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A Second-Order Advection-Reflection Solver
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Zehnder et al. [2018] recently introduced an advection-reflection method for fluid simulation that dramatically
reduces artificial dissipation. We establish a connection between their method and the implicit midpoint time
integration scheme, and present a simple modification to obtain an advection-reflection scheme with second-
order accuracy in time. We compare with existing alternatives, including a second-order semi-Lagrangian
method based on BDF2, and demonstrate the improved energy-preservation properties.
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1 INTRODUCTION
Visual fluid simulation is the simultaneous pursuit of efficiency, stability, and detail. Large strides
toward this goal were made with the introduction of Stam’s operator splitting scheme [Stam 1999]
that combines semi-Lagrangian advection and pressure projection. While unprecedented in terms
of stability and efficiency, the first-order nature of this scheme in both space and time leads to
suppression of detail. Subsequent work improved on the spatial and temporal accuracy of the
advection step with higher-order schemes [Fedkiw et al. 2001; Kim et al. 2008], temporal error
correction [Kim et al. 2005, 2007; Selle et al. 2008], and particle-in-cell methods [Fu et al. 2017;
Jiang et al. 2015; Zhu and Bridson 2005]. While alternative representations using vorticity have
been proposed [Angelidis and Neyret 2005; Chern et al. 2016; Elcott et al. 2007; Park and Kim 2005;
Weißmann and Pinkall 2010], semi-Lagrangian methods remain the dominant approach for smoke
animation.
Identifying energy loss due to pressure projection as a main cause of error, Zhang et al. [2015]

track and re-inject vorticity to increase the visual richness of animations. The approach by Sato et al.
[2018] integrates pressure over multiple time steps, leading to reduced dissipation and, consequently,
improved detail preservation. Departing from the common advection-projection paradigm, Zehnder
et al. [2018] show that constraint reflection leads to better energy preservation.
Since all of these methods improve on either advection or constraint projection but not both,

none of them achieves overall second-order accuracy. By establishing a connection between the
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Fig. 1. The result of a collision between two vortex rings. Left : BDF2. Right : our second-order advection-
reflection method. The emergence of the secondary vortical structure around the circumference of the primary
vortices phenomenologically matches the behavior observed in real experiments [Lim and Nickels 1992].

advection-reflection scheme of Zehnder et al. [2018] and the implicit midpoint scheme, we derive a
simple modification that leads to an overall second-order accurate method. Complementing our
formal proof, we furthermore provide numerical evidence for the improved accuracy of our new
advection-reflection scheme on a set of 2D and 3D examples. Our comparisons with an alternative
second-order accurate method based on BDF2 [Min and Gibou 2006; Xiu and Karniadakis 2001]
indicate that the reflective nature of our method is indeed vital for detail-preservation and stability.

2 SECOND-ORDER SEMI-LAGRANGIAN SCHEMES
2.1 Background and Notation
We consider the incompressible Euler equations

ρ
Du
Dt
= −∇p + f , (1a)

∇ · u = 0, (1b)

and for simplicity assume ρ = 1. We use x(t) to denote a characteristic curve, i.e. the trajectory of
a Lagrangian particle satisfying Ûx(t) = u(x(t), t). Using the total derivative, we can alternatively
express (1) as

d
dt
u(x(t), t) = −∇p(x(t)) + f(x(t)) (2)

subject to the incompressibility constraint ∇ · u = 0.
Consider a time step from time t0 to t1 = t0 + ∆t . For brevity, we will denote x(t0) = x0,

u(·, t0) = u0(·), and similarly for x1 and u1. To numerically solve equation (2) over the time step,
we must (i) approximate the Lagrangian trajectory x(t), and (ii) discretize the time derivative d/dt .

In semi-Lagrangian schemes, the trajectory through the time-varying velocity field u is approxi-
mated by backtracing through a “frozen” velocity field v instead. Starting from the final position x1,
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we integrate Ûx = v(x) backward in time to find the approximate initial position x̃0. Depending on
the choice of v, this is either a first-order or second-order approximation of the true initial position
x0. Then for any scalar or vector field f at time t0, we can define the advection operator A[f ; v,∆t]
via

A[f ; v,∆t](x1) = f (x̃0), (3)

which represents the field transported along the Lagrangian trajectories to time t1.
For future use, we also define the pressure projection operator P[v] which yields the divergence-

free component of a vector field v, computed via a Poisson solve

P[v] = v − ∇p, (4a)

where ∇2p = ∇ · v. (4b)

As discussed by Zehnder et al. [2018], P is an orthogonal projection with respect to the kinetic
energy norm and therefore gives rise to an energy-preserving reflection operator R = 2P − I .

Different choices for the discretization of the time derivative d/dt lead to different semi-Lagrangian
schemes. We discuss these choices next.

2.2 Advection-Projection as Backward Euler
The conventional advection-projection splitting scheme [Bridson 2015; Stam 1999] can be obtained
by discretizing d/dt via backward Euler,

u1(x1) − u0(x0)
∆t

= −∇p1(x1) + f1(x1), (5a)

∇ · u1(x1) = 0. (5b)

Here, the material point locations x1 at the end of the time step are given by the grid nodes. The
unknown departure points x0 are approximated to first order by backtracing through u0 itself. This
leads to the scheme

u0a = A[u0; u0,∆t], (6a)

u1 = P[u0a + ∆t f
1]. (6b)

2.3 BDF2
Before semi-Lagrangian methods were adopted in graphics, they were widely used in meteorology
[Staniforth and CÃťtÃľ 1991] with second-order variants being the predominant choice [Robert
1981, 1982]. For incompressible fluids, Xiu and Karniadakis [2001] used BDF2 with spectral element
discretization in space, and subsequent work by Min and Gibou [2006] did so with an octree
discretization. In both cases, the temporal discretization is of the following form:

3
2u

1(x1) − 2u0(x0) + 1
2u

−1(x−1)
∆t

= −∇p1(x1) + f1(x1), (7a)

∇ · u1(x1) = 0, (7b)

where the superscript −1 denotes values at time t−1, the start of the previous time step.
For second-order accuracy, the departure point x−1 is approximated by backtracing x1 through

u0 for time 2∆t ; similarly, x0 is approximated by backtracing through 3
2u

0 − 1
2u

−1 for time ∆t . This
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Fig. 2. A geometric interpretation of advection-reflection solvers in the presence of external forces. Left:
The first-order advection-reflection method performs advection (blue) using the nearest divergence-free
velocity field (dashed blue), and applies external forces (green) after advection in both half-steps. Right: Our
second-order method performs advection using an approximation of u1 in the second-half-step, and always
applies external forces at the mid-step.

yields the method

u−1a = A[u−1; u0, 2∆t], (8a)

u0a = A[u0; 32u
0 −

1
2
u−1,∆t], (8b)

u1 = P[ 43u
0
a −

1
3u

−1
a +

2
3∆t f

1]. (8c)

2.4 Advection-Reflection as Implicit Midpoint
The advection-reflection method introduced by Zehnder et al. [2018] implements the following
update rule:

ũ1/2 = A[u0; u0, 12∆t] +
1
2∆t f

1/2, (9a)

u1/2 = P[ũ1/2], (9b)

û1/2 = 2u1/2 − ũ1/2, (9c)

ũ1 = A[û1/2; u1/2, 12∆t] +
1
2∆t f

1/2, (9d)

u1 = P[ũ1]. (9e)

The steps of this method are illustrated schematically in Fig. 2 (left). While this scheme preserves
energy better than conventional advection-projection methods, it inherits their first-order accuracy.
To achieve higher-order accuracy in the advection-reflection scheme, we start by drawing an

analogy to the second-order accurate implicit midpoint method. To this end we discretize the total
derivative d/dt by evaluating all velocities, positions, and forces at mid-step. Accordingly, we apply
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a first constraint projection at the middle of the time interval and a final projection at the end:

u1/2(x1/2) − u0(x0)
1
2∆t

= −∇p1/2(x1/2) + f1/2(x1/2), (10a)

∇ · u1/2(x1/2) = 0, (10b)

ũ1(x1) − u1/2(x1/2)
1
2∆t

= −∇p1/2(x1/2) + f1/2(x1/2), (10c)

u1(x1) − ũ1(x1) = ∇λ(x1), (10d)

∇ · u1(x1) = 0. (10e)

Achieving second-order accuracy requires sufficiently accurate approximations of x0 and x1/2. While
semi-Lagrangian advection typically yields only first-order accuracy, accuracy can be elevated by
composing forward and backward approximations of the Lagrangian trajectories, i.e. advecting
through u0 and u1 in the two half-steps. As we show in Sec. 3.1, this causes the leading-order errors
to cancel out. In fact, it is sufficient to use a second-order accurate approximation of u1, namely
2u1/2 − u0. This yields our proposed method:

u0a = A[u0; u0, 12∆t], (11a)

u1/2 = P[u0a +
1
2∆t f

1/2], (11b)

û1/2 = 2u1/2 − u0a , (11c)

û1/2a = A[û1/2; 2u1/2 − u0, 12∆t], (11d)

u1 = P[û1/2a ]. (11e)

It should be noted that (11c) is equivalent to û1/2 = R[u0a] + ∆t P[f1/2]. Moreover, the mid-step
velocity u1/2 is the same as that in the original advection-reflection method—the only changes
are the velocity used for advection in (d) and the application of external forces, which are now
correctly evaluated at mid-step. This method is illustrated schematically in Fig. 2 (right), making
apparent its more symmetric nature.

3 ANALYSIS
3.1 Accuracy and Stability
In Appendix A we show that the modified advection-reflection method has second-order temporal
accuracy. The key steps of our accuracy analysis are summarized below.
First, implicit midpoint with constraint projections is by itself second-order accurate, so if we

could directly solve the equations (10) using the true characteristics, we would have a second-
order accurate solution for u1. Let the mid-step and final velocities computed by this hypothetical
algorithm be v1/2 and v1. Then the error in v1 is O(∆t3).
Second, we estimate the error caused by backtracing through the frozen velocity fields u0 and

2u1/2 − u0. These are shown to be 1
8∆t

2∇u · Ûu + O(∆t3) and − 1
8∆t

2∇u · Ûu + O(∆t3), respectively.
Thus, the O(∆t2) terms in the total error cancel out, and the local error of the algorithm is O(∆t3).
Note that for this bound to hold with discretized backtracing, the backtracing itself must also be
second-order accurate; we use explicit midpoint in our implementation.

For stability, the proof in the absence of external forces is the same as Zehnder et al. [2018]: the
final projection reduces energy, all other operations conserve or decrease energy. In the presence of
external forces, we experimentally observed that the total energy is generally not monotonic for our
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Fig. 3. Velocity amplification factor in circular flow. We take two time steps of length ∆t/2 for advection-
projection and BDF2, versus one time step of length ∆t for advection-reflection solvers. Red : advection-
projection. Orange: BDF2. Blue: advection-reflection. Green: second-order advection-reflection.

method. However, the same limitations apply for BDF2 and first-order advection-reflection. Indeed,
even energy-preserving fluid simulation methods [Cui et al. 2018; De Witt et al. 2012; Mullen et al.
2009] have not been proven to guarantee stability under conservative external forces. Nevertheless,
our experiments with (conservative) buoyancy forces indicate that the deviation from constant
energy is smaller for our second-order version than for its competitors; see Fig. 5 (left).

3.2 Circular Flow
To better understand the behavior of these schemes, we consider a scenario that admits a closed-
form solution. Let u be a circularly symmetric flow around the origin with radially varying angular
velocity ω(r ), i.e. u(r ,θ ) = rω(r )eθ in polar coordinates. This is a steady state, so u should remain
constant over time. We assume that exact backtracing is performed, in which case x0 is simply x1

rotated by −ω(∥x1∥)∆t , so the velocity after advection is independent of ω at other r (Fig. 3, left).
Projection simply annihilates the radial component of the velocity, and the flow remains circularly
symmetric, u1(r ,θ ) = rω1(r )eθ .

In Fig. 3 (right) we plot the velocity amplification factor,ω1/ω0, as a function ofω0∆t . This should
equal 1 in the ideal case; |ω1/ω0 | < 1 indicates numerical dissipation. Since the advection-reflection
methods require two pressure solves per time step, for a fairer comparison we ran advection-
projection and BDF2 with two time steps of length ∆t/2. The analysis of BDF2 is complicated by
the fact that the first step depends on the velocity at an earlier time; since the true solution is steady,
we set this velocity to ω0 as well.

It can be observed that all second-order accurate methods show very low dissipation when
ω0∆t < 1.5. However, BDF2 has |ω1/ω0 | > 1 for some ω0∆t > 4, showing that it can amplify
high-vorticity flows. This amplification is a potential source of noise, explaining the artifacts that
we observed, e.g., in the vortex ring collision example (see accompanying video).

Fig. 3 also reveals that while both advection-reflection methods are very close to energy-
preserving for small vorticities, for large ones the second-order version begins to lose energy
somewhat earlier. For example, the point where ω1/ω0 = 0.9 occurs at ω0∆t ≈ 1.99 for the first-
order method, but at ω0∆t ≈ 1.56 for the second-order method. Therefore, if the only concern is to
preserve as much kinetic energy as possible in highly turbulent animations, the first-order method
may be preferable. However, as we show in the following section, it exhibits less desirable behavior
in the presence of potential energy from forces like buoyancy.
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4 RESULTS
We validate the behavior of our second-order advection-reflection method in the context of
practically-relevant fluid animations by applying to a set of 2D and 3D examples. As in Sec-
tion 3.2, for all comparisons we run advection-projection and BDF2 with half the time step used for
the advection-reflection schemes to obtain comparable computation time. In practice, this choice
constitutes a slight advantage for BDF2, since it has an additional advection operation, and a slight
disadvantage for advection-reflection, since the final pre-projection velocity (ũ1 or û1/2a ) is usually
close to divergence-free so the second projection is significantly cheaper.

We start with a simple 2D example with nontrivial dynamics, adopted from Straka et al. [1993],
albeit without viscosity. A negatively buoyant bubble of cold smoke with initial temperature profile

T (x ,y) =

{
− 1

2 (cos(πL(x ,y)) + 1) if L(x ,y) < 1,
0 otherwise

(12)

where L(x ,y) = (x/4)2+((y−3)/2)2, sinks under gravity and spreads along the bottom of the domain.
Fig. 4 shows results with different time step sizes. The results for the second-order reflection scheme
are less sensitive to time step size than other methods, and less noisy at large time steps than BDF2.
Furthermore, as shown in Fig. 5 (left), we observe that the energy behavior of BDF2 varies much
more with changes in step size: at large time steps, it loses more energy than second-order advection-
reflection, while at small time steps, it can even gain energy. Existing advection-projection and
advection-reflection methods are also seen to gain energy early on in the simulation; since they do
not apply external forces at the mid-step, the energy is not transferred correctly beween potential
and kinetic modes as the bubble first sinks.
We further validate the temporal accuracy of our method by computing the velocity field at a

fixed time t = 32 using different time steps ∆t = 32, 16, 8, 4, 2. We use the solution computed with
BDF2 and a time step of ∆t = 1/2 as the reference. The L2 difference to the reference solution is
plotted in Fig. 5 (right). Our results are consistent with the theoretical order of accuracy: advection-
projection and Zehnder et al. [2018]’s advection-reflection are first-order, while BDF2 and our
modified advection-reflection are second-order.

In a second 2D example, we apply the second-order advection-reflection solver to the well-known
Karman vortex street example and compare its behavior to BDF2. While both methods produce
quasi-regular shedding, BDF2 leads to smearing and stretching of the vortices (Fig. 6, bottom).
Our method produces clean and well-separated vortices (Fig. 6, bottom), underlining the fact that
numerical accuracy alone does not imply structure preservation.
To study the behavior of our method for 3D fluid animations with complex turbulent behavior,

we simulate the collision between two vortex rings—an example that exhibits both turbulence
and structure. This scenario has been studied by Lim and Nickels [1992] and recordings of the
real-world experiments are available online; see, e.g., Sandlin [2018]. In our simulation, we added a
small amount of curl noise to the initial velocities to encourage symmetry breaking. As can be seen
in the accompanying video, upon collision, the two vortex rings initially spread in the plane normal
to their relative velocity followed by the formation of secondary vortices. It can be seen from
the video that BDF2 produces an excessive amount of turbulent detail, but it lacks the structure
expected from the real-world experiment. By contrast, our method produces the secondary vortical
structure around the circumference of the primary vortex rings; see also Fig. 1.
We also apply our method to the standard example of a smoke plume rising due to buoyancy

(Fig. 7), and the same scenario in the presence of an obstacle (Fig. 8). Both advection-reflection
methods produce qualitatively similar results, showing large-scale vortical structures as well as
fine-scale turbulence. It can be seen in the supplementary video that the vortical structures tend
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Fig. 5. Left : Total energy of different solvers on the cold bubble scenario for different time step sizes, normalized
by the initial energy. Dotted, dashed and solid lines represent ∆t = 4, ∆t = 2, and ∆t = 1 respectively. Right :
Convergence of different solvers as a function of time step.

Fig. 6. Karman vortex street example. Bottom: BDF2 leads to stretched and smeared-out vortices. Top: our
second-order advection-reflection solver produces clean and well-separated vortices.

to be more coherent over time for the second-order variant. Nevertheless, for these examples
BDF2 gives arguably the most visually compelling results, since the additional noise leads to the
production of noticeably stronger turbulence.
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Fig. 7. A rising plume of hot smoke. Left : BDF2. Middle: Advection-reflection. Right : Second-order advection-
reflection.

5 CONCLUSION
We presented a simple modification of the first-order advection-reflection method by Zehnder et al.
[2018] that achieves second-order accuracy in time. The resulting method is shown to exhibit better
energy behavior and structure preservation than existing methods, as well as less sensitivity to
time step size. Visually, the results compare favourably to those of the first-order method in all
cases, and to those of BDF2 in most. As such, we argue that there is little reason not to use our
second-order scheme in place of first-order advection-reflection, as it comes at virtually no extra
cost.
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Fig. 8. A smoke plume collides with an obstacle. Left : BDF2.Middle: Advection-reflection. Right : Second-order
advection-reflection.
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this hypothetical scheme from the practical algorithm (11), we write it using v instead of u:

v0a(x
1/2) = u0(x0), (13a)

v1/2 = P[v0a +
1
2∆t f

1/2], (13b)

v̂1/2 = R[v0a] + ∆t P[f
1/2], (13c)

v̂1/2a (x1) = v̂1/2(x1/2), (13d)

v1 = P[v̂1/2a ]. (13e)

Unfortunately, given x1/2 we do not have x0, and given x1 we do not have either, because the
characteristic curves of the solution u are not known a priori. Therefore it is also necessary to
analyze the error introduced by semi-Lagrangian advection through the constant velocity fields u0
and ũ1.

Consider the first half-step. We would like to find the departure point x0 = x(t0) by solving the
ODE Ûx(t) = u(x(t), t) with boundary condition x(t1/2) = x1/2. Semi-Lagrangian advection instead
solves Û̃x(t) = u0(x̃(t)) = u(x̃(t), t0) with x̃(t1/2) = x1/2, yielding an approximation x̃0. A Taylor
expansion about (x1/2, t1/2) shows that the exact and computed departure points are

x0 = x1/2 − 1
2∆t u

1/2 + 1
8∆t

2(∇u1/2 · u1/2 + Ûu) +O(∆t3), (14)

x̃0 = x1/2 − 1
2∆t u

0 + 1
8∆t

2∇u0 · u0 +O(∆t3), (15)

as long as x̃0 is computed with at least second-order accurate backtracing. The difference between
the two is

x̃0 − x0 = 1
2∆t(u

1/2 − u0) − 1
8∆t

2 Ûu +O(∆t3)

= 1
8∆t

2 Ûu +O(∆t3), (16)

since the difference between ∆t2∇u1/2 · u1/2 and ∆t2∇u0 · u0 can be absorbed into the O(∆t3) term.
Finally, having estimated x̃0 − x0, we can estimate the difference in the advected velocity fields
u0a(x1/2) = u0(x̃0) and v0a(x1/2) = u0(x0). Taking a Taylor expansion of u0 about x0, we find that

u0a(x
1/2) − v0a(x

1/2) = u0(x̃0) − u0(x0)

= ∆t2( 18∇u
0 · Ûu︸    ︷︷    ︸

e0

) +O(∆t3). (17)

We then immediately obtain

u1/2 − v1/2 = ∆t2P[e0] +O(∆t3), (18)

û1/2 − v̂1/2 = ∆t2R[e0] +O(∆t3). (19)

In the second half-step of our advection-reflection method, we perform advection using the
extrapolated velocity field ũ1 = 2u1/2 − u0. Here u1/2 has been obtained by a stable fluids half-step,
which is first-order accurate, so u1/2 − u(·, t1/2) = O(∆t2). It follows that ũ1 − u(·, t1) = O(∆t2). A
similar analysis as before then gives

x̃1/2 − x1/2 = − 1
8∆t

2 Ûu +O(∆t3). (20)
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Finally, we can write the error after the second half-step, û1/2a (x1) − v̂1/2a (x1), as the sum of two
terms:

û1/2a (x1) − v̂1/2a (x1)

= û1/2(x̃1/2) − v̂1/2(x1/2) (21)

=
(
û1/2(x̃1/2) − û1/2(x1/2)

)
+
(
û1/2(x1/2) − v̂1/2(x1/2)

)
. (22)

The first term is the error due to semi-Lagrangian advection,

û1/2(x̃1/2) − û1/2(x1/2) = −∆t2( 18∇û
1/2 · Ûu︸      ︷︷      ︸
e1/2

) +O(∆t3), (23)

while the second is the error due to the discrepancy between û1/2 and v̂1/2,

û1/2(x1/2) − v̂1/2(x1/2) = −∆t2R[e0](x1/2) +O(∆t3). (24)
Together, these add up to

û1/2a (x1) − v̂1/2a (x1) = −∆t2e1/2(x1) + ∆t2R[e0](x1/2) +O(∆t3). (25)

Now e1/2 can be taken to be evaluated at x1 instead, since this change only contributes another
O(∆t3) term to the right-hand side. The total error of the reflection method is therefore

u1 − v1 = P[û1/2a − v̂1/2a ]

= ∆t2P[e0 − e1/2] +O(∆t3). (26)

Since e0 = 1
8∇u

0 · Ûu and e1/2 = 1
8∇û

1/2 · Ûu, the difference between the two is O(∆t). This makes the
total error O(∆t3), proving the second-order accuracy of the method.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 2, Article 16. Publication date: July 2019.


	Abstract
	1 Introduction
	2 Second-Order Semi-Lagrangian Schemes
	2.1 Background and Notation
	2.2 Advection-Projection as Backward Euler
	2.3 BDF2
	2.4 Advection-Reflection as Implicit Midpoint

	3 Analysis
	3.1 Accuracy and Stability
	3.2 Circular Flow

	4 Results
	5 Conclusion
	Acknowledgments
	References
	A Accuracy of Second-Order Advection-Reflection

