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Fig. 1. Our method automatically generates patterns for skintight clothing, considering design objectives related to shape, comfort, and function. In this
example, a set of initial patterns (left) is optimized such as to reduce the traction forces acting on the seams, yielding complex patterns (right) that lead to
aesthetically pleasing results (middle, right).

We propose an optimization-driven approach for automated, physics-based
pattern design for tight-fitting clothing. Designing such clothing poses par-
ticular challenges since large nonlinear deformations, tight contact between
cloth and body, and body deformations have to be accounted for. To address
these challenges, we develop a computational model based on an embedding
of the two-dimensional cloth mesh in the surface of the three-dimensional
body mesh. Our Lagrangian-on-Lagrangian approach eliminates contact
handling while coupling cloth and body. Building on this model, we develop
a physics-driven optimization method based on sensitivity analysis that
automatically computes optimal patterns according to design objectives
encoding body shape, pressure distribution, seam traction, and other crite-
ria. We demonstrate our approach by generating personalized patterns for
various body shapes and a diverse set of garments with complex pattern
layouts.
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1 INTRODUCTION
Whether as casual clothing, functional sportswear, or medical com-
pression garments—skintight clothing has many applications, and
fit is of central importance to all of them. The fit of a garment is
determined by its design which, from a technical perspective, con-
sists of two components: (1) a layout that determines the number
of patterns and how they connect to each other and (2) the shape
of the individual patterns. When fitting a design to a given body
shape, the layout is typically kept fix, whereas the pattern shapes
are adjusted in order to accommodate different body shapes and
sizes. This task of pattern grading is a challenging problem, since
the designer has to simultaneously consider multiple criteria that
relate to the state of the garment once worn.
Although shape is largely determined by the underlying body,

there is often substantial room for shape control within the limits
of comfort and physics. The shape and location of the seams on the
body is another design consideration, important for both aesthetic
and functional goals. Apart from these visual criteria, there are
several objectives relating to the deformations induced in clothing
and body. For example, excessive tensile deformations will affect
comfort and may cause fabric and seams to deteriorate prematurely.
Compressions, on the other hand, induce wrinkles that are typically
perceived as design flaws in tight-fitting clothing. Designing pattern
shapes that strike an ideal balance between these criteria requires
time and expertise, both of which are important cost factors.

In this work, we present an automated, optimization-driven fitting
approach for skintight clothing. As the technical core of our method,
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we propose a unified simulation model that represents cloth as a
two-dimensional elastic membrane embedded in the surface of the
deformable bodymesh. This Lagrangian-on-Lagrangian approach re-
moves the need for detecting and handling collisions between body
and cloth. Our approach supports continuous tangential motion
(i.e., sliding) of cloth on smooth body meshes during simulation and
optimization, allowing us to take advantage of efficient continuous
optimization methods. We introduce a set of design objectives that
model various design goals related to shape, comfort, and function.
In particular, our method allows for minimizing traction forces on
the seams, for enforcing lower and upper bounds on deformations to
prevent wrinkles and material failure, for controlling pressure forces
exerted on the body, and for modeling body shapes and contours.

We demonstrate our method on a set of designs that are represen-
tative of different use cases for skintight clothing.We show examples
from casual clothing, personalized sportswear, and patient-specific
compression garments.

2 RELATED WORK
Designing skintight clothing is a multidisciplinary problem that
spans several subfields in visual computing and engineering. We
structure our survey of related work into shape decomposition and
parameterization, coupling between deformable systems, general
garment modeling, and tight-fitting clothing design.

Shape Decomposition & Parameterization. Decomposing a 3D
shape into 2D patches is a fundamental problem in graphics, relevant
to a large number of practical applications. Early solutions [Julius
et al. 2005; Lévy et al. 2002; Sander et al. 2001; Sorkine et al. 2002; Ya-
mauchi et al. 2005; Zhou et al. 2004] rely on bottom-up approaches
to grow quasi-developable regions until a certain developability
threshold is reached. While these methods offer little control over
the patch boundaries or the number of patches to be used, more
recent works [Li et al. 2018b; Poranne et al. 2017] overcome these
limitations through joint optimization of the seams and distortion
of the parameterization.
Designing patterns for manufacturing adds additional layers of

complexity to the problem. Mori et al. [2007] developed a system for
making plush toys, and Skouras et al. [2014] developed a system for
fabrication of inflatable structures. Sharp and Crane [2018] frame
the problem of mesh decomposition as a 3D boundary optimization
over a continuous domain. While each of these methods is effective
for the specific application they pursue, they do not readily extend
to the tightly-coupled mechanics of clothing and body that we target
with our work.

Coupling Deformable Systems. A main difficulty in modeling and
simulating clothing is that body and cloth are in close contact. Ex-
isting methods handle contact using impulses [Bridson et al. 2002;
Harmon et al. 2008], penalty forces [Baraff and Witkin 1998; Har-
mon et al. 2009; Wang 2018] or constraints [Li et al. 2018a; Müller
et al. 2015; Otaduy et al. 2009], and resort to geometric resolu-
tion strategies for missed collision [Baraff et al. 2003; Volino and
Magnenat-Thalmann 2006]. While these models are well-suited for
conventional clothing with few or intermittent collisions, the many

high-pressure contact points inherent to skintight clothing pose
substantial challenges.
An alternative approach for coupling deformable systems in

contact is the so-called Eulerian-on-Lagrangian representation in
which one mechanical system is embedded in (a subspace of) the
other [Cirio et al. 2014, 2015; Fan et al. 2013; Li et al. 2013; Sueda
et al. 2011; Weidner et al. 2018], thus eliminating the need for ex-
plicit contact handling. The hosting system is represented using a
Lagrangian mesh, which in turn provides an Eulerian discretization
for the embedded system. Li et al. [2013] demonstrate this approach
by simulating elastic skin as a single patch in texture space. Unfor-
tunately, this approach does not readily extend to skintight clothing,
which generally requires multiple patches with nontrivial connec-
tions. Instead of using an Eulerian representation for the embedded
system, another approach is to use a second Lagrangian mesh whose
degrees of freedom are expressed relative to the hosting system us-
ing, e.g., barycentric coordinates. However, using a piecewise linear
discretization for the hosting system (e.g., a triangle or tetrahedron
mesh), leads to discontinuous derivatives when the embedded mesh
slides over the hosting mesh. Zehnder et al. [2016] address this prob-
lem by using a smooth representation based on subdivision surfaces
for the hosting system in order to simulate elastic curves on rigid
surfaces. Our approach follows the same strategy for simulation, but
treats both hosting (i.e., body) and embedding (i.e., cloth) systems
as elastic materials.

Garment Modeling. Clothing design is a time- and cost-intensive
process that typically requires the skill and expertise of trained pro-
fessionals. Accelerating and automating this task is therefore a topic
of intense research and existing methods can roughly be divided
into two categories. One line of work uses interactive techniques
such as sketching in order to quickly generate or edit garments [De-
caudin et al. 2006; Robson et al. 2011; Turquin et al. 2007; Umetani
et al. 2011; Wang et al. 2005]. The work by Umetani et al. [2011]
allows designers to edit garments either in pattern or world space
and uses sensitivity analysis to predict the change in equilibrium
shape. Design automation methods adapt existing garments to bod-
ies of different shapes and sizes with little or no user interaction
required [Bartle et al. 2016; Brouet et al. 2012; Meng et al. 2012].
For example, Chen et al. [2015] propose a method for adapting a
garment using the 3D body geometry obtained from a depth camera.
The method by Berthouzoz et al. [2013] parses patterns made by
professional designers, automatically identifies the salient features,
and adapts them to virtual characters. Guan et al. [2012] propose a
method that uses machine learning to generate garment animations
for virtual characters with a wide range of body shapes. While our
method falls into the latter category of design automation, the vari-
ous design objectives that we introduce offer ample room for user
control.

Designing Tight-fitting Clothing. Tight-fitting clothing is ubiqui-
tous in casual fashion, functional sportswear, medical garments, and
many other applications. Despite their prevalence, however, there
has only been relatively little research into design tools for this type
of clothing. Exceptions include the work by Kwok et al.[2016] who
present a method for full-body skintight clothing design. Their focus
is on finding optimal patch configurations that minimize a fitness

ACM Trans. Graph., Vol. 39, No. 4, Article 105. Publication date: July 2020.



Computational Design of Skintight Clothing • 105:3

energy based on heuristic distortion measures. Wang et al. [2008;
2010] present methods to optimize for patterns that achieve pre-
scribed pressure distributions. While this is also one of our goals,
our computational model is more general in that it incorporates
deformations of the body and allows seams to move on the body
during optimization. While these capabilities require higher techni-
cal complexity and sophistication, they allow us to define additional
design objectives for controlling the body shape and fabric stretch
as well as to minimize seam traction and garment sliding during
motion.

3 COMPUTATIONAL MODEL
Our method for optimization-driven pattern design of skintight
clothing builds on a dedicated computational model that we present
in this section. We start by describing our representation that pro-
vides intrinsic coupling between cloth and body (Sec. 3.1). Based on
this representation, we introduce strain energies for the different
materials (Sec. 3.2) and describe the formulation and solution of the
forward simulation problem (Sec. 3.3).

3.1 Lagrangian-on-Lagrangian Representation
The interaction between cloth and body must be modeled in a way
that will allow us to capture the relevant physical phenomena with
sufficient accuracy and efficiency. A conceptually straightforward
approach is to model garment and body using independent dis-
cretizations that are coupled through contact forces [Wang 2018].
For the case of skintight clothing, however, where all parts of the gar-
ment are in tight contact with the body, handling coupling through
penalty forces would lead to high computational costs. We therefore
take a different route that we refer to as a Lagrangian-On-Lagrangian
approach: while the body is discretized into a tetrahedral mesh, we
represent the garment as an embedded triangle mesh whose ver-
tices are expressed relative to the surface of the 3D body mesh. By
embedding the garment mesh in the surface of the body mesh, we
eliminate the need for collision detection and contact handling while
achieving accurate mechanical coupling between the two systems,
including sliding and pressure forces.

We represent the body as a tetrahedralmeshwith y = (y1, . . . , ym ) ∈

R3n and ȳ = (ȳ1, . . . , ȳm ) ∈ R3n , denoting vertex positions in its
deformed and undeformed configuration, respectively. The rest state
of the garment is defined by collection of 2D mesh patches whose
vertices we denote by x̄i ∈ R2. We assume that the connectivity
between the patches, i.e. which patch boundaries are to be stitched
together, is known. For the deformed configuration of the garment,
let s = (s1, . . . , sn ) denote the vertex positions relative to the de-
formed body mesh y. More concretely, si = (trii ,ui ,vi ) holds the
index trii of the bodymesh triangle containing si and corresponding
local coordinates (ui ,vi ). Using this embedded approach, the vertex
positions x = (x1, . . . , xn ) ∈ R3 of the garment in its deformed
configuration become a function of the corresponding relative po-
sitions s and the deformed body mesh y, i.e., xi = xi (si , y). One
way to define this function is through piece-wise linear interpola-
tion, in which case si are simply barycentric coordinates and xi
become convex combinations of the corresponding triangle vertices
yj . While conceptually simple, a central drawback of this approach

is the fact that, since x is linear on each triangle, its derivatives
are discontinuous across triangles. This discontinuity is already a
severe problem for simulation, and it makes optimization grind to a
halt in suboptimal configurations.

To achieve sufficient smoothness without introducing additional
variables or constraints, we follow the approach by Zehnder et al.
[2016] and turn to subdivision surfaces. More concretely, we use
Loop subdivision and define xi (si , y) as the positions on the corre-
sponding limit surface, which is C2-continuous everywhere except
near irregular vertices and whose derivatives can be evaluated at
arbitrary locations [Stam 1998]. The additional smoothness greatly
benefits both simulation and optimization, but since Loop subdivi-
sion is not interpolatory, there is a slight discrepancy between cloth
and body surfaces. However, since this difference quickly dimin-
ishes with increasing mesh resolution, we consider this approach
an acceptable compromise.

3.2 Material Modeling
To arrive at the system of equations that govern static equilibrium
configurations of the cloth-body system, we must first define how
deformations relate to strain energy and how to discretize the cor-
responding quantities.

Body. We use linear tetrahedron finite elements to discretize the
body. To define the strain energy for a given tetrahedron element,
we first introduce the finite-element interpolation for its deformed
and undeformed geometry as

y(u) =
4∑
i

Ni (u)yi and ȳ(u) =
4∑
i

Ni (u)ȳi , (1)

where u ∈ Ωe ⊂ R3 are rest state coordinates from the undeformed
element’s parametric domain Ωe and Ni : Ωe → R are the four
linear basis functions uniquely defined through Ni (ȳj ) = δi j . The
deformation of the element is described by its deformation gradient
FB and the corresponding right Cauchy-Green tensor CB , which
are defined as

FB =
∂y
∂ȳ

and CB = FTBFB , (2)

respectively. We model the body as a Neo-Hookean solid (see, e.g.,
[Bonet and Wood 2008]), whose energy density function is defined
as

Wbody(C) =
µ

2
(Ī1(C) − 3) +

λ

2
(J (C) − 1)2 , (3)

where J = detC1/2
B and Ī1 = J−2/3CB . To obtain the elastic energy

per element, we integrate (3) over the tetrahedron’s undeformed do-
main. Since the basis functions are linear, the deformation gradient
and consequently the energy density are constant over the element.
The total strain energy therefore follows as

Ubody =
∑
e
U e

body =
∑
e
V eWbody(C

e
B ) , (4)

whereV e is per-element volume in the undeformed configuration.
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Cloth. Since the mechanics of the cloth are dominated by in-plane
deformation, we use linear triangle finite elements, so called Con-
stant Strain Triangles, for discretization. Although skintight clothing
is mostly stretched, there are typically regions in which elements
experience compression. Unlike their response to stretching, fabrics
oppose very little resistance to compression and instead wrinkle
immediately. Modeling this behavior in a finite element setting is
challenging, as standard material models exhibit equal resistance to
stretching and compression at the origin. We therefore turn to ten-
sion field theory [Pipkin 1986] to define a relaxed strain energy that
does not penalize compression while offering sufficient smoothness
for simulation and optimization. We largely follow Skouras et al.
[2014] but instead of using a rubber-like material model, we use the
St.Venant-Kirchhoff model (StVK) which is better suited for fabric
simulation [Volino et al. 2009]. In analogy to the volumetric setting
described above, we start with the finite-element interpolation for
deformed and undeformed geometry,

x(v) =
3∑
i

Ni (v)xi and x̄(v) =
3∑
i

Ni (v)x̄i , (5)

where v ∈ ΩC ⊂ R2 are rest state coordinates parameterized over
the undeformed triangle’s domain ΩC and Ni : ΩC → R are its
three linear basis functions. We likewise introduce the deformation
gradient FC and the corresponding right Cauchy-Green tensor CC ,

FC =
∂x
∂x̄

and CC = FTCFC . (6)

It is worth noting that, since x ∈ R3 and x̄ ∈ R2, the deformation
gradient FC is a 3×2-matrix andCC is 2×2-matrix describing the de-
formation of the CST element with respect to rest state coordinates.
Its eigenvalues λ1 ≥ λ2 represent the maximum and minimum
stretch squared. Finally, after introducing the 2D Green-Lagrange
strain as EC = 1

2 (CC − I2) with I2 the 2 × 2 identity matrix, we can
define the StVK strain energy density function as

WStVK =
λ

2
tr(E)2 + µtr(E2) , (7)

where λ and µ are the Lamé material parameters. To arrive at
a relaxed form of the StVK energy that does not penalize com-
pressions, we define three energy regimes whose activation de-
pends on the element’s principal stretches, i.e., the eigenvalues of
CC . If λ2 ≤ λ1 < 1.0, the element is slack and its energy van-
ishes. If the minimum stretch λ2 is less than its energetic minimum
λ̄2(λ1) = argminλ2

WStVK while the maximum stretch λ1 > 1.0, the
element is wrinkled and the energy has to be modified such that
the stress in the direction of minimum stretch vanishes. If λ1 ≥ 1
and λ2 ≥ λ̄2(λ1), the element is taut and the regular StVK energy is
used. To implement these changes, we rewrite the StVK energy in
terms of principal stretches as

WStVK =
λ

8
(λ1 + λ2 − 2)2 +

µ

4
[
(λ1 − 1)2 + (λ2 − 1)2

]
. (8)

Noting that the energetic minimum for λ2 is

λ̄2(λ1) = argminλ2
WStVK(λ1) =

2λ + 2µ − λλ1
λ + 2µ

, (9)

we define the relaxed energy model for StVK as

Wcloth(λ1, λ2) =


0 λ1 < 1, λ2 < 1
WStVK(λ1, λ̄2(λ1)) λ1 ≥ 1, λ2 < λ̄2(λ1)

WStVK(λ1, λ2) otherwise .
(10)

It should be noted that this energy density function is only C1-
continuous with respect to the principal stretches. Since our opti-
mization algorithm requires continuous second derivatives of the
energy, we smooth the discontinuous transitions in the forces using
quadratic interpolation [Skouras et al. 2014]. Since the deformation
gradient and the energy density are constant for each triangle ele-
ment, the strain energy for the cloth follows in analogy to the solid
case as

Ucloth =
∑
e
U e

cloth =
∑
e

tAeWcloth(λ
e
1 , λ

e
2 ) , (11)

where Ae is the per-triangle area in the undeformed configuration
and t the thickness of the fabric.

Seams. When sewing patterns together to create the garment, the
seams will generally exhibit a stiffer response to stretching than the
base fabric: seams involve at least two layers of fabric and the yarn
and the compaction that they create further increases stiffness. The
precise material properties depend on the type of seam and yarn
material and can be determined experimentally [Pabst et al. 2008].
Our model incorporates seam stiffening through tensile elements
that are added to the boundary of the patches. To this end, we
introduce an additional energy for each seam edge

Useam =
1
2
wt

E

l0
(l − l0)

2 , (12)

where E is the Young’smodulus of the seam,w and t are its width and
depth respectively, and l and l0 denote the deformed and undeformed
length of the seam edge.

3.3 Simulation
With all individual energies defined, the total potential energy of
the coupled cloth-body system follows as

U = Ucloth(x(s, y)) +Useam(x(s, y)) +Ubody(y) . (13)

In order for this system to be in equilibrium, the derivative of (13)
must vanish with respect to the degrees of freedom describing the
deformed configuration, i.e.,

fs(s) =
∂Ucloth
∂s

+
∂Useam
∂s

= 0 , (14)

fy(y) =
∂Ubody

∂y
+
∂Ucloth
∂y

+
∂Useam
∂y

= 0 , (15)

where fy are net body forces, and fs are generalized forces acting
on the degrees of freedom for the cloth. To simplify notation, we
rewrite the equilibrium conditions as

g(q) = (fs(s), fy(y)) = 0 , q = (s, y) (16)

where q denotes the vector holding all degrees of freedom of the
coupled system. We compute equilibrium configurations by solving
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Eq. (16) using Newton’s method. Each iteration requires the solution
of a linear system of the form

∂2U

∂q2 ∆q = −
∂U

∂q
. (17)

The matrix of this system—i.e., the Hessian of the total energy—may
become indefinite during simulation, in which case we add exponen-
tially increasing diagonal regularization until it can be factorized
with Cholesky decomposition.

Subdivision Representation and Vertex Migration. The limit geom-
etry of the subdivision surface for a given triangle k is determined
through the one-ring of surrounding vertices as

x(u,v) =
K∑
i=1

LKi (u,v)yi(k ) , (18)

where LKi are the Loop subdivision basis functions and yi(k) selects
the corresponding body vertices for the patch. It should be noted
that the derivatives of the cloth energy in Eq. (14) and (15),

∂Ucloth
∂s

=
∂Ucloth
∂x

∂x
∂s

and
∂Ucloth
∂y

=
∂Ucloth
∂x

∂x
∂y
, (19)

require the Jacobian of (18) with respect to local coordinates s as
well as the derivatives with respect to the vertices y. Likewise,
computing the Hessian in (17) requires the second derivatives of
(18). For regular vertices (K = 12), the Loop basis functions and their
derivatives can be computed analytically. For irregular vertices, we
use the numerical evaluation scheme due to Stam [1998].

As the cloth slides over the body during simulation, vertices may
migrate from one triangle to another. The subdivision representation
ensures that these transitions are almost always C2-continuous and
at worst C1-continuous near irregular vertices. Nevertheless, since
the local coordinate systems of neighboring triangles are generally
different, we have to update the search direction such that

∂xn
∂s

∆sn =
∂xo
∂s

∆so , (20)

where the indices o and n refer to the old and new triangle, respec-
tively.

4 OPTIMIZATION
Based on the forward simulation model introduced in the previous
section, we build an optimization-driven pattern design algorithm
that we describe next. We start by stating the design problem in its
generic form as

min T (x(q), p) s.t. g(q) = 0 , (21)

where q = (s, y) as before, g(q) are equilibrium constraints given
through (16), T is a combination of design objectives and regulariz-
ers, and p are design parameters controlling the shape of the cloth
patterns. Instead of modeling the equilibrium constraints explicitly
using Lagrange multipliers, we use sensitivity analysis to arrive
at a reduced-dimensional, unconstrained minimization problem in
which only the design parameters appear as variables.

Sensitivity Analysis. For every admissible choice of design param-
eters p, there exists a locally-unique equilibrium configuration q
such that q is effectively a function of p, i.e., q = q(p). The map
between p and q is given implicitly through the equilibrium con-
straints g(q, p) = 0, whose explicit dependence on p is due to the
cloth forces fs depending on the pattern shapes; see Eq. (16). Around
a given equilibrium pair (q, p), any change to the design parameters
will entail corresponding changes to the configuration such that the
system is again in equilibrium, which implies that

dg
dq
=
∂g
∂p
+
∂g
∂q
∂q
∂p
= 0 . (22)

Using this observation, we can express the objective gradient as

dT

dp
=
∂T

∂p
+
∂q
∂p

T ∂T

∂q
=
∂T

∂p
−
∂g
∂p

T ∂g
∂q

−1 ∂T

∂q
, (23)

We note that this way of computing the objective gradient—also
known as adjoint sensitivity analysis—requires the solution of a
linear system whose matrix is the same as for the forward problem
(17). For faster convergence, we use this gradient in combination
with L-BFGS [Nocedal and Wright 2006] and line search for robust-
ness. Besides the linear solve, each iteration of L-BFGS requires
the solution of one or several forward problems to compute the
equilibrium configuration for updated parameters.

Pattern Parametrization. The shapes of the cloth patterns are
defined completely through their boundaries, which in turn are con-
trolled by the design parameters p. Nevertheless, evaluating elastic
energies and their derivatives requires triangle meshes and we must
therefore determine the position of interior vertices as a function
of the boundary shape. For this purpose, we use bi-harmonic coor-
dinates [Wang et al. 2015] and express the location of the pattern
mesh vertices x̄ as a linear function of the design parameters p given
by the matrix W of bi-harmonic weights, x̄ =Wp.

Under extreme deformations of the path boundary, the optimizer
may fail to find a next iteration were the elements are well-shaped.
When this happens, we resample the boundary and isotropically
remesh the patches.

4.1 Regularizers
In addition to the design goals that we describe in Sec. 5, the objective
function T in Eq. (21) also includes several regularizers that ensure
well-shaped patterns and manufacturability.

Seam Compatibility. Connecting two patches in a given seam re-
quires the corresponding patch boundaries to have the same length.
To enforce this compatibility condition during optimization, we
penalize length deviations for corresponding edges eleft and eright
from different sides of the seam have as

RSeamLen =
∑
i

[(eileft


2 −
eiright


2

)2
]
. (24)

Patch Boundary. We generally prefer patch boundaries that are
smooth and, excepting corners, discourage sharp features with a
penalty term based on the discrete bending energy from [Bergou
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et al. 2008] as

RSmooth =
∑

(i, j)∈B

κ2
i j

∥ei ∥ +
ej ,

where B is the set of pairs of consecutive edges on the pattern
boundary with integrated curvature

κi j =
2ei ⊥ ej

∥ei ∥
ej + ei · ej .

To prevent too close approach between neighboring boundary ver-
tices, we furthermore use the energy defined in Eq. (24) to penalize
differences in length between two consecutive edges.

Patch Compactness. To prevent patterns from becoming arbitrar-
ily thin during optimization, we introduce a compactness term that
penalizes small ratios of Euclidean and on-boundary distance be-
tween two boundary vertices. Since for any pair of boundary vertices
there are two possible on-boundary paths, we choose the initially
shortest one and keep it for the remainder of the optimization. For
two given boundary vertices pi , pj we compute this ratio as

ρi j =

pi − pj


2∑k=j
k=i+1 ∥pk − pk−1∥2

, (25)

where pk represent vertices in the path from pi to pj . The corre-
sponding penalty term is defined as RComp =

∑
i
∑
j R

i j
Comp where

R
i j
Comp =

{(
ρi j − rD

)4
ρi j ≤ rD

0 ρi j > rD
(26)

where rD is a threshold modeling the minimum admissible ratio.

Forces on Boundary. When designing skintight clothing, it is often
desirable to prescribe the location of the garment boundaries relative
to the body. Examples include the top of the waistband for a pair of
pants, or the boundaries of awet-suit close to the knee. To implement
these constraints, we fix vertices on the boundary of the garment
to corresponding target locations on the body. However, doing so
can lead to large tangential forces on the garment boundary. We
therefore encourage traction-free boundaries through the penalty
term

RFixed =
∑
i ∈F

∥bi ∥2
2 where bi =

dU

dsi
, (27)

and F is the index set of fixed boundary vertices.

5 DESIGN OBJECTIVES
Our optimization-driven pattern design framework is completed
by a set of design objectives that can be combined according to the
requirements of a given application.We first introduce the individual
objectives, then provide examples in Sec. 6.

5.1 Shape Objective
Within the limits set by physics and comfort, skintight clothing
often provides room for shaping the underlying body. Our coupled
model allows us to exploit this ability in our automated pattern

design framework. For this purpose, we introduce a shape objec-
tive that measures the distance between the current deformed cloth
and a given target shape. For better shape approximation, we avoid
restrictive per-vertex correspondence and instead use a distance-
field approach based on implicit moving least squares (IMLS) sur-
faces [Öztireli et al. 2009]. The corresponding objective is defined
as

Tshape =
∑
i

∑
k

(∑
k nk · (xi − ck )ϕ(∥xi − ck ∥)

ϕ(∥xi − ck ∥)

)2
, (28)

where ck are the vertices of the target shape and ϕ is a locally
supported kernel function,

ϕ(r ) =

(
1 −

r2

h2

)4
, (29)

that vanishes beyond the cut-off distance h.

5.2 Stretch & Compression Objective
The amount of stretch that a garment experiences once worn is an
important design consideration for skintight clothing. For instance,
a tight fit can improve aerodynamic efficiency by reducing wind
resistance in applications such as cycling. Then again, excessive
stretch can cause material fatigue and reduce the lifetime of a gar-
ment. We therefore introduce an objective that allows designers to
impose target values for minimum and maximum stretch. To this
end, we first define a per-element objective as

T estretch(λ
e
i ) =


Ae (λei − λmin)

2 λei < λmin ,

Ae (λei − λmax)2 λei > λmax ,

0 λmin < λ
e
i < λmax ,

(30)

where are λei with i = {1, 2} are the eigenvalues of the element’s
right Cauchy-Green tensor CC (6), λmin ≤ λei ≤ λmax is the range
of admissible stretch and Ae is the area of the undeformed element.
The total objective simply sums up all per-element contributions as

Tstretch =
∑
e

∑
i ∈{1,2}

[
T estretch(λ

e
i )
]
.

It should be noted that, since CC is a 2 × 2 matrix, its eigenvalues
and their derivatives can be determined analytically.

In addition to defining the range of preferred stretch values, this
objective also serves the purpose of penalizing wrinkled and slack
elements. The latter are particularly troublesome as they can induce
ill-conditioning in the Hessian at equilibrium, which causes prob-
lems for both simulation and optimization. To avoid these degener-
ate cases, we use the stretch objective for bounding the minimum
stretch in all our examples.

5.3 Pressure Objective
Controlling the pressure that the fabric exerts on the body is an
important feature for medical garments such as diabetic wear or
post-surgery pressure masks. With these applications in mind, we
introduce a design objective that allows the user to indicate a range
of preferred pressure values.

Using the definition of pressure as the normal force per unit area,
an intuitive discrete pressure definition is obtained as the normal
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force per vertex divided by its corresponding area. While the normal
force is readily computed in our model, there are many ways of
defining per-vertex area and each definition will potentially lead
to different pressure distributions. We experimented with several
alternatives, and while many of them work well for regular meshes
, we found that none of them provided satisfying pressure distribu-
tions for general meshes. Fig. 2 reveals the noisy discrete pressure
distribution obtained when using Voronoi areas [Meyer et al. 2003]
on an example whose analytical solution is constant pressure.
In order to avoid these discretization artefacts, we seek an alter-

native definition of pressure in the continuous setting. Turning to
fluid mechanics, we find such a definition in the generalized Young-
Laplace equation due to Wang et al. [2013], which describes the
difference in pressure across a thin membrane in terms of interface
curvature and stress. The generalized Young Laplace equation reads

p = t tr(σΛ) , (31)

where Λ is the shape operator, σ is the Cauchy stress tensor, and t
is the thickness of the cloth. We discretize this expression on a per-
element basis using the discrete shape operator based on mid-edge
normals by Grinspun et al. [2006]. This operator is defined as

Λe =
∑

i=1,2,3

θi + 2siϕi
2Ae li

ti tTi (32)

where i enumerates the edge of a given element e , li are corre-
sponding edge lengths, ti are in-plane normals to the edge vectors,
si ∈ {−1, 1}, and θi are signed angles between the normals of the
faces shared by the corresponding edge. The auxiliary variables ϕi ,
which determine the mid-edge normals, are obtained by minimizing

ψ =
∑
e

Ae tr(Λ2
e ) , (33)

which is quadratic in ϕ and can therefore be minimized by solving
a single linear system. We furthermore note that, for any choice
of x, there is a unique minimizer such that ϕ effectively becomes
a function of x, i.e., ϕ = ϕ(x). Having determined the auxiliary
variables, we can compute per-element pressures and define the
pressure objective as

Tpressure =
∑
e

Ae (pe − p̂e )
2 , (34)

where p̂e are target pressure values. When evaluating the gradient
for this objective with respect to the design parameters p, we also
have to account for the auxiliary variables ϕ = ϕ(x),

dTpressure

dp
=
∂Tpressure

∂p
+
∂x
∂p

T (
∂Tpressure

∂x
+
∂ϕ

∂x

T ∂Tpressure

∂ϕ

)
.

(35)
Instead of evaluating the entire sensitivity matrices ∂x

∂p and ∂ϕ
∂x , we

use adjoint sensitivity analysis for both corresponding terms, which
amounts to an additional linear solve per gradient evaluation.

Unlike the discrete pressures based on per-vertex areas, our new
approach leads to accurate pressure distributions even for unstruc-
tured meshes with many irregular vertices and a wide range of
element aspect ratios; see Fig. 2 for a comparison.

Fig. 2. Error in pressure for a piece of cloth stretched on a cylinder of radius
1.0. Left: per-vertex force divided by per-vertex Voronoi area. Right: our
approach based on the Young-Laplace equation. The error is computed with
respect to the analytical solution and clamped at 15%.

5.4 Seam Traction Objective
The most vulnerable areas of sewn garments are typically along
the seams. It is therefore a natural goal to optimize for patterns
that minimize seam stress and thus increase garment life span and
reliability. For each cloth element adjacent to a seam, we evaluate
the second Piola-Kirchhoff stress tensor Si [Bonet and Wood 2008],
which relates traction forces to areas in the undeformed configura-
tion, and compute the traction in the direction n, perpendicular to
the seam. We then penalize seam traction as

Tseam =
∑
i ∈T

l i0tSini · ni , with Si = 2
∂W i

cloth
∂CC

, (36)

where T is the set of all seam-adjacent elements, l i0 is the length of
the seam in the undeformed configuration, and t is the thickness of
the fabric. We illustrate this optimization in Fig. 1 where a helical
seam pattern yields lower stress on the seam than a straight seam
pattern.

5.5 Sliding Objective for Multiple Poses
While the objectives introduced so far all refer to a single body
pose, they can readily be extended to incorporate multiple poses.
However, an additional aspect that arises when considering a range
of motion instead of a single pose is garment sliding. Running and
cycling, for instance, are applications where sustained tangential
motion of the garment relative to the body can lead to discomfort
and even injury.

Motivated by this example, we introduce a design objective that
aims at minimizing garment sliding for a given range of motion.
To this end, we start by defining a neutral body pose y0 and a
set of target poses (y1, . . . , yn ) that represent the range of motion
to be considered. We first compute the equilibrium configuration
q0 for the main pose and use the resulting local coordinates s0
to determine deformed cloth positions (x1, . . . , xn ) for each target
pose. In the absence of friction, these configurations are generally
not in equilibrium and would lead to cloth sliding over the body.
By accounting for friction, however, we can determine whether the
unbalanced tangential forces can be compensated by friction forces.
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a) b) c)

Fig. 3. Shape optimization on a cylindrical elastic body: a) initial body shape and patterns. b) Target shape of a conically tapered cylinder along with optimized
patterns and corresponding simulation result. c) Target shape of an "hourglass" cylinder with optimized patterns and corresponding simulation result.

a) b) c) d)

Fig. 4. Shape optimization on a virtual human: a) Shape before (left) and after (right) optimization. b) Silhouette view: initial (dark blue), optimized (red) and
target (black). c) Optimized patterns. d) Two selected patterns before (top) and after optimization (bottom).

To this end, we implement a simple, isotropic Coulomb-type friction
model and define tangential and friction forces magnitudes for each
cloth vertex j and each pose i as

f ti, j = | |fi, j − (fi, j · ni, j )ni, j | | , and f ci, j = µfi, j · ni, j ,

respectively, where fi, j is the elastic force from the cloth, ni, j is
the normal given by the subdivision surface and µ is the friction
coefficient. To penalize excessive tangential forces that would lead
to sliding, we define the objective

T islide =
∑
i
(Ti, j )

2 , Ti, j =

{
f ti, j − f ci, j f ti, j ≥ f ci, j
0 otherwise .

(37)

The gradient for this objective depends only on the local coordinates
of the neutral pose and is obtained as

dTslide
dp

=
∑
i

∂T islide
∂p

+

(
∂xi
∂s0

∂s0
∂p

)T ∂T islide
∂xi

, (38)

where ∂s0
∂p is the sensitivity matrix of the neutral pose, and ∂xi

∂s0
maps

changes in local coordinates for the neutral pose to corresponding
world-space changes for the target poses.

6 RESULTS AND DISCUSSION
We demonstrate our optimization-driven pattern design method
on a set of examples inspired from fashion, sportswear, and med-
ical garment applications. We start with examples that highlight

the impact of individual design objectives, then proceed to further
evaluation and performance data.

6.1 Impact of Design Objectives
The design objectives can be combined arbitrarily as required by
the application. All our examples use the principal stretch objective
in order to discourage the formation of slack elements. However,
we choose to activate only one additional objective per example in
order to provide a clearer impression of their individual impact.

Shape Objective. We demonstrate our shape objective on two ex-
amples. The first one, shown in Fig. 3, uses a cylindrical shape as
the initial body pose (Fig. 3a-top) and two target shapes: a coni-
cally tapered cylinder (Fig. 3b) and an hourglass shape (Fig. 3c).
For both of these examples the cloth is composed of two rectangu-
lar patches (Fig. 3a-bottom) which conform to the surface of the
cylinder. The optimized patterns are shown in Fig. 3b,c-bottom, and
the corresponding simulation results indicate that optimizing pat-
terns with our shape objective is an effective means of controlling
body deformations. It should be noted, however, that the space of
physically-feasible body deformations is fairly constrained as, e.g.,
volume changes cannot be achieved in this way. Nevertheless, our
method is able to approximate mostly feasible target shapes with
good accuracy.
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0.000 2000. 1000.

a)

b)

c)

Fig. 5. Pressure objective illustrated on a sphere with a target pressure of
1000N /m2. a) initial and b) optimized patterns. c) pressure distributions for
initial patterns (left) and optimized patterns (right).

a)

0.000 1250. 3000. 5000.

b) c)

Fig. 6. Pattern optimization for a pressure mask. Areas shown in white
represent pressure within the admissible range, black indicates negative
pressure. a) Mask patterns, before optimization (left) and after optimization
(right) b) patterns and simulation result before and c) after optimization.

The second example for the shape objective inspired by shapewear
applications. Fig. 4 shows a pair of pants with its pattern atlas before
and after optimization. The difference between the target shape,
initial simulation result, and simulation result after optimization
is show in Fig. 4b. While the changes in geometry are perhaps
less obvious than in the previous example, the changes in pattern

shape are substantial and the corresponding simulation result closely
approximates the target shape.

Seam Traction Objective. To demonstrate the impact of our seam
traction objective, we use it for optimizing the patterns of a pair
of long pants as shown in Fig. 1. We start with an initial pattern
set that leads to about 30% stretch along the circumference of the
legs. Since the seams are initially perpendicular to the direction of
maximum stretch, they experience excessive traction forces. We
then optimize the patterns using our seam-traction objective as well
as the stretch objective in order to maintain the initial deformation.
The optimization yields a pattern layout that leads to helical seams
spiraling around the legs. The increased length and changed orienta-
tion leads to an overall improvement of 13% in traction force density.
The optimized design thus reduces the risk of material failure while
offering an aesthetically-interesting seam layout.

Pressure Objective. To evaluate the effectiveness of our pressure
objective, we start with a simple example in which we optimize the
patterns for a sphere such that the resulting pressure is as close
as possible to 1000N /m2 everywhere. As can be seen in Fig. 5, the
patterns change drastically during optimization and converge to
elongated, winding shapes whose seams form a complex interlock-
ing pattern on the 3D surface. Interestingly, this result is very similar
to the one obtained by Skouras et al. [2014], who optimized patterns
such that the inflated shape is as spherical as possible. It is not sur-
prising then that optimizing for constant pressure yields patterns
that result in an almost spherical shape.

Our second example for the pressure objective is a post-surgery
compression mask consisting of two patterns. We set the admissible
range of pressure to 1250 − 3000 N /m2, which is consistent with
the target pressure of medical surgery masks. As shown in Fig.
6, the simulation result for the initial patterns exhibits excessive
pressure for high-curvature regions such as the chin or the top
of the head. Furthermore, there are many elements around the
neck that exhibit negative pressure (shown in black), which occurs
when cloth is stretching in concave regions. It should be noted
that negative pressure is an artefact of our model and, rather than
pulling on the body, the fabric would lift off the surface in reality.
Nevertheless, it is an effective indicator for this problem and by
penalizing negative pressure during optimization, we can prevent
undesirable fabric lift-off. This effect can be observed in Fig. 6-right,
where the optimized patterns achieve pressure values for sensitive
areas within the desired range. While some elements with negative
pressure remain in concave regions such as the temples or the
hollows of the cheeks, their number is largely reduced.

Sliding Objective. We demonstrate the effectiveness of our sliding
objective on a pair of long pants and four poses selected from a
running sequence. We again prescribe a stretch target in the circum-
ferential direction of the legs of 30% and set the friction coefficient to
µ = 0.3. As can be seen in Fig. 7, the pelvic area exhibits substantial
tangential forces which would translate into unwelcome sliding
during the motion. The optimized patterns lead to greatly reduced
unbalanced tangential forces.
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Fig. 7. Pattern optimization using our garment sliding objective. Left: the four input poses. Middle: tangential forces above the static friction limit in the pelvic
area before (top) and after (bottom) optimization. Right: initial (top) and optimized (bottom) patterns.

a) b)

c) d) e)

)

Fig. 8. Impact of seam stiffness. a) Patterns used in the simulation without
seam stiffness and b) corresponding simulation result. c) Simulation result
when using the patterns from a) with increased seam stiffness. d) Patterns
optimized with seam stiffness and e) corresponding simulation result. f)
Silhouette comparison between c) (blue) and e) (red).

6.2 Additional Evaluation
Impact of Seams. By accounting for seam stiffening in simulation,

our method can anticipate the corresponding effects during pattern
optimization. We demonstrate the impact of seams the example
shown in Fig. 8. We simulate an initial pattern set (Fig. 8a) on a
deformable sphere without seam stiffening, resulting in a shrunk
version of the sphere (Fig. 8c). However, when the same patches
are simulated again with added seam stiffness, the resulting shape
exhibits clearly visible deformations around the seams (Fig. 8d).
When optimizing the patterns with seam stiffness, using the initially
deformed sphere as target (Fig. 8b), our method adjusts the patterns
such that the resulting shape approximates well the target (Fig. 8e).
One central advantage offered by our optimization-driven ap-

proach over manual pattern design is that a given pattern layout
can be automatically customized to a variety of body shapes. We
demonstrate this ability by optimizing the patterns of wet-suit de-
sign, shown in Fig. 9, for four different body shapes using the same
objective (30% target stretch) in all cases. Our method automatically

grades the patterns for each body shape such that the target stretch
is maintained (Fig. 9-right).

Performance and Statistics. In all our results, we start from an
initial guess obtained by scaling down the patterns computed with
a geometric flattening method [Sheffer et al. 2005]. By scaling down
patterns, we avoid slack elements at the start of the optimization.
Each simulation is considered converged once the norm of the
unbalanced forces falls below 10−6. The optimization is considered
converged once the norm of the objective gradient falls below 10−3.
We ran our examples on a machine with an Intel Core i7-5820k
processor and 8GB of RAM. In terms of material parameters, we
use a Young modulus of 24.78KPa and a Poisson’s ratio of 0.49
for the body. For the cloth, we chose a thickness of 0.1mm and a
Young modulus of 30MPa for the mask, 5.4MPa for the pants with a
Poisson’s ratio of 0.33 for all examples. Statistics for all experiments
are listed in Table 1.

7 CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Fig. 10. Stretched cloth on a con-
cave surface (left) results in pulling
forces that can produce artifacts in
the body (right).

Wepresented an optimization-
driven approach to automat-
ically generate patterns for
skintight clothing. As the core
of our method, we proposed
a computational model that
captures the mechanics of the
clothing, the underlying body,
and their mutual interaction
within a unified approach. We
furthermore described a set of
design objectives that encode
shape, comfort, and mechan-
ical aspects of the garments.
Our results indicate that our
approach is able to reliably
compute optimal patterns for
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Fig. 9. Automatic pattern grading of a wet-suit design on a range of body shapes. Left : optimized patterns for the first body shape. Middle: four different body
shapes shown in split view with pattern layout to the left and color-coded maximum stretch with corresponding directions to the right. Right : one of the
patches optimized for each body shape.

Table 1. Summary of parameters and performance for all our experiments.

Model # Patterns # Remesh-
ing steps

# iterations Time per it-
eration [s]

Initial
objective

Final objec-
tive

Cylinder tapered (Fig. 3b) 2 0 346 12.2 5433.58 106.952
Cylinder hourglass (Fig. 3c) 2 0 386 10.1 2241.66 222.638
Pants stretch (Fig. 1) 4 0 903 6.34 133.06 5.7029
Pants seam traction (Fig. 1) 4 1 4160 5.87 38.6195 28.4453
Pants shape (Fig. 4) 8 0 1408 19.2 66.9126 14.3992
Sphere pressure (Fig. 5) 3 5 2714 4.66 9547.41 205.544
Sphere shape (Fig. 8) 3 0 1001 22.3 22524.6 217.663
Mask pressure (Fig. 6) 2 0 849 6.40 55.4356 1.54963
Sliding pants (Fig. 7) 4 0 914 7.48 120.566 5.22695
Wetsuit regular (Fig. 9) 12 0 1629 5.84 130.225 19.7035
Wetsuit athletic (Fig. 9) 12 0 1735 5.57 139.744 21.1511
Wetsuit overweight (Fig. 9) 12 0 1353 6.60 177.552 25.8128
Wetsuit kid (Fig. 9) 12 0 1561 5.72 115.961 18.3544

a broad range of garments and body shapes, even when substantial
design changes are required.

Our current approach has several limitations, most of which indi-
cate promising directions for future work. Embedding the garment
in the surface of the body simplifies both simulation and optimiza-
tion. Nevertheless, it comes at the cost of introducing incorrect
behaviour for concave surfaces: whereas real cloth will lift off the
body when stretched over a concave region, in our model it gen-
erates traction forces that pull the body outwards as illustrated in
the inset figure. While we can detect these situations and optimize
patterns to avoid negative pressure, not all cases can be resolved
in this way. In the future, it would interesting to combine our ap-
proach with a conventional cloth model that is activated for regions
in which the cloth separates from the body.

All our examples use a single isotropic cloth material for all pat-
terns. Natural extensions include accounting for material anisotropy,
and to combine patterns with different materials for shaping and
reinforcement.
We use subdivision surfaces to convert the piece-wise linear

boundary of the body mesh into a continuous surface. While the
improved smoothness facilitates simulation and optimization, we do

currently not use the same representation for simulating the body.
Increasing the resolution of the body mesh decreases the discrep-
ancy between these representations, but a more elegant solution
would be to use subdivision finite elements [Burkhart et al. 2010].
As a related limitation, the cloth mesh should have a higher reso-
lution than the body mesh, since it could otherwise lead to body
vertices not experiencing any coupling force. Finally, while our
method allows for bounding the maximum stretch in a garment
once worn, we do not take into account deformations that occur
during dressing. Especially for tight-fitting garments made of stiffer
fabrics, this question can have an important impact on the design.
Integrating dressing simulation into the design process is an inter-
esting direction, and the work of Clegg et al. [2015] seems a good
starting point.
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