control a physics-
based facial performance with blendshapes [IKKP17]. Kadleček
and Kavan optimise facial material properties [KK19]. Impressive
results for facial animation have been achieved by combining dif-
ferentiable quasi-static solvers with neural networks [SWR∗21].
Despite some speculation about the utility of differentiable simu-
lation for medical applications [IKKP17, KK19], there have been
no follow up works that elaborate on how to apply these techniques
to the clinical process.

3. Methods

We create a bespoke differentiable simulator based on the finite
element method, and show two applications that simplify surgical
planning. In Section 3.1, we outline the forward simulation, includ-
ing data processing and the parametric treatment model. In Section
3.2, we describe how treatment targets are set. We then calculate
simulation gradients and use them for parameter optimisation and
rapid first-order outcome prediction.

3.1. Simulation

Data processing. Our anatomical model is made from a cone-
beam CT (CBCT) and a 3D facial surface scan [BBB∗10,
BHB∗11]. We create a tetrahedral simulation mesh of the facial
soft tissue, which we treat as the volume bounded by the skin sur-
face on the outside and the bone surface on the inside. The rest-state
vertex positions are referred to as X ∈ RN×3, where N ≃ 4× 104

is the number of vertices. Vertex positions of the deformed mesh
are referred to as x. The facial scan is used to generate high-quality
visualisations of the low-resolution deformed simulation mesh, us-
ing an embedding technique similar to Mezger et al. [MTPS09].
Since established processes are used for extracting surface data
from CBCTs, registering them to the face scan, creating a tetrahe-
dral simulation mesh and rendering our results, we leave the details
of these steps to the Appendix.

Vertex types. Our simulation mesh models the facial soft tissue,
and we distinguish several types of vertices on its boundary. Ver-
tices corresponding to the points on the bone whose position is un-
affected by treatment (e.g. on the skull) are fixed in-place using a
Dirichlet boundary condition. Using the bone surface in this man-
ner lets us keep the skull hollow, drastically reducing the number of
vertices in the simulation. Vertices which lie on the osteotomised
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bone surface, and move during surgery, are referred to as active
vertices XA. Vertices on which the treatment goal is defined are
referred to as target vertices XT. In our examples, these vertices
are the landmarks on which treatments are defined, and we place
them on the surface of the skin. These collections of vertices are
visualised in the pipeline Figure 2b and 2c, and their role in the
simulation is described in the sections below.

Treatment Model.

We model a simultaneous bilateral sagittal split osteotomy (BSSO)
and a two-segmental LeFort I osteotomy [Rey10]. The bony re-
gions affected by these procedures were identified with the help
of a surgeon (see Figure 2c), who also guided us in sculpting sev-
eral surgically plausible modifications to the jaw shape. By taking
the difference between the starting position and the plausibly mod-
ified meshes, we obtain a blendshape for the boney surface of our
simulation mesh. We can compute the goal positions of the active
vertices as

x̂A(p) = XA +
Np

∑
i=1

piBi (1)

Where each Bi is a blendshape vector, and Np is the total number
of blendshapes. The overall parameter vector defining all transfor-
mations is denoted by p. Our process optimises for p, thus finding
combination of blendshape weights which result in a soft-tissue de-
formation that best satisfies the treatment goal. The only constraint
on the treatment model is that it must be differentiable with respect
to p. As such, blendshapes were chosen to represent the treatment
because they allow us to easily set-up and demonstrate the inverse
problem optimisation.

Forward simulation.

Our forward simulation uses a linear FEM, and takes as input X,
XA, and p. We use a quasistatic simulation scheme, where each
set of inputs maps to an equilibrium state x(p) defined implicitly
through an energy minimisation problem (note x’s dependence on
p in the equilibrium state). The total energy of the system is defined
as

Etot(x,X,p) = ENH(x,X)+EA(xA, x̂A(p)), (2)

where ENH is a Neo-Hookean elastic energy induced by the de-
formation of the soft-tissue elements, and EA is a virtual potential
energy which drives the active vertices to their goal position.

For the elastic energy, we use an hyper-elastic material [SB12],
whose parameters are identified from literature as 0.9 g/ml, 5 kPa,
and 0.47 for density, Young’s modulus and Poisson’s ratio respec-
tively [XY15], and are assumed to be homogeneous and isotropic.

The virtual potential energy is an L2 penalty between the target
and current positions of the active vertices, with k = 103 as a stiff-
ness weight which ensures that active vertices end up imperceptibly
close to their goals:

EA =
1
2

k∥xA − x̂A(p)∥2
2 . (3)

At an equilibrium point (for a specific choice of parameters)

x(p), the elastic and virtual forces balance, which corresponds to
the minimum energy state, and satisfies the equilibrium condition

∂Etot

∂x
=

∂ENH
∂x

+
∂EA
∂x

= 0 . (4)

We find the local minimum of Equation 2 by applying Newton’s
method. We first calculate a search direction by solving the linear
system ∂

2E
∂x2 δx = ∂Etot

∂x . If the stiffness matrix ∂
2E

∂x2 is not positive-
definite, we iteratively apply diagonal regularisation to make it so.
After solving for δx, we use a backtracking line search to find the
step size which decreases Etot.

3.2. Inverse Simulation

Selecting treatment targets.

Through consulting maxillofacial surgeons and their literature
[Rey10, PP70], we choose between three and seven commonly
used, plausible landmarks to guide the optimisation. The number
of landmarks varies depending on the complexity of the case. A
symmetric Class II malocclusion requires only three landmarks to
define a treatment goal, with additional landmarks being used for
an asymmetric Class III case. The most important landmarks used
are the pogonion (Pg), the lower lip (Li) and upper lip points (Ls).
The tragion (T) and Nasion (N), as well as the bipupilarly and mid-
saggital lines are also used to set optimal target locations, with re-
spect to healthy reference values [PP70,Rey10]. The constructions,
which were done in 3D, are visualised in Figure 3. Landmarks de-
fined like this becomes our vector of targets x̂T and corresponding
simulation vertices XT.

Optimisation.

The target vectors let us define our objective function T (x(p), x̂T)
and formulate a constrained optimisation problem

min
p

T (x(p), x̂T) =
1
2
∥xT(p)− x̂T∥2

2

s.t. f(x(p)) = 0,
(5)

where T is the L2 distance between target landmarks at the equi-
librium point and the desired target landmark location, and f is the
static equilibrium constraint from Equation 4 expressed in terms of
nodal forces.

We solve this problem using a Sparse Gauss-Newton solver
[ZCT22]. Using this technique, the problem is reduced to solving
the sparse system

∂
2T

∂x2 0 ∂f
∂x

T

0 0 ∂f
∂p

T

∂f
∂x

∂f
∂p 0


δx

δp
δλ

=

 0
− dT

dp
0

 (6)

for δp. An appropriate update step is determined through line
search, thus allowing us to efficiently converge to a solution.
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Figure 3: Two examples presenting Angle’s classes II (top) and III (bottom). The parameters of our surgical model can be effectively
optimised, such that the selected landmarks after simulation are as close to their targets as possible. a) Input mesh. b) Sparse landmarks and
targets for guiding the bone optimisation. c) Optimised face shape. d) Distance to the target landmarks is reduced on average from 6.3 to 1.6
mm.

We obtain analytic expressions for the gradients ∂f
∂p and

∂f
∂x through manual derivation and automatic differentiation
[MGH∗12]. We note that by the linearity of the derivative, the ex-
pressions for ∂f

∂p and ∂f
∂x become sums of the Hessians of the Neo-

Hookean and Potential energies. This allows us to split the com-
putation into easily implementable chunks, and flexibly add more
gradient information should additional energies be included into
the simulation model.

First-order perturbation.

Additionally, starting from an equilibrium state x(p0), we can ap-
proximate the solution at p1 = p0 +dp, where dp is a small step in
the parameter space. We do this by explicitly calculating the sensi-
tivity matrix, and linearly updating x(p0):

S =−
(

∂f
∂x

)−1
∂f
∂p

x̃(p1) = x(p)+S ·dp,
(7)

where we denote x̃(p1) as the first-order approximate solution. This
technique could be used in clinical practice, for example, to quickly
view many estimates x̃(p1), and only perform the computation-
ally intensive calculation of the true equilibrium x(p1) for the most
promising predictions.

4. Results and Discussion

We test our method on two types of simulation meshes, presenting
Angle’s classes II and III [Rey10]. Our class III mesh also contains
strong asymmetry. We design these meshes under the supervision
of maxillofacial surgeons. With their aid we also identify the facial
landmarks, and record their target positions using a process reflec-
tive of clinical practice.

Treatment parameter optimisation.

From these landmark targets, our optimiser identifies the best treat-
ment parameters under the chosen simulation model. These param-
eters, which define the post-treatment bone shape and thus the soft-
tissue surface, yield the minimum distance between landmarks and
targets. The results of this process are shown in Figure 3. Addition-
ally, Figure 4 displays an additional subject with differently pre-
senting Class II and III malocclusion, where by setting the same
treatment goal, we arrive at the same optimal bone position from
vastly different initial geometries. Our experiments converge on
average in just one or two optimisation steps. The average com-
putation time is around 20 minutes on a consumer laptop with a
2.6GHz Intel i7-9750H CPU.

It is worth discussing the final non-zero distance-to-landmark er-
ror, and how it pertains to the desired behaviour of a parameter-
recommendation system. We point out that it is trivial to relax
the physical constraints of the simulation such that zero-error is
reached, if one allows for wildly unrealistic deformations and treat-
ment plans. The challenge lies in finding an appropriately "stiff"
model which effectively converges to the set of all and only feasi-
ble treatments. In traditional forward orthognathic simulators, the

Figure 4: The optimal treatment target (in yellow) is reliably iden-
tified starting from vastly different types of malocclusion using just
seven landmarks. Malocclusions from left to right: severe class II,
moderate class III, severe class III with asymmetry.
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Figure 5: a) Estimated equilibrium state for perturbed dp, showing how increasing one element of p changes the estimate. We vary blend-
shapes responsible for the downwards and sideways translation of the mandible, and colour the surface displacement in each direction as
blue or red respectively. b) True equilibrium state for rightmost column of a), recomputed using forward simulation. Colour shows the esti-
mate’s error. c) Optimising p to find a true equilibrium state as close as possible to the predicted x̃. No error plot was generated, due to the
optimal parameters being imperceptibly similar to those from b).

surgeons manually constrain the simulated treatments into a "rea-
sonable" range through their domain knowledge.

Conversely, a treatment model with insufficient degrees of free-
dom yields larger "optimal" errors than what could be achieved in
practice. Analysis of larger sets of patient data may reveal defor-
mation not effectively captured in our current blendshape model.
Identifying which treatment models are most appropriate for in-
verse simulation is an unsolved problem.

Interactive first-order prediction.

The predictions of our first order model are visualised in Figure
5. We see that increasing the parameters responsible for opening
and protruding the mandible, we obtain reasonable estimates in a
fraction of the time it takes to find the equilibria via simulation.
Computing the sensitivity matrix takes 5 seconds for our meshes.
This matrix needs to be precomputed only a single time (for a given
equilibrium), after which the first-order predictions can be calcu-
lated in real time. In contrast, calculating the true equilibrium takes
an average of 32s for |dpi| = 0.05 - which produces a rather mod-
est deformation of 4mm in the simulation mesh, as measured at the
affected surface vertices.

By comparing x̃(p1) to x(p1), we test the accuracy of our pre-
diction. As seen in Figure 5b, an overall maximum error of 3mm is
seen for a total facial displacement of 20 mm from x0, measured at
the pogonion.

It is then possible to confidently explore predictions in this range,
and at the accuracy boundary, recompute the true equilibrium point,
or even run the optimisation to find the point in simulation space
which is closest to the estimate (as shown in Figure 5c). This syn-
ergy lends itself to a rapid, interactive workflow, that could be used
by clinicians and patients to easily visualise the dependence be-
tween treatment plan and outcome in a physically-based manner.

Future Work.

We have uncovered several unique challenges which arise when
solving the inverse problem inherent to treatment planning. They
allow us to highlight the knowledge gaps in this cross-domain ap-
plication.

First, the priority for the VSP application is for the inverse prob-
lem to have a clinically viable optimal solution. This would involve
further investigation into treatment models which robustly express
all and only feasible treatments. Current forward simulation models
rely on rigid body transforms, whose parameters are constrained by
surgeon intuition to the manifold of "reasonable treatments". Mean-
while, our blendshape model has surgical prior knowledge built in.
However, it may not necessarily represent all the surgically feasible
transformations of a patients jaw. Additionally, extending it to new
patients is non-trivial. The possibilities for treatment models are
numerous, and data-driven approaches could be effective at identi-
fying a valid treatment parametrisation across a wide population.

Other meaningful treatment variables which merit further inves-
tigation are related to tissue cutting, removal, and damage. Choos-
ing the surface of the bone cut and how much bone to remove
has important implications on the achievable post-treatment out-
comes and the risks associated with damaging fragile structures
like nerves and arteries. Though there is previous work in treatment
planning with risk mitigation [HMP∗12, CAR∗09], extending this
to a setting with inverse treatment-parameter optimisation is non-
trivial. It would also be interesting to further automate the treatment
planning process, for example by combining our approach with
methods which suggest post-treatment targets [XDK∗21] thereby
alleviating the need for manually specifying treatment landmarks.
Finally, although our work addresses the unique challenges that
arise in a typical setting of maxillofacial surgery, our algorithmic
framework straightforwardly generalizes to other osteotomies of
the body, and extensions to further domains such as orthopaedic
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or plastic surgery are feasible. The differentiable framework could
also be applied not just to treatment planning, but conceivably to
post-operative outcome validation and evaluation as well.

5. Conclusion

As simulation for surgical planning becomes more powerful, we
must also focus on making it easier to use. Differentiable simu-
lation can be effectively applied to inverse problems which arise
in a variety of medical tasks. Here, we demonstrate its utility for
orthognathic surgery planning, by showing how treatment parame-
ters can be optimised from clinical measurements, how the equilib-
rium state can be quickly explored through a first-order gradient-
informed approximation, and how the two systems can synergise
with each other.

These prototypes pave the way towards high fidelity inverse sim-
ulation. There are many promising avenues for follow-up work.
With a well constructed, diverse set of patient data, it will be
possible to validate the forward simulation, enhance the treatment
model, and aim towards clinical application. The benefits of fully-
fledged differentiable simulation systems applied to clinical prob-
lems cannot be overstated. Therefore, we implore the research com-
munity to explore the topic of optimisation-based surgical plan-
ning, and look forward to seeing the innovation they deliver.
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6. Appendix: Data Pipeline

Figure 6: We first collect a CBCT, 3D face scan [BBB∗10, BHB∗11], as well as a high-resolution template of a full head [Epi] (a). We
extract the face and bone surfaces and create a tetrahedral mesh (b), which is registered with the face scan and template head [ARV07] (c).
Supervised by a doctor we sculpt malocclusions to create an initial states from which we run the optimisation and simulation, before we
render the deformed high-resolution head model [MTPS09, Epi] (d).
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