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Fig. 1. Robotic creatures created with our computational design system employ arbitrary arrangements of legs and wheels to locomote.

We present a computation-driven approach to design optimization and mo-
tion synthesis for robotic creatures that locomote using arbitrary arrange-
ments of legs and wheels. Through an intuitive interface, designers first
create unique robots by combining different types of servomotors, 3D print-
able connectors, wheels and feet in a mix-and-match manner. With the
resulting robot as input, a novel trajectory optimization formulation gener-
ates walking, rolling, gliding and skating motions. These motions emerge
naturally based on the components used to design each individual robot. We
exploit the particular structure of our formulation and make targeted simpli-
fications to significantly accelerate the underlying numerical solver without
compromising quality. This allows designers to interactively choreograph
stable, physically-valid motions that are agile and compelling. We further-
more develop a suite of user-guided, semi-automatic, and fully-automatic
optimization tools that enable motion-aware edits of the robot’s physical
structure. We demonstrate the efficacy of our design methodology by cre-
ating a diverse array of hybrid legged/wheeled mobile robots which we
validate using physics simulation and through fabricated prototypes.
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1 INTRODUCTION
Whether it is to help with chores, keep us company, or entertain us,
personal robots promise to play a central role in our increasingly
technology-driven society. Echoing the trend of mass customiza-
tion and leveraging recent advances in digital fabrication, our long
term goal is to develop algorithmic foundations that will enable
these robots to be created on-demand according to the individual
needs and preferences of those they serve. In this quest, we join re-
cent research efforts that bridge the fields of animation, fabrication-
oriented design and robotics [Bern et al. 2017; Du et al. 2016; Schulz
et al. 2017]. Complementing this body of work, we introduce a novel
design system for a rich class of mobile robots that employ arbitrary
arrangements of legs and wheels for locomotion. Such hybrid robots
enjoy the combined versatility of legged and wheeled systems, but
they also inherit their compounded challenges: they have many
actuated degrees of freedom that need to be precisely coordinated
in order to generate motions that are balanced, elegant, and efficient;
their kinematics and dynamics are governed by highly non-linear
equations; and their motor capabilities and physical design char-
acteristics are inseparably intertwined. For these reasons, creating
hybrid mobile robots remains a very difficult and error-prone task.

We present a computation-driven approach to designing, optimiz-
ing and synthesizing motions for different breeds of legged/wheeled
robots. At the core of our work lies an efficient trajectory optimiza-
tion formulation tailored to the specific challenges of this class of
robotic creatures. Through a unified treatment of feet and wheels,
our model enables automatic generation of stable, physically-valid
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Fig. 2. High-level overview of our design system: through a simple drag-and-drop interface, designers can interactively generate a vast array of robotic creatures.
Once designs are finished, our system automatically generates physically-valid motions that are skilled and agile. We also present computational solutions for
user-driven or automatic optimization of the robot’s physical dimensions. The resulting designs can be easily fabricated, leading to compelling physical robots.

walking, rolling and skating motions for user-designed robots. Al-
though these motions are optimal with respect to the morphological
characteristics of each individual robot, not all robots are created
equal. Indeed, the motor capabilities of different robots can vary
drastically. Optimizing design parameters for user created robots is
therefore an indispensable piece of the puzzle which we also address
in this work. To this end, we develop a suite of computational tools
that leverage sensitivity analysis to support manual, semi-automatic
and fully automatic design exploration and optimization.

To validate our work, we designed a variety of robotic creatures
and corresponding motions, all of which were tested using off-the-
shelf physics-based simulators. We further fabricated three of our
designs to assess the degree to which physical prototypes match
our simulation results.
Succinctly, our main contributions are:
• A versatile trajectory optimization formulation that is used to
generate stable, physically-valid motions for a large variety
of robots that employ legs and wheels for locomotion

• An analysis of the underlying numerical solver that reveals
an effective way to drastically increase convergence rates for
the motion optimization process

• A suite of user-guided computational tools that support man-
ual, semi-automatic and fully automatic optimization of the
robot’s physical dimensions

2 RELATED WORK
Fabrication-aware design is a flourishing topic in Computer Graph-
ics research. This is not surprising, since content generation has
been a core topic of the field since its very beginnings, and digital
fabrication machines are simply new types of output devices. How-
ever, going from virtual environments to the real world introduces
many new challenges that must be addressed. For example, in recent
years we have seen computational design approaches for objects
that are lightweight yet strong [Lu et al. 2014; Stava et al. 2012],
objects whose optimized mass distribution allows them to stand,
spin or float stably [Bächer et al. 2014; Musialski et al. 2015; Prévost
et al. 2013], physical characters that mirror the range of motion of
their virtual counterparts [Bächer et al. 2012; Calì et al. 2012; Ureta

et al. 2016], and increasingly complex mechanisms and mechanical
automata designed to generate specific motions [Ceylan et al. 2013;
Coros et al. 2013; Megaro et al. 2017; Song et al. 2017; Zhang et al.
2017]. These computational tools share the same high-level goal
as ours: enabling non-experts to create complex physical artifacts
without requiring domain specific knowledge.

To increase the range of functionality for digitally-fabricated ob-
jects, researchers are also investigating computational approaches
to embedding sensors and various other electromechanical com-
ponents into their designs [Bächer et al. 2016; Follmer et al. 2015;
Villar et al. 2012; Weichel et al. 2013]. These research efforts build
a bridge between the fields of HCI, Computer Graphics and Robot-
ics, and our work follows this spirit. In particular, closely related
to our work are algorithmic methods to design origami-inspired
robots [Schulz et al. 2017] as well as walking automata [Bharaj et al.
2015] and robotic creatures [Megaro et al. 2015]. The computational
techniques we describe in this paper complement this body of work
by targeting a diverse class of mobile robots that move using arbi-
trary arrangements of legs and wheels. The designs we support have
many degrees of freedom and their hybrid wheeled/legged nature
demands motion repertoires that are much richer and more intricate
than those of robots relying largely on quasi-static walking [Megaro
et al. 2015]. We therefore present a new, highly efficient trajectory
optimization approach that automatically generates walking, rolling,
skating or gliding motions, as appropriate given the morphological
designs of different robots.
Building on a growing body of literature [Coros et al. 2013; Ha

et al. 2017; Megaro et al. 2017; Pérez et al. 2017; Umentani et al.
2015], we leverage sensitivity analysis to establish a relationship
between the motions a robot can generate and its physical design
parameters. In particular, the method described in [Ha et al. 2017]
nicely complements our work: while their formulation fine-tunes
robot designs such that actuation forces are reduced, the suite of
computational tools that we propose are specifically developed to
support motion-aware manual, semi-automatic and fully automatic
design exploration and optimization. Our work also draws inspira-
tion from a number of specific, hybrid robot designs presented in the
robotics literature [BostonDynamics 2017; Endo and Hirose 2008;
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Smith et al. 2006]. These one-off designs are feats of engineering
developed by teams of seasoned domain experts. Our long term
goal is to allow even casual users to create robotic creations that
approach the same level of sophistication.

3 OVERVIEW
Our system allows its users to create unique robot designs by con-
necting together different types of mechanical components in a
mix-and-match manner. This design process is illustrated in Fig. 2
and can also be seen in the accompanying video. Our implementa-
tion of the underlying graphical user interface is similar to the one
employed by [Desai et al. 2017], and the database of components we
use for all our results consists of servomotors, 3D printable connec-
tors and three types of end effectors: actuated wheels whose angular
speed is controlled by motors, passive wheels that can spin freely
about their rotation axis, and welded wheels that afford no motion
relative to the body part they are attached to. Welded wheels are
used to model feet that roll on the ground as the robots are moving,
and when their radii are set to 0, they become equivalent to the
point foot model commonly used by motion planning algorithms.

The morphological design of each robot is generated from a user-
specified hierarchical arrangement of components: servomotors cor-
respond to actuated joints, connectors define the geometric shape
of each rigid link of the robot, and end-effectors specify the mechan-
ical behavior of the components that will come into contact with
the environment as the robot moves. This input directly defines
the inertial parameters for each body part, 3D models for fabri-
cation, as well as the rotation axes for each wheel and each joint
actuator. With the resulting robot design as input, our trajectory
optimization method (Sec. 4) generates physically-valid walking,
rolling, gliding or skating motions. These motions are automati-
cally tailored according to the morphological characteristics of each
individual design. We leverage the particular structure of our mo-
tion synthesis formulation to significantly accelerate the underlying
numerical solver (Sec. 4.3). This allows designers to interactively
choreograph motions that are stable, agile and compelling.

To ensure that a robot functions as envisioned by its designer, we
also develop computational solutions for manual, semi-automatic
and fully automatic optimization of the robot’s physical dimensions
(Sec. 5). These tools leverage sensitivity analysis and allow even
non-experts to explore the often unintuitive relationship between
design parameters and motor capabilities. Prior to fabrication, de-
signs are validated through off-the-shelf physics simulators. We use
proportional-derivative controllers to generate torques for every
actuated joint of the simulated robot, and feed-forward velocity
controllers for its actuated wheels. Time-varying joint angle and
wheel speed targets for these low-level controllers are directly gen-
erated from the optimized motions. We use the Open Dynamics
Engine [ODE 2007] as a black-box simulator for all our results.

4 MOTION GENERATION
Ourmotion generationmodel builds on trajectory optimization tech-
niques that reason in terms of a robot’s centroidal dynamics [Orin
et al. 2013]. This class of methods exploits the fact that modeling
the evolution of the robot’s aggregate linear and angular momenta

over time is much simpler than considering its full-body dynamics.
Nevertheless, this simplified dynamics representation can be easily
complemented by geometric constraints to ensure that the gener-
ated motions are consistent with the robot’s kinematics [Dai et al.
2014]. Because they strike a favorable balance between predictive
power, simplicity and computational efficiency, models based on
centroidal dynamics are quickly gaining in popularity.

In this section, we describe a new mathematical formulation that
leverages the concept of centroidal dynamics to efficiently generate
dynamic motions for a diverse array of hybrid robotic creatures.
The general nature of our formulation allows physically-valid walk-
ing, rolling, gliding and skating motions to emerge naturally as a
function of the morphological design of each individual robot.

4.1 Optimization Model
The input to our motion optimization model consists of robots with
arbitrary user-generated morphology. The robots interact with the
environment through their end effectors, which can be located on
any of their body parts. Without loss of generality, each end effector
is assumed to be a wheel described by its radius r , mounting location
l̂ on body part b, and rotation axis â expressed in the local coordi-
nate frame of b. Our motion optimization model supports passive
and actuated wheels. Depending on the type of wheel, different
constraints are instantiated as discussed in below.

Using a direct transcription approach, we turn to a time-discretized
setting and represent a motion plan m = {m1, . . . ,mT } as a set of
vectors mi that span a planning horizon with length of time hT ,
where h is the amount of time between consecutive time samples.
The subscript indexes specific samples in time, and mi is defined as:

mi = {qi , ci , e1
i , . . . e

n
i , f

1
i , . . . f

n
i ,ω

1
i , . . .ω

n
i ,α

1
i , . . .α

n
i } (1)

For every time index i , the vector qi = {q1
i , . . . ,q

K
i } denotes the

pose of the robot, which consists of the position and orientation of
the root link, as well as the joint angles that describe the relative
orientation between articulated body parts; qi is thus a vector of
size K = 6+N , where N is the number of joints. The corresponding
centroidal coordinate frame c = {x,θ } represents the robot’s center-
of-mass (COM) position x and global orientation θ . Each of the
robot’s n end effectors are referenced by superscript j, 1 ≤ j ≤ n.
The points e define the location of the end effectors in a global
coordinate frame (e.g. the points where each wheel should make
contact with the environment) at different moments in time and f
represents the force imparted by the robot onto the environment
through each end effector. For each wheel in the robot’s design we
also store its instantaneous, world-relative angular speedω, and two
rotation angles α = {αtilt,αyaw} that define the global orientation
of its rotation axis:

a(α ) =W (α , â) = Rv(αyaw)Rt̂(αtilt)â, (2)

where R denotes a typical rotation operator. Note that we use the
ˆ accent to denote quantities expressed in local coordinates. In the
equation above, â and a therefore represent the rotation axis of
the wheel expressed in local and global coordinate frames, respec-
tively. As illustrated in the inset figure, the tilt axis t̂ is defined as
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lie at the intersection of the ground
plane with the wheel plane. It is com-
puted in the local coordinate frame of
the wheel as t̂ = â × v/|â × v|, where
v is the vertical axis in global coor-
dinates. The tilt axis in global coor-
dinates, t(α ), is computed asW (α , t̂),
and carries special meaning: it represents the only valid direction of
movement for the wheel at any specific moment in time. Another
important quantity, ρ̂ = t̂× âr , where r is the radius of the wheel, is
the vector from the center of the wheel to the point where the end
effector will make contact with environment (assuming locomotion
on flat ground).
Our decision to model and parameterize wheels as separate en-

tities warrants a brief discussion. We initially considered treating
wheels as additional rigid bodies in the robot’s morphological struc-
ture (i.e. their motion would be stored as part of q, as for any other
joint). While this modeling choice would reduce the overall number
of parameters we need to optimize for, it presents two major down-
sides. First, even simple operations such as determining the point
on a wheel that contacts the environment would require complex
kinematic computations, because in the coordinate frame of a rigid
body, this point does not remain fixed. In contrast, it is easily seen
that upon transformation to global coordinates, ρ =W (α , ρ̂) main-
tains its meaning, i.e. it still represents the vector from the center of
the wheel to the point that is closest to the ground. As a result, the
objectives and constraints formulated below take on much simpler
forms and become faster to evaluate. Second, as discussed in Sec 4.3,
optimization terms that include the full kinematic model of the robot
are highly non-convex, and if left untreated they negatively affect
convergence rates. The auxiliary variables we introduce for wheels
allow us to localize these numerical issues to just two consistency
constraints, which we can therefore analyze and address in isolation.
With the parameterization of the motion plan in place, we now

turn our attention to the constraints and objectives that govern the
motions of wheeled/legged hybrid robots.

Kinematics and Dynamics: Leveraging the centroidal dynamics
representation, the global motion of the robot is governed by the
familiar Newton-Euler equations. For our discrete setting, these
equations take the form:

n∑
j=1

f ji +Mg = M Üxi ,∀i (3)

n∑
j=1

(eji − xi ) × f ji = I Üθ + Ûθ × I Ûθ ,∀i (4)

As before, the subscript i denotes a specific time index and the
superscript j refers to individual end effectors. The total mass of
the robot is M and its moment of inertia I is computed about the
robot’s COM. The center of mass acceleration, Üxi , is estimated using
finite differences: Üxi = (xi−1 − 2xi + xi+1)/h2, where h is the time
step. Similarly, Üθ is computed using finite differences that operate
on axis-angle representations of the centroidal coordinate frame’s
change in orientation between time steps.

The motion of the centroidal coordinate frame is a function of the
forces that the robot’s end effectors impart onto the environment.
To ensure their physical feasibility, these forces are subjected to
constraints imposed by a typical Coulomb friction model:

fn ≥ 0 , |ft | ≤ µfn , (5)

where ft and fn denote the tangential and normal component of f ,
and µ is the coefficient of friction. Forces generated by unactuated
wheels are further constrained to have a vanishing component in
the direction along which the wheel is free to move (i.e. they can
only push on the ground in an orthogonal direction):

f · t(α ) = 0 , (6)

Furthermore, end effectors can only generate ground reaction forces
when they are in contact with the environment. This behavior is
enforced through constraints of the form:

(1 − c)f = 0 , (7)

where the binary contact flags c are specified by a foot fall pattern
per end effector, per time step [Megaro et al. 2015]. These flags repre-
sent the schedule of contacts that characterize different locomotion
gaits; c = 1 indicates that an end effector must be in contact with
the ground, while c = 0 denotes swing phases during which end
effectors cannot generate ground reaction forces. Constraints 5-7
are applied for all time samples i and all end effectors j.

When end effectors are in contact with the ground, their motion

ei ei+1

ρ
ωi

ρ

must be subject to kinematic no-slip
constraints. Recall that eji represents
the location where end effector j
makes contact with the ground at
time index i . We wish the evolution
of these points to be consistent with
the motion of the wheel, as shown in
the inset figure. If at some moment in time the wheel has angular ve-
locityω and the relative velocity between the wheel and the ground
at the contact point is 0, then the center of the wheel must have
velocity ω × ρ. The time derivative of eji must take on the same
value, so the no-slip constraint is formulated as:(

eji+1 − eji
h

+ ω
j
i a(α

j
i ) × ρ(α j

i )

)
c
j
i = 0 (8)

While the constraint above bounds end effector velocities such
that their motions model rolling wheels, the vertical component of
their motion must also be prescribed. We accomplish this through a
simple constraint that asks that the normal component of the end
effector position is 0 in stance (i.e. c = 1), or attain a user-specified
valuewh otherwise:

c
j
i e

j
i · n + (1 − c

j
i )(e

j
i · n −wh ) = 0 (9)

The motion of the end effectors is further optimized to ensure that
the motions that are generated are collision-free. For this purpose,
we use inequality constraints applied to every pair of end-effectors:

| |eji − eki | |
2
2 ≥ (r j + rk + β)2,∀j,k ≤ n (10)

where β = 2cm is a safety factor.
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We note that the constraints imposed on the motion of end ef-
fectors and the forces they generate are a function of the types of
wheels employed in each design. These constraints, while each sim-
ple in formulation, lead to interesting and often surprising motions.

Consistency Constraints: The terms described above operate on
the centroidal coordinate frame and the set of auxiliary end effector
variables introduced by our model. We ensure that the motion of the
robot is in sync with these quantities through a set of consistency
constraints. First, we ask that the trajectory of the robot’s center of
mass matches the linear motion of the centroidal coordinate frame:

φCoM (qi ) − xi = 0 , (11)

where φCoM (q) outputs the robot’s center of mass given pose q.
Likewise, the orientation of the robot’s body, φθ (q), must match
that of the centroidal coordinate frame:

φθ (qi ) ∗ R(θ i )
−1 = I (12)

To mirror the motion prescribed through the auxiliary variables for
wheels, two constraints must be satisfied:

φb (â
j , qi ) − a(α j

i ) = 0 , (13)

φb (l̂
j , qi ) + ρ(α

j
i ) − eji = 0 , (14)

Here, φb is the forward kinematics function that computes world
coordinates of points or vectors defined in
the local coordinate frame of rigid body b
whichwheel j is mounted on. The first con-
straint therefore demands that the wheel
axis, as seen from the coordinate frame of
b, is aligned with the wheel axis computed
through the auxiliary variables. The sec-
ond constraint further requires that the
position of the wheel’s center of rotation
satisfies the kinematic relationship illus-
trated in the inset figure.
The last consistency constraint is instantiated only for welded

wheels that must have zero velocity relative to the robot body part
they are mounted on. Before we provide the formulation of the
constraints that model welded wheels, recall that the wheel speed
ω is specified in a global coordinate frame, and not relative to b.
Consequently, we must establish a correspondence between the
global motion of body part b, and the motion represented by the
auxiliary parameters of the wheel. We can do this efficiently by
requiring that vectors lying in the plane of the wheel, as seen from
the two different coordinate frames, follow equivalent movement
patterns. The constraint therefore becomes:

φb (ŵ
j
b , qi ) × φb (ŵ

j
b , qi+1) =

W (α j
i , ŵw ) ×W (α j

i+1,Râ(ωh)ŵw ) (15)

where ŵb and ŵw are two reference vectors that lie in the plane of
the wheel, specified in the local coordinate frame of the parent body
b and the auxiliary wheel frame, respectively. We note that the end
effector parameterization does not explicitly store the orientation of
the wheel about its rotation axis. For this reason, for the second term

ϕb(ŵ
j
b ,qi+1)

ϕb(ŵ
j
b ,qi)

W (αj
i+1, Râ(ωh)ŵw)

W (αj
i , ŵw)

on the right hand side, we first rotate
the vector ŵw according to the angular
speed of the wheel, and then compute its
world coordinates, as illustrated in the
inset figure. This formulation does not
require ŵb and ŵw to be the same vec-
tor, as the cross product operator outputs
the same result for any pair of reference
vectors we choose.

Physical Hardware Constraints: With the motion of the robot
consistent with its centroidal dynamics, it is important to ensure
that the limitations of physical actuators are also respected. We
therefore implement bound constraints for the range of motion of
each joint angle qk , its rate of change Ûqk and the angular speed ω of
active wheels. The values for the bound constraints are hardware-
specific, but they otherwise take on standard forms, which we omit
for brevity.

Boundary Conditions: Our trajectory optimization model sup-
ports the generation of periodic motions as well as motions with
prescribed starting and end states. For periodic motions, we imple-
ment constraints that ask that the poses of the robot at the start
and end of the motion plan to be identical, i.e. q1 = qT . Constraints
for prescribed starting or end states take on similar forms, and the
target values can be poses generated for any other motion. In this
way, our method can easily generate transitions between periodic
motions to create motion graphs [Kovar et al. 2002].

Functional Objectives and Motion Regularizers. Complementing
the constraints detailed above, we also implement several objectives
that provide interactive control over the generated motions. The
walking speed, for example, is controlled by specifying a target offset
between the first and last configuration of the centroidal coordinate
frame: | |(xT − x1) − t| |2. The turning rate is similarly controlled by
specifying a target yaw angle between θ1 and θT . To promote the
generation of smooth motions, we also include a regularizing term
defined as (qi−1 − 2qi + qi+1).
To provide further control over the generated motions, we al-

low users to interactively specify target positions for the robot’s
end effectors or COM trajectory. This interaction mode, which is
demonstrated in the accompanying video, is supported by simple
objectives of the form | |eji − etarget | |2 or | |xji − xtarget | |2. We call
these choreography objectives, and they are directly instantiated or
removed by the user as desired. Supported by the real-time feed-
back enabled by the efficient solver described in Sec. 4.3, we found
this interactive motion synthesis mode to be very effective. This
user-in-the-loop optimization scheme can be used both to help the
optimization overcome undesirable local minima when they occur,
as well as to shape the style of the resulting motions.

4.2 Numerical Solution
One common approach to solving constrained optimization prob-
lems is through Sequential Quadratic Programming. We initially
pursued this approach but, arguably due to the highly non-linear
constraints required for our formulation, we could not find a strategy
(i.e., merit function and line search parameters) that would reliably
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lead to good convergence. We therefore resorted to a penalty-based
approach that allows us to isolate the most challenging constraints
into specific objectives that can then be treated in a numerically
stable way. To transform equality constraints into penalty terms,
it suffices to minimize their inner product: constraint f(x) = b be-
comes (f(x) − b)T (f(x) − b). Inequality constraints are slightly more
involved. As in [Bern et al. 2017], we first define a C2, piece-wise
polynomial functionψ (x) as:

ψ (x) =


0 x ≤ −ε
1

6ε x
3 + 1

2x
2 + ε

2x +
ε2

6 −ε ≤ x < ε

x2 + ε2

3 otherwise
(16)

Each scalar inequality constraint f (x) ≤ b is then modeled as
ψ (f (x) − b). The function ψ (x) is a quadratic penalty term when
x ≥ ϵ , it is zero if x ≤ −ϵ , and it behaves as a smooth interpolant
otherwise. The constant ϵ often affords an intuitive interpretation.
For example, when placing a bound on the velocity of a motor, we
set ϵ to 10% of its maximum speed.

To solve the resulting optimization problem, we define a function
E(m) as a weighted sum of all objectives and penalty terms associ-
ated with the equality and inequality constraints introduced earlier.
We use a weight of 10000 for all penalty terms. The weights for the
functional objectives are set to 50, while the motion regularizers are
assigned a weight of 0.1.
To minimize E(m), we use Newton’s Method coupled with a

backtracking line search method. Once the optimization process
converges, we alert the user if the residual of any constraint penalty
term is above an acceptable threshold. This could be an indication
of an invalid robot design, as discussed in Sec. 5.

4.3 Further Analysis and Optimization Speedup
Although all gradients and Hessians are computed analytically in
our framework (we verified our implementation against numerical
differentiation estimates), the trajectory optimization algorithm is
still quite slow to converge, as illustrated in Fig. 3. This behavior is
often caused by objectives with an indefinite Hessian. If the Hessian
is not positive semi-definite (PSD), the Newton step may result in a
non-descent search direction, which explains the "jittery" nature of
the convergence plot. To avoid this artifact, indefinite Hessians must
be modified such as to remove negative eigenvalues. In many cases,
one might opt to simply regularize the Hessian by adding a scaled
identity matrix to it. However, determining the optimal coefficient
value is costly. If it is too low, the Hessian will remain indefinite, and
too high a value will slow down progress. Dynamic regularization
schemes, which we also tested, start out with a small coefficient that
is progressively increased if the search direction is invalid. Never-
theless, every iteration requires an attempt to solve the underlying
linear system, so a different strategy is needed. Furthermore, for
multi-objective problems, while summing up the contributions from
different objectives might result in an overall PSD Hessian, individ-
ual objectives that are badly behaved might still hinder progress. To
pinpoint the root cause of the problem, we examined the Hessians
of all our objectives. We found that the culprit was hidden in the
consistency constraints (11)-(14). For example, when written as a

penalty term, (14) has the form

E(qi ,α
j
i ) = ∥φb (â

j , qi ) − a(α j
i )∥

2 = ∥φb − a(α j
i )∥

2 (17)

where we use φb := φb (âj , qi ) for brevity. Its gradient w.r.t qi is

∇qi E(qi ,α
j
i ) = Jqiφ

T
b (φb − a(α j

i )) (18)

where Jqiφb is the Jacobian of φb w.r.t. qi . The Hessian with respect
to qi is therefore

∇2
qi E(qi ,α

j
i ) =

3∑
k=1

(Jqiφb )(k )(Jqiφb )
T
(k ) +

[
(∂Jqiφb )

T

∂qki
(φb − a(α j

i ))

]K
k=1
, (19)

where we use A(k ) for the k’th column of a matrix A, and [vk ]kk=1
for the concatenation of K vectors vk . The first term is always PSD
since it is a sum of outer products of vectors. However, we found
that the second term is often indefinite. We therefore simply exclude
it when computing the Hessian. We apply the same modification to
the other consistency terms and call the result the Filtered Hessian.
This simplification is akin to a Gauss-Newton approximation, but we
note we only remove second derivatives of (17) with respect to qi . A
standard Gauss-Newton approximation would also remove second
derivatives with respect to other parameters (e.g. α j

i )), as well as
mixed derivative terms. Furthermore, Gauss-Newton is traditionally
used on the entire objective when second-order derivatives are too
difficult or too expensive to evaluate. We use our approximation on
only a select few objectives. This simple filtering operation results
in remarkably faster and smoother convergence, as can be seen in
Fig. 3. This result also highlights another benefit of our formulation
that employs auxiliary variables to model end effectors: it allows
these types of numerical problems to be isolated and addressed in a
targeted way.
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Fig. 3. Comparison of convergence rates for themotion optimization process
using the True Hessian and the Filtered Hessian approximation (Sec 4.3).
The configurations of the robot in (b) and (c) correspond to the motion
plan after 10 optimization steps. The non-smooth end effector trajectories
shown in (b) provide a visual indication that the motion has not converged.
L-BFGS, a common quasi-Newton method, features very poor convergence
for our problem.
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5 GUIDED EXPLORATION AND OPTIMIZATION OF
MORPHOLOGICAL DESIGNS

Motivation: Our early experiments with the motion optimization
model described in the previous sec-
tion exposed an interesting challenge:
the relationship between the morpho-
logical design of a robot and the mo-
tions it can generate can be very un-
intuitive. We illustrate this challenge
with the example shown in the inset
figure. The design on the left is a sim-
ple car with four parallel wheels, all of which are actuated. When
asked to move forward at constant speed, the trajectory optimiza-
tion method generated the trivial motion plan that one would expect.
The design shown on the right is the same car, but with the front
wheels tilted by 45 degrees. This seemingly innocent editing oper-
ation resulted in the robot no longer being able to move forward
as expected. This is because tilting the front wheels has the unin-
tended consequence of lifting them off the ground. The pitch angle
of the robot’s body must therefore be adjusted such that all four
wheels are once again in contact with the environment. In this new
configuration, however, as a result of the combined tilt and pitch of
the front wheels, the directions along which they can move are no
longer parallel – recall that these directions, which are visualized
as red arrows, are given by the intersection of the ground plane
with the plane that the wheels lie in. Slip-free motion is therefore
no longer possible. With this design flaw identified, the robotic car
is easy to fix: lowering the front wheels by just the right amount
eliminates the need for the body pitch, ensuring the directions of
movement for all wheels are once again in agreement.

Technical solution: The simple example described above high-
lights the subtleties and potential pitfalls inherent to the task of
creating mobile robots. Needless to say, analyzing and finding prob-
lems with designs becomes much more difficult as they increase in
complexity. Computational approaches to correcting flaws and im-
proving user-generated designs is therefore of utmost importance.
We explore solutions to this technical challenge through a suite
of computational tools that enable system-guided manual, semi-
automatic and fully automatic design methodologies. These tools
leverage the fact that the sensitivities of optimal motions with re-
spect to morphological design parameters encode very valuable
information.

We treat each user-generated design as a parameterized morpho-
logical template Ψ which takes as input a vector p. For our imple-
mentation, elements of p encode the location of each joint and each
end effector in the local coordinate frame of their parent rigid bodies.
Ψ(p) therefore outputs a specific robot design, and different vectors
p result in robots that have the same morphology but different body
proportions. Robots generated with our graphical design system
provide both a morphology, which remains fixed, and an initial
set of parameters p0. The motions generated through trajectory
optimization and the robot’s morphological parameters are deeply
intertwined through the forward kinematics functions φb , φCoM
and φθ that appear in Eq. 11-15. Without loss of generality, we can
therefore express the motion of the robot as a function of its design

parameters,
m(p) = arg min

m̃
E(m̃, p) , (20)

where the optimization energy E was defined in Sec. 4.2.
Although the function m(p) does not afford an analytic solution,

we leverage the fact thatm and p are coupled through E to compute
an explicit map relating them. To derive this map, we note that
as p changes, we can always compute a new motion such that
G(m, p) = ∂E/∂m = 0, i.e. m is the minimizer of E for the new
design parameters. Consequently, the total derivative of G(m, p)
with respect to p, dG/dp, vanishes always. Applying the chain rule,
we obtain

dG
dp
=
∂G
∂m
∂m
∂p
+
∂G
∂p
= 0 . (21)

This expression exposes the Jacobian J = ∂m
∂p , which captures

to first order how motion parameters m need to change as the
design parameters p change such that the solution remains on the
manifold of optimal motions, i.e., G(m, p) = G(m + ∂m, p + ∂p) =
0. Computing this Jacobian requires the Hessian ∂G/∂m, which
we compute analytically, and the term ∂G/∂p, which we estimate
numerically. With J at hand, we describe three system-guided design
editing modes supported by our computational framework.

Manual Design Mode: As shown in the accompanying video, our
computational framework provides an intuitive interface to directly
edit the morphological parameters of a robot design. The goal of the
manual design mode is to enable users to freely explore the design
space. As the body proportions of robotic creatures are interactively
adjusted, our computational system provides near-instantaneous
feedback by generating and displaying corresponding optimal mo-
tions. We achieve this performance by coupling the efficient nu-
merical treatment described in Sec. 4.3 with a simple warm-starting
scheme. Briefly, through the Jacobian ∂m/∂p, user-provided edits
∆p are explicitly mapped to the changes in motion ∆m that they
induce, ∆m = ∂m/∂p∆p. We therefore update the current motion
plan by ∆m and then proceed with numerical optimization.

Semi-Automatic Design Mode: While manual editing enables free-
form exploration of the relationship between robot designs and
corresponding optimal motions, it is also important to have the
ability to optimize designs according to specific functional goals.
In general, these goals can be defined in a variety of ways. The
option we explore for our semi-automatic design mode is the fol-
lowing: starting from an initial robot Ψ(p0) and associated motion
m(p0), we enable user-driven generation of design variations that
ensure specific features of the motion mf ⊆ m are affected as little
as possible. In other words, we allow the user to navigate the null
space of their robot design. The desired set of motion features is
selected by the user from a dropdown menu, and it can consist of
the linear or angular motion of the body, the robot’s joint angle
trajectories, or the paths that its end effectors move along. As before,
designers can manually edit the robot’s body proportions as they
desire. These user-provided morphological edits, ∆pu , are comple-
mented by synergistic changes to all other design parameters, ∆ps ,
that are automatically computed such that changes to the motion
features, ∆mf , are minimal. Noting that ∆mf = Jf (∆pu + ∆ps ),
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where Jf = ∂mf

∂p , ∆ps is the optimum of the following quadratic
program:

1
2
| |
∂mf

∂p
(∆pu + ∆ps ) − ∆m̄f | |22

subject to ∆psi = 0,∀i : ∆pui , 0
(22)

The constraints ensure that the changes to design parameters that
are automatically computed are 0 for all components of p that are
user-specified, and ∆m̄f = mf (p) −mf (p0) helps to combat drift.
With the solution to this optimization problem computed, the de-
sign parameters are updated as p = p + (∆pu + ∆ps ), and the
corresponding optimal motion is recomputed. The updated robot
design respects the morphological edits specified by the user while
minimally changing the selected set of motion features. The process,
of course, can repeat as desired.

Source Manual Semi-automatic

Fig. 4. Comparison of manual and semi-automatic design editing modes.
In this example, we increase the length of the highlighted link and apply
symmetric edits to the right side of the body. In manual mode, the lengthen-
ing of the leg results in a noticeable body pitch – the transparent boxes are
added to help better visualize body orientations. In semi-automatic mode,
we ask that the orientation of the body does not change. As a result, when
the highlighted link is lengthened, synergistic adjustments to other design
parameters are automatically applied as well. In both cases, the weights of
the objectives governing the motion of the body are exactly the same, so its
orientation is only influenced by the robot’s design.

Automatic Design Optimization: As a more general solution, our
mathematical framework also supports the optimization of designs
according to arbitrary functions defined in terms of the robot’s
motion parameters m. The choreography and functional objectives
described in the previous section, as well as the overall energy E
minimized during the trajectory optimization process are examples
of such functions, which we denote as O(m). Through the chain
rule, we can easily compute the gradient of O(m) with respect to
the design parameters: ∂O∂p =

∂m
∂p

T ∂O
∂m . Updating the robot’s design

parameters p using a step along this gradient (i.e. p = p + β ∂O
∂p )

induces the change in the robot’s optimal motion that most im-
proves O. We have used this optimization scheme to confirm that

the design of the simple car described at the start of this section
can be fixed automatically. In this case, O(m) was simply E(m). As
we demonstrate in the results video, based on the choreography
objectives, the design of the robot and its motions can be concur-
rently generated in a co-optimization process that is guided by the
designer.

Before Auto. Opt. After Auto. Opt.

Fig. 5. Result of design optimization. The robot is asked to reach the high
target position as shown, but its initial design makes it unable to com-
ply. By optimizing the design parameters, the robot’s physical dimensions
automatically change such that it can achive the user-specified motion goal.

6 RESULTS
Here we discuss our results, which showcase a variety of robots and
corresponding motions generated with our method. Thanks to our
interactive design system, all of these results were very easy to create.
We emphasize that all motions emerged automatically as a function
of the morphological design of each robot (i.e. number of limbs,
types of wheels, etc). Users provided only high-level guidance in the
form of a desired moving speed, or optionally, in the form of a sparse
set of targets for the robot’s body over time. The accompanying
results video shows real-time screen captures of our design system,
including the motion optimization and physics simulation steps.

6.1 Wheeled robots
Actuated wheels. Active wheels are highly successful locomotive

devices in their own right, as evidenced by the abundance of vehicles
found on our roads. This begs the question: what can be gained by
placing motorized wheels on robotic legs? In addition to providing
the option to switch to legged locomotion whenever convenient,
the extra flexibility afforded by combining legs and wheels enables
increased agility. We demonstrate this in the results video by asking
one of our robots, Agilebot, to first accelerate and then quickly slow
to a halt. In order to not lose balance and topple over, the robot
extends its front legs forward to maintain the center of pressure
within the support polygon. It is worth noting that the optimization
process discovers this strategy by itself, without any intervention
from the user. We further demonstrate automatically generated step-
and-drive and turn-in-place motions that are enabled by the robot’s
hybrid wheeled/legged design.

Passive wheels. Passive wheels also provide ample opportunities
for efficient locomotion, skating being the prime example. Skating is
an elegant and highly efficient form of human locomotion. Even at
high speeds, muscles move slowly and can thus exert a large amount
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1 2 3

Fig. 6. Swizzle.
of force for propulsion. However, as anyone who has ever tried to
roller-skate will attest, mastering this skill requires a high degree of
motor coordination, and one that is radically different from other,
more native, forms of movement. Unlike walking, skating does not
produce ground reaction forces aligned with the desired direction
of motion; it is precisely the absence of friction in this direction
that makes skating so elegant and efficient. We demonstrate two
types of natural skating motions that our optimization automatically
generates: swizzling and stroking.

Swizzling is a skating technique where wheels remain in constant
contact with the ground. This technique is based on wave-like mo-
tions of the feet which exploit the directional friction of the wheels
and cause the whole body to be propelled forward. Our motion
optimization process discovered swizzling motions automatically
for robot designs that feature only one passive wheel per leg, as
shown in Fig. 6 and in the accompanying video.
Stroking is a slightly more advanced technique that requires

the legs to be lifted off the ground periodically. This is necessary
when several wheels are attached to a foot, since this type of design
makes it impossible for end effectors to rotate about the vertical
axis without sliding while they are touching the ground. This mode
of locomotion requires the robot to place its back leg on the ground,
orienting thewheels in a direction almost orthogonal to the direction
of motion, while the front leg glides forward. A stroke of the back
leg pushes the body forward. Next, the legs switch placement and
the motion is repeated. Fig. 1(left) depicts a robot that automatically
learns to perform this type of movement. We note that to obtain
this motion, it is necessary to provide an input gait (e.g. a walk or
trot) that then defines the stroking pattern.

Welded wheels. Welded wheels, which are supported by our de-
sign system, enable a more general representation of physical robot
feet as compared to the widely used point foot model. Wheels can
either be welded permanently to a body part of the robot (e.g. they
are printed together as one piece), or they can be actuated wheels
that are actively blocked. We use the former option to demonstrate
a design with three legs that end in welded wheels and one pas-
sive wheel, as shown in Fig. 1(middle). The results video includes a
real-time demonstration of the motion optimization process for this
robot. As can be seen, optimal motions are generated in response to
the user changing the desired speed and turning rate.

1 2

Fig. 7. A demonstration of a slalom motion design. The user can quickly
place position objectives and observe the result in real-time.

6.2 Interactive Design
The improved performance of our motion optimization algorithm
allows the user to interactively specify motion choreography ob-
jectives. A wide variety of motions can therfore be created in a
very short time-span, and the user may fine-tune the movements of
the robot to any desired degree. One example, shown in Fig. 7, is a
slalom motion, which also benefits greatly from the versatility of
wheeled legs. For this example, the user simply specifies a desired
speed and provides several lateral target positions for the center of
mass at different moments in time. The optimal motion is generated
almost instantaneously.

6.3 Design optimization
As discussed in the previous section, the three different design
editing modes assist users with the non trivial and often unintuitive
task of optimizing their robots’ physical dimensions. These editing
modes are supported by our efficient motion optimization method
which allows the user to vary design parameters and observe the
change in motion immediately.
Semi-automatic optimization allows the user to keep certain as-

pects of the motion unchanged while manually tweaking their de-
sign, as shown in Fig. 4. Fully automatic design optimization is used
both to fix subtle flaws, as discussed in Sec. 5, or to make more
drastic changes that enhance a robot’s ability to generate the mo-
tions envisioned by the designer. Fig. 8 presents convergence plots
for both of these use cases. For both plots we show the energy of
the optimal motion corresponding to the morphological parameters
at each design optimization step. For the car example, shown on
the left, the initial design was unable to move forward due to the
flaw we identified earlier. After three design optimization steps, the
flaw was successfully fixed. The example on the right corresponds
to the use case shown in Fig. 5. Here, user-specified choreography
objectives asked the robot to move in ways that were incompatible
with its initial design. After one design optimization step, this robot
could already reach its target, while subsequent iterations further
reduced the total energy of its motion.

6.4 Further discussion
Fig. 10 shows a collection of robots designed with our system. For
all these robots we also designed a variety of motion plans that were
validated in a physically-simulated environment. Table 1 provides
statistics regarding the complexity of all the robots shown in the
results video. As can be seen, generating each motion takes only a
few seconds of compute time.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 1. Publication date: August 2018.



1:10 • Geilinger et al.

2 4 6 8 100

0.5

1

O
bj

ec
tiv

e 
va

lu
e

2 4 6 8 100

1

2

3

4

5

O
bj

ec
tiv

e 
va

lu
e

Optimize for travel distance Optimize for reach

#Iteration #Iteration
Fig. 8. Convergence graph for automatic design optimization.

We validate our designs through three physical prototypes which
are shown in Fig. 1. To create these robotic creatures, we used
off-the-shelf micro-sized servo motors (e.g. Turnigy TGY-306), the
Maestro USB controller board from Pololu, a standard 7.4V battery
and 3D printed connectors (e.g. limb segments). Fig. 9 shows all the
components used for the leg of one of our robot prototypes. For
each of our designs, the connectors took less than 24h to 3D print
on a Stratasys F370 machine. Assembling, calibration and testing
took an additional 2-4h.

Fig. 9. A robot leg before assembly.

Micro-sized servos are small, light and easy to work with. How-
ever, they are also limited in terms of the torque they can produce,
which is particularly problematic for robots with long legs, and
thus large moment arms. For this reason, while we noticed that
our smaller robots were able to reproduce the motions generated
through optimization quite well, the Skatebot design was noticeably
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)slower as compared to the simula-

tion results. Our initial wheel design,
which relied largely on 3D printed
parts (e.g. no ball bearings), further
contributed to discrepancies between
the motions of the physical robot and
its simulated counterpart. To quantify
the degree to which our robots were
able to follow the optimized motion plans, we measured the relative
difference in speed for Agilebot as it tracked the slalom motion
(Fig. 7). As can be seen in the inset figure, the relative error in the
velocity of the COM is less than 4cm/s (about 6% of the speed of the
motion plan). We note that this tracking error is recorded as the ro-
bot operates in a physically-simulated environment, which bypasses
mismatches arising from sub-optimal hardware components.

7 CONCLUSIONS, LIMITATIONS AND FUTURE WORK
We presented a novel design system for a rich class of hybrid
legged/wheeled robotic creatures. Thanks to our versatile trajec-
tory optimization formulation, physically-valid walking, rolling,

gliding and skating motions arise naturally as a function of the
design characteristics of different robots. We further showed how to
leverage the structure of our formulation to significantly accelerate
the underlying numerical solver. This, in turn, allows designers to
interactively choreograph compelling motions. Given that motor
capabilities and the design of a robot are inseparably intertwined,
we also developed a suite of user-guided computational tools that
support manual, semi-automatic and fully automatic optimization of
the robot’s physical dimensions. We demonstrated the effectiveness
of our method by creating a variety of unique robot designs, three
of which we fabricated.

Our results highlight exciting avenues for future work. For exam-
ple, we are encouraged by the significant improvements in conver-
gence rates achieved through the Filtered Hessian strategy described
in Sec. 4.3. We will continue this line of investigation by analyz-
ing all other objectives and experimenting with different filtering
operations. Our ultimate goal here is to achieve faster than real
time performance for the trajectory optimization process. This will
allow motion plans to be computed on-line, taking into account
dynamic environmental obstacles, and capable of providing full-
body feedback strategies in response to unplanned disturbances. We
also plan to investigate more sophisticated controllers to track the
optimized motion plans. The performance of the stiff position-based
controllers we currently employ would likely degrade as they at-
tempt to locomote on rougher ground. To this end, there are many
techniques developed in the field of physics-based character an-
imation that we can build on. To increase the complexity of the
behaviors exhibited by user-designed robots, character animation
techniques that appropriately re-sequence motion clips [Hyun et al.
2016; Kovar et al. 2002] show great promise as well.
There are also interesting opportunities to improve our motion

optimization model, as well as the fabrication process for the robots
designed with our framework. For example, the physical prototype
for our SkateBot robot moves noticeably slower than the simulation
model. This is not surprising, given that in simulation wheels have
no play, nor friction losses, and motors can very accurately track the
planned motions. Better engineered physical wheels (i.e. equipped
with professional-grade ball bearings rather than 3D printed parts)
and higher performance actuators would help close this gap. Like-
wise, increasing the accuracy of our predictive model to better ac-
count for real-world limitations would be beneficial as well. Last,
we plan to address the generation of increasingly agile motions.
Drifting manouvers, for example, leverage slipping to great effect,
which is currently outside the capabilities of our model.
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Robot # joints # end-
effectors motion motion goals # time

samples
# motion
parameters

planning
horizon

opt.
time

Swizzlebot 12 4 swizzle forward d = 0.5m,α = 0◦ 12 648 1.2s 4.5s
swizzle turning d = any,α = 20◦ 12 648 1.2s 3.4s

Creature3 9 4
walk d = 0.1m,α = 0◦ 12 504 0.8s 1.3s
fast walk d = 0.3m,α = 0◦ 12 504 0.8s 2.5s
turning d = any,α = 20◦ 12 504 0.8s 1.5s

Brainbot 9 3 swizzle forward d = 0.2m,α = 0◦ 24 1008 2s 5.7s
swizzle forward & turn d = any,α = 20◦ 12 504 2s 5.9s

Agilebot 16 4

start & stop d = 1.0m,α = 0◦ 12 696 0.8s 5.2s
turn in place d = 0.0m,α = 0◦ 12 696 1.6s 1.1s
slalom choreography 24 1392 1.6s -1
side-step and roll choreography 36 2088 3s -1

Skatebot 16 8 two-leg skating d = 0.3m,α = 0◦ 12 696 1.2s 11.3s
Dinobot 17 8 skating d = 0.8m,α = 0◦ 12 1140 2s 11.0s

Table 1. With our system, the user can create various robot designs and easily generate motions satisfying different motion goals.In the fifth column, d defines
the desired distance travelled, and α the desired turning angle. Column 7 displays the number of motion parameters which equals the size of m.
1: Motion is generated at interactive rates, while user edits choreography objectives.

Fig. 10. A variety of unique legged/wheeled robots designed with our system.
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