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Fig. 1. Our method enables users to quickly create complex Kirchho�-Plateau Surfaces such as this automotive concept design. Le� : the 3D shapes designed
in this way are equilibrium configurations of pre-stretched fabric membranes structured with planar rod networks (inset figure). Middle: we fabricate these
designs using a filament-based 3D printer that embeds rods directly into the fabric. Right : once cut out, the physical prototype deploys into the desired shape.

We propose a computational tool for designing Kirchho�-Plateau Surfaces—
planar rod networks embedded in pre-stretched fabric that deploy into com-
plex, three-dimensional shapes. While Kirchho�-Plateau Surfaces o�er an
intriguing and expressive design space, navigating this space is made di�-
cult by the highly nonlinear nature of the underlying mechanical problem.
In order to tackle this challenge, we propose a user-guided but computer-
assisted approach that combines an e�cient forward simulation model
with a dedicated optimization algorithm in order to implement a powerful
set of design tools. We demonstrate our method by designing a diverse
set of complex-shaped Kirchho�-Plateau Surfaces, each validated through
physically-fabricated prototypes.
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1 INTRODUCTION
Minimal surfaces have intrigued scientists and engineers for more
than 250 years. �eir origins trace back to a problem originally
raised by Lagrange that later became known as the Plateau problem:
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�nding a surface of minimum area that spans a given rigid boundary
curve. From an application point of view, minimal surfaces are ap-
preciated not only for their smooth aesthetic appearance, but also for
their inherent material e�ciency and structural stability. For these
reasons, minimal surfaces are widely used for light-weight and cost-
e�cient structures, ranging from large-scale roofs, canopies, and
shade systems, to acoustic de�ectors, light di�users, and decorative
elements for interior design.

One common way of bringing designs of minimal surfaces to prac-
tice is by using, e.g., �berglass or metal rods embedded in stretched
fabric, with the added bene�t that all components are planar and
easy to manufacture. However, the advantages in terms of weight,
cost, and fabrication come at the price of a much more di�cult
design problem—the Generalized Plateau Problem of �nding a mini-
mal surface whose tensile forces are in equilibrium with the bend
and twist forces of a given elastic rod [Giomi and Mahadevan 2012;
Giusteri et al. 2016].

In this work, we explore the design and fabrication of Kirchho�-
Plateau Surfaces (KPS), i.e., networks of thin elastic rods embedded
in pre-stretched membranes. We focus on surfaces that can be
manufactured by 3D-printing planar rods onto stretched fabric—
a process that was beautifully demonstrated in recent work by
[Guberan and Clopath 2016]. Designing in this space gives rise
to several challenges. First, the path to stable surfaces is fraught
with perils such as nonlinearities, unstable equilibrium points, and
bifurcations. Second, the space of possible designs is restricted
by the fact that (i) KPS consist of minimal surface patches that,
inherently, can only assume shapes with vanishing mean curvature,
and that (ii) the boundaries of the minimal surface patches can only
assume shapes corresponding to equilibrium states of planar rods.

In light of these challenges, we cannot expect that there exists a
KPS that closely approximates a given target shape in the general
case. But even when precise shape approximation is not possible, the
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Fig. 2. The design space of KPS is highly nonlinear and the e�ects of parameter changes o�en di�icult to predict. The images show a simple square frame
(120 × 120 mm) with di�erent fabric pre-stretch factors s , normal rod width wn (governing out-of-plane resistance), and binormal rod width wb (governing
in-plane resistance). From le� to right: (i) (s = 1.3, wn = 0.2 mm, wb = 0.4 mm) base shape; (ii) (s = 1.6, wn = 0.2 mm, wb = 0.4 mm) higher stretch
increases curvature; (iii) (s = 1.3, wn = 0.2 mm, wb = 0.2 mm) lower in-plane resistance leads to sagging and wrinkling; (iv) (s = 1.3, wn = 0.4 mm,
wb = 0.4 mm) higher out-of-plane resistance leads to a completely di�erent stable configuration.

space of KPS nevertheless provides ample room for shape abstraction
and interpretation—qualities found in humans, rather than machines.
We therefore turn away from fully-automated solutions in favor of
a user-guided but computer-assisted design paradigm.

Overview & Contributions. We propose a fabrication-oriented
design tool for KPS—planar rod networks embedded in pre-stretched
fabric that deploy into complex, three-dimensional shapes. Similar
in spirit to mesh-based modeling tools, the user is responsible for
creating the topology of the rod network and for transforming it into
the desired shape. During this process, the user can draw from a set
of modeling tools that implement simple editing operations directly
on the equilibrium state of the surface. Visualization tools that
indicate possible changes conforming to the editing goals further
assist the user in making informed decisions.

�is seemingly simple design approach is enabled by simulation
and optimization algorithms that translate editing operations into
corresponding parameter updates and analyze the current structure
in order to provide feedback on the space of feasible edits. Our
simulation and optimization algorithms involve several novel fea-
tures. We introduce tools for the exploration of the design space
through eigen analysis of the sensitivity matrix subject to design
goals. Owing to the complex and constrained space of KPS, we
furthermore cast inverse design operations as a two-step optimiza-
tion process: . �rst, in order to interactively explore �rst-order
feasible target shapes, we combine e�cient constraint projection
with sensitivity-based linearization of equilibrium constraints; sec-
ond, given a �rst-order feasible target shape, we perform nonlinear
constrained optimization to compute fully-feasible designs. We
demonstrate our method by designing a diverse set of complex-
shaped KPS, each validated by physically-fabricated prototypes.

2 RELATED WORK
Surface Design. Our work targets the design of a class of physical

surfaces whose shapes are governed by a particular set of equilib-
rium constraints. Surface design has been in the focus of computer
graphics ever since its beginnings. Apart from digital surfaces made
for virtual worlds, one important physical application domain is
architectural geometry [Po�mann et al. 2015]. Surfaces from this cat-
egory are o�en subject to constraints relating, e.g., to the planarity
of polygonal faces [Liu et al. 2006; Vaxman 2014] or to compression-
only self-supporting structures [Block and Ochsendorf 2007; Vouga
et al. 2012]. In addition to enforcing such constraints numerically,

exploring the resulting design spaces is a challenging problem as
well [Deng et al. 2015; Yang et al. 2011].

As one particular class, developable surfaces have a�racted a lot
of a�ention from computer graphics [Decaudin et al. 2006; Kilian
et al. 2008; Solomon et al. 2012; Tang et al. 2016], as they arise natu-
rally when creating 3D surfaces from �at, inextensible material such
as paper, plastic, or sti� fabric. Based on the principle of auxetic
materials, Konakovic et al. [2016] were able to create doubly-curved
surfaces by structuring planar sheets of quasi-inextensible mate-
rial. While developable surfaces are characterized by zero Gaussian
curvature, requiring vanishing mean curvature leads to minimal
surfaces, which have been intensively studied in mathematics [Dz-
iuk and Hutchinson 1999; Meeks and Pérez 2011] and also computer
graphics [Crane et al. 2011; Pan et al. 2012; Tang et al. 2014]. In the
context of architecture and engineering, minimal surfaces appear
naturally when designing tensile membrane structures; see, e.g.,
[Koohestani 2014]. One particular line of recent work [Lienhard
et al. 2013], [Van Mele et al. 2013] has studied the forward design of
membrane structures coupled with bending-active elements. How-
ever, the inverse problem of automatically determining parameters
such that the resulting equilibrium shape approximates given design
goals has, to the best of our knowledge, not been investigated so far.

Beyond minimal surfaces and the related Plateau problem, there
has been an increasing interest in the generalized Plateau problem
which, instead of assuming a rigid boundary, considers the case
of Euler elastica [Giomi and Mahadevan 2012] and Kirchho� rods
[Giusteri et al. 2017]. While these works focus primarily on ques-
tions of existence and uniqueness, we investigate the problem of
modeling such surfaces for the purpose of fabrication.

Inverse Design of Physical Surfaces. �e shape of elastic structures
is governed by equilibrium conditions, requiring balance between
internal and external forces such as self-weight and applied loads.
�e problem of designing structures that assume desired equilibrium
shapes under gravity has been studied extensively in computer
graphics, e.g., in the context of hair [Derouet-Jourdan et al. 2010]
and cloth [Twigg and Kačić-Alesić 2011] animation, as well as for
real-world se�ings such as self-supporting surfaces [de Goes et al.
2013; Liu et al. 2013; Panozzo et al. 2013; Vouga et al. 2012; Whiting
et al. 2009], custom-shaped elastic solids [Chen et al. 2014], or more
generalized shape optimization problems [Musialski et al. 2016].
Our work shares some aspects of these inverse design problems
but di�ers in the sense that the driving force is membrane stretch
which, unlike gravity, depends on the state of the system.
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Several works have considered the problem of designing physi-
cal surfaces from �at panels with applications to plush [Mori and
Igarashi 2007], clothing [Bartle et al. 2016; Umetani et al. 2011],
in�atable structures [Skouras et al. 2014], thermo-formed models
[Schüller et al. 2016], and surfaces made from interlocking elements
[Skouras et al. 2015]. Rather than automatically generating a seam
network for the input surface, Skouras et al. [2014] leave the topol-
ogy problem to the user and instead optimize performance such as to
enable fast design iterations. Our approach follows the same spirit,
but instead of optimizing for a �xed target shape, our method allows
the user to explore the space of feasible designs using a set of editing
tools that leverage simulation and optimization. �is same para-
digm of computer-assisted but user-guided design is implemented
by several previous approaches, including the work by Umetani et
al. [2011], who use �rst-order sensitivity analysis in order to quickly
predict the impact of parameter changes on the equilibrium shape of
clothing. As one di�erence, our method extends this forward design
approach by inverse modeling tools that, for user-speci�ed editing
objectives, automatically compute �rst-order optimal directions in
parameter-space. Allowing the user to directly edit the 3D equilib-
rium state was also the driving motivation for the work of Bartle
et al. [2016]. However, while their method uses a heuristics-based,
gradient-free approach speci�cally tailored to the problem of pat-
tern optimization for garment modeling, we capitalize on derivative
information in order to implement fast forward and inverse design
tools.

Another line of recent work has explored the use of elastic rods
for physical surface design [Miguel et al. 2016; Pérez et al. 2015;
Zehnder et al. 2016]. �e method by Pérez et al. [2015] automat-
ically computes optimal parameters for networks of elastic rods
such as to approximate a set of target shapes under given external
loads. Our method leverages the same set of parameters, i.e., the
centerline geometry and cross-section shape of the rods, but instead
of designing 3D networks that balance applied loads, our method
computes a 2D layout optimized with respect to membrane forces.
�e approach by Miguel et al. [2016] targets physical surface rep-
resentations using bent wires that securely interlock by virtue of
deformation. Our approach shares the two-dimensional nature of
their design space, but the underlying mechanics are very di�erent.
While all of the above methods, including ours, renounce automatic
topology generation, Zimmer et al. [2014] address exactly this dis-
crete problem, albeit in a context that does not involve equilibrium
constraints. Finally, wire meshes can be considered a special case
of rod networks, but rather than physics-based optimization, their
particular structures motivate a geometric approach as shown by
Garg et al [2014].

Filament-Based 3D Printing. Inspired by the work of Guberan
and Clopath [2016], we use �lament-based 3D printers in order to
structure stretched fabric with embedded elastic rods. Although
we are primarily interested in understanding and navigating the
corresponding design space, this particular manufacturing process
is also a very promising way of fast and inexpensive digital fab-
rication. With a similar motivation, several previous works have
investigated the combination of �lament-based printing with other
media [Mueller et al. 2014] or by printing onto existing objects

[Chen et al. 2015]. �e fabrication process that we pursue in this
work can also bene�t from intelligent so�ware for print path gener-
ation [Zhao et al. 2016] and planning [Hergel and Lefebvre 2014]
in order to alleviate hardware limitations of current �lament-based
printers.

3 KIRCHHOFF-PLATEAU SURFACES
Kirchho�-Plateau Surfaces are �exible structures made from net-
works of elastic rods embedded in pre-stretched textile membranes.
Although fabricated in a planar state, KPS can deploy into complex
three-dimensional shapes that are governed by the balance between
membrane and rod forces. �ese equilibrium shapes are in�uenced
by a number of factors pertaining to the rod network and the mem-
brane. In addition to the material of the rods, their resistance to
bending and twisting is determined by their cross-sectional geom-
etry. By varying this geometry, it is possible to control the ratio
between in-plane and out-of-plane bending sti�ness [Pérez et al.
2015]. Membrane stretch, on the other hand, induces compressions
in the rods, leading to unstable, planar equilibrium con�gurations
that resolve into bending and twisting upon slight perturbations.
As shown in Figure 2, the ratio between membrane stretch and
out-of-plane bending resistance is, e�ectively, a means of control-
ling the amount of curvature in the equilibrium shape. However, a
su�cient amount of membrane stretch is also required to ensure
that the surface remains tense and free of sagging or wrinkling; see
Figure 2-iii.

From a designer’s perspective, the mechanics of KPS alone pro-
vide no direct insight into the space of shapes that can be achieved.
However, even though fabric membranes are not strictly area mini-
mizing, the intuition about KPS can be strengthened by considering
them as piece-wise minimal surfaces: the rod network induces a
decomposition of the surface into membrane patches, each bounded
by a closed loop of rods. As a minimal surface, the area gradient van-
ishes everywhere inside each patch, which is equivalent to vanishing
mean curvature. Since planar KPS con�gurations are generally un-
stable, principal curvatures have the same nonzero magnitude but
opposite sign, leading to strictly negative Gaussian curvature ev-
erywhere inside a patch. Although the constraint on strict equality
of principal curvatures is somewhat mitigated by real-world textile
membranes, the sign constraint still applies: membrane patches can
only assume so called anticlastic shapes with negative Gaussian cur-
vature in every point. Moreover, the fabrication constraint that KPS
must have a planar rest state implies that the 3D rod network must
be embeddable in 2D without compressions, further restricting the
space of possible surfaces. Nevertheless, while a single KPS patch is
necessarily anticlastic, rods introduce discontinuities in the surface
normals of adjacent membrane patches. �anks to this property, it
is possible to approximate surfaces with overall positive Gaussian
curvature by connecting anticlastic patches. Figure 3 shows exam-
ples of diverse shapes that can be obtained by varying the internal
mesh topology of a disk.

In summary, the space of KPS o�ers interesting and complex
3D shapes that can be created using a simple and cost-e�cient 2D
manufacturing process. However, the restrictions on shape and the
complex mapping between parameters and shape make navigating
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Fig. 3. Disks of the same size and pre-stretch produce diverse shapes depending on their internal topology. From le� to right: (i) empty interior; (ii) split rod
on the boundary; (iii) two crossing rods in the interior; (iv) an inner disk connected to the outer boundary.

this space a challenging task without assistance. In seeking a com-
putational tool to help with the design process, a central question
is the balance between control and automation. At one extreme of
the spectrum, a fully-automated solution where the user provides
a target shape and the KPS is determined through simulation and
optimization requires the least amount of user intervention. How-
ever, the restricted shape of KPS will o�en require compromising
between pure approximation quality and aesthetic considerations,
which are di�cult to quantify and automate. At the other end of
the spectrum, manual exploration of the parameter space a�ords a
maximum degree of artistic freedom. However, the nonlinear and
unintuitive relation between parameters and shape can make man-
ual design a tedious and frustrating process. In seeking a middle
ground between those extremes, we opt for a primarily user-guided,
but computer-assisted approach to shape exploration. In particu-
lar, the user is in charge of creating the structure and shape of the
KPS, but can draw from a number of editing and visualization tools
that simplify the design task. While this forward design approach
is seemingly simple, it relies heavily on simulation and optimiza-
tion to implement inverse modeling and visualization tools. �e
computational basis for our approach is described next.

4 COMPUTATIONAL MODEL
In order to enable computer-assisted design of KPS with desired
shapes, we require a computational model for predicting (i) the
equilibrium con�guration for given parameter values, and (ii) the
e�ect that parameter changes have on equilibrium shape. We start
by introducing our parameterization for KPS.

4.1 Parameterization of the Design Space
KPS are characterized by three sets of variables: design parameters,
rest-state con�guration, and deformed con�guration. �e design
parameters uniquely de�ne the rest-state con�guration, from which
the deformed con�guration results through force-equilibrium con-
straints. Due to our planar fabrication process, we parameterize
both membrane and embedded rods in two-dimensional space. �is
fabrication process allows us to control the global stretch of the
membrane, the topology and geometry of the rod mesh, as well
as the width and thickness of the individual rods. Formally, we
parameterize each of these four properties as follows:

• For ease of fabrication, we assume uniform isotropic mem-
brane stretch s ∈ IR.

• We de�ne rod mesh topology by a set of rods R and a set of
junctions J between end-points of the rods.

• We de�ne rod geometry by the positions qi ∈ IR2 of a set of
Q rod control points, which determine the positions of rod
junctions as well as the shapes of individual rods.

• Rod cross-sections are characterized by widthwb,i and thick-
ness wn,i values at rod control points, corresponding to
in-plane and out-of-plane directions, respectively.

In Section 5 we describe several tools for exploring the design
space of KPS as de�ned by the above parameterization. For the
formal description that follows, we conveniently group rod control
points and cross-section widths in a vector of design parameters p =
(q,wn ,wb )

T , with q = (q1, . . . , qQ )
T , wn = (wn,1, . . . ,wn,Q )

T ,
and wb = (wb,1, . . . ,wb,Q )

T .

4.2 Discrete Rods
For convenience in editing and optimization, we represent rods
as Catmull-Rom splines that interpolate the rod control points qi .
For the purpose of simulation, however, we ultimately resort to
the discrete elastic rod model by Bergou et al. [2010; 2008], whose
explicit centerline representation and compact parameterization are
a�ractive for our application—but other models [Bertails et al. 2006;
Spillmann and Teschner 2007] could, in principle, be used as well.
We evaluate each rod spline at a number of equidistant locations in
spline parameter space, yielding a set of R rod vertices that de�ne
piece-wise linear curves for the discrete rod model. We denote as
r̄i ∈ IR2 the rest positions of rod vertices, and group them in a
vector r̄ = (r̄1, . . . , r̄R )T . For a given set of rod control points, the
rest positions of rod vertices are linear functions of the positions of
rod control points, i.e., r̄ = Hq, with H a constant matrix of Hermite
basis function evaluations. We use the same Hermite interpolation
to de�ne smooth cross-section widths at rod vertices.

�e deformation of the rod mesh is characterized by three sets of
degrees of freedom: the positions of rod vertices r = (r1, . . . , rR )T ,
ri ∈ IR3; twist angles ω = (ω1, . . . ,ωE )

T , ωj ∈ IR, between ref-
erence and material frames de�ned at E rod edges; and rotations
of J junctions θ =

(
θ1, . . . ,θ J

)T represented using Euler angles
θk ∈ IR3 [Zehnder et al. 2016].

4.3 Discrete Membrane
We model the membrane based on nonlinear continuum mechanics
discretized using linear triangle �nite elements. More concretely,
we use a St. Venant-Kirchho� (StVK) material model to compute the
internal forces of the deformed fabric. We found this simple nonlin-
ear model su�ciently accurate for our purposes since, for the kind
of material and stretch factors we aim for (≈ 50%), the stress-strain
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relation is barely nonlinear (see, e.g., Miguel et al. [2012]). Although
the material that we used is almost isotropic, our implementation
uses an orthotropic StVK model [Li and Barbič 2014] in order to
accommodate other types of fabrics, if desired. Since the pre-stretch
of the fabric is signi�cant, internal forces are strongly dominated
by membrane forces and bending forces are negligible. However, to
avoid numerical problems when fabric sags, we add weak bending
forces to our membrane model based on discrete shells [Grinspun
et al. 2003].

While the membrane model itself is standard, we additionally
have to account for coupling between the membrane and the rods
embedded in it. Our approach is conceptually similar to the ones
described in [Umetani et al. 2011] and [Skouras et al. 2014], but
our speci�c problem and choice of discretization lead to several
di�erences that we describe below. For the sake of computational
e�ciency and in order to achieve good shape approximation even
for coarse meshes, we opt for an implicit coupling approach through
collocation, i.e., by sharing degrees of freedom between rod and
membrane vertices. To this end, we ask that the triangle mesh
representing the membrane be conforming to the embedded rods
such that, for each rod vertex, there is a collocated membrane vertex.

During design operations, the change of rod vertex positions ef-
fectively induces a change in the rest con�guration of the membrane
mesh. To ensure su�cient mesh quality for simulation, we de�ne
the rest positions for the membrane vertices implicitly as a function
of the rest positions of the rod vertices. To this end, we introduce
rest positions for the M membrane vertices that are not coincident
with rod vertices as 1

s m̄ =
1
s (m̄1, . . . , m̄M )

T , where m̄i ∈ IR2 are
the positions of membrane vertices a�er the pre-stretch s is applied.

Given an initial membrane mesh and a set of rod vertices that
de�ne its boundary, we compute smoothly distributed rest positions
m̄ using harmonic interpolation. �e interpolation weights are com-
puted by requiring vanishing Laplacian coordinates [Sorkine 2005],
which yields a linear system Lm m̄ + Lr r̄ = 0 ⇒ m̄ = −L−1

m Lr r̄,
with (Lm , Lr ) the Laplacian matrix. In practice, we compute cotan-
gent weights for the Laplacian once at initialization, leaving them
constant until remeshing is necessary. �ese constant Laplacian
weights also translate into constant harmonic interpolation weights.
Whenever the quality of any membrane triangle falls below a given
threshold, we remesh using CGAL’s Delaunay triangulation algo-
rithm.

4.4 Static Equilibrium and Sensitivity
�e shape of a KPS is governed by force-equilibrium constraints,

f(p, x̄(p), x) = −∇xE = 0 , (1)

that require the gradient of internal energy E to vanish with re-
spect to all degrees of freedom of the deformed con�guration x =
(r,ω,θ ,m)T . In the above equation, we use E as a shorthand for the
total internal energy and refer to the original works for concrete
expressions for membrane and rod energies. It is also worth noting
that the internal forces depend on the design parameters p both
explicitly, e.g., through the cross-sectional geometry of the rods,
and implicitly through the rest state geometry x̄ = (r̄, 1

s m̄)
T . Given

values for all design parameters, we compute the corresponding
equilibrium state of the KPS by solving (1) using a standard Newton

method with line search and adaptive regularization for increased
robustness.

Our computational design tools, described in Section 5, require
the evaluation of shape changes as a function of design parameter
changes. In order to establish this connection, we observe that any
admissible change in parameters must leave the force constraints
satis�ed. Formally, we have

df
dp
=
∂f
∂p
+
∂f
∂x̄
∂x̄
∂p
+
∂f
∂x
∂x
∂p
= 0 , (2)

from which we obtain the so called sensitivity matrix

S =
∂x
∂p
= −
∂f
∂x

−1 (
∂f
∂p
+
∂f
∂x̄
∂x̄
∂p

)
. (3)

In order for the above expression to be valid, the force Jacobian
∇xf has to be invertible. We eliminate null-spaces due to rigid
transformations in both ∇xf and ∇x̄f by constraining a small set
of (user-selected) vertices in the deformed and rest con�gurations,
respectively. If the system remains singular or inde�nite, we add
a diagonal regularizer and iteratively increase its weight until the
linear solver succeeds.

It is worth mentioning that our choice of discretization yields
a linear relationship between rest-state positions x̄ and design pa-
rameters p and, consequently, the Jacobian ∂x̄

∂p is constant. More
speci�cally, we have

∂r̄
∂q
= H and ∂m̄

∂q
= −L−1

m Lr H . (4)

5 COMPUTATIONAL DESIGN
Building on the computational model described in the previous sec-
tion, we introduce several design tools that allow users to explore
the expressive space of Kirchho� Plateau Surfaces, and to edit their
shape and structure according to aesthetic considerations. In partic-
ular, we describe forward design tools for topology and base shape
editing, a sensitivity analysis tool for design space exploration, and
an inverse design tool for direct shape editing. �ese design tools
make use of three major mathematical elements: fast evaluation of
equilibrium KPS shapes resulting from parametric edits; sensitivity
analysis for fast approximation of the mapping from parametric
edits to their corresponding shape modi�cations; and a two-step
optimization solver that computes parametric changes that realize
desired shape edits.

5.1 Forward Design
During forward design, the user directly modi�es the parameters
listed in Section 4.1 and the resulting KPS is computed automatically
using the equilibrium solver discussed in Section 4.4. �is design
approach proves most useful during the initial stage of the design,
when the user de�nes the overall desired shape, or when topology
or fabric pre-stretch need to be modi�ed to counteract structural
limitations of an intermediate design. While forward design poses
virtually no restrictions on the shapes that can be achieved, it pro-
vides only limited assistance to the user. Nevertheless, we propose
several guidelines based on geometric information as well as other
heuristics that have proven successful in our design experience.
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(i) (ii) (iii)

Fig. 4. Rod Removal. Rods are colored according to their strain with
blue/red denoting highest compression/stretching. (i) Initially, radial rods
are highly compressed and prevent the design from further deforming. (ii)
Removal of a boundary rod relaxes compression in incident radial rods
and increases the ability to bend. (iii) Removal of all boundary leads to
non-hyperbolic shapes with high curvatures.

Alignment of rods with directions of principal curvature. Since the
mean curvature of the membrane vanishes everywhere, rods are
the only elements whose curvature can be directly controlled to
approximate the desired shape. Consequently, we generally place
rods in such a way that they follow lines of principal curvatures or
align with speci�c features.

Anisotropy of patches aligned with principal curvatures. Isotropic
patches with equal width in two orthogonal directions complicate
the design as they favor membrane curvatures that are not aligned
with rods (see Figure 5-ii). Anisotropic patches, on the other hand,
favor curvature in the rod directions, and their shorter sides should
be aligned with the direction of major curvature. Figure 5-iii shows
a cylindrical patch subdivided along the curved direction.

Anisotropy of rod cross-sections. Anisotropic rods with smaller
normal width wn than binormal width wb favor out-of-plane over
in-plane deformations; compare Figure 2-i and Figure 2-iv. Con-
sequently, they favor the alignment of principal curvatures with
rods.

Rod removal to relax compression. �e developability of a target
design is largely determined by the rod mesh, and lack of devel-
opability can be detected by monitoring compression in the rods.
When highly compressed rods are incident to the boundary of the
design, removal of adjacent boundary rods relaxes compression and
enables the exploration of more—or di�erently—curved shapes as

(i) (ii) (iii)

Fig. 5. Patch Anisotropy. The degree of patch anisotropy a�ects how well
a rectangular piece of fabric produces a cylindrical shape. (i) With no subdi-
visions, the patch curves most along the short side and the cylindrical patch
appears laterally compressed. (ii) With subdivision into square patches,
curvatures do not align with rods and the shape twists. (iii) With multiple
subdivisions along the curved direction, the desired shape is achieved, the
short rods curve as desired, and the long rods resist compression.

(i) (ii) (iii)

Fig. 6. Rod Spli�ing. Split rods enable high-curvature features. (i) Bound-
ary rods at the top corners exhibit high compression and prevent further
bending of the mask. (ii), (iii) Spli�ing rods at the top corners and the nose
leads to overall increased curvature and enables sharp features.

shown in Figure 4. We implement the removal of boundary rods by
transforming them into ghost rods, thus avoiding actual topology
changes. Ghost rods are not simulated, but they are necessary for
de�ning the control points that determine the rest positions of the
membrane.

Rod spli�ing at high-curvature features. When a rod is already
bent but does not reach the desired curvature, the curvature of
the membrane can be increased by spli�ing the rod in two. �e
membrane forces will produce a kink at the location of the cut,
which can also be used for aesthetic purposes as shown in Figure 6.

Stretch increase to avoid sagging. If the pre-stretch factor is not
su�ciently high, the equilibrium state of the membrane can exhibit
sagging and wrinkling as shown in Figure 2-iii. We therefore moni-
tor and visualize the principal stretches throughout the fabric and
trigger an increase in pre-stretch whenever the minimum value of
any triangle element falls below a given threshold. In order to mini-
mize deviations from the previous equilibrium shape, an increase
in pre-stretch must be compensated by a corresponding increase in
rod widths to withstand the larger membrane forces.

5.2 Sensitivity Exploration
Due to the complexity of the space of KPS, design goals o�en fall
outside the feasible space. In order to enable shape exploration
while remaining within the feasible space, we visualize the design
space around a given equilibrium shape . �e motivating insight
for this approach is that a singular value decomposition (SVD) of
the sensitivity matrix reveals valuable information about the local
structure of the design space. In particular, the shape changes
corresponding to the dominant, i.e., largest singular values convey in
a concise way the major changes that a given equilibrium shape can
undergo, thus o�ering inspiration for design changes; see Figure 7
for an example.

In practice, analyzing the sensitivity matrix S alone is not su�-
cient as position constraints will signi�cantly impact the resulting
modes. We therefore extend the analysis as follows.

Hard Constraints. During the design process, it is o�en convenient
to prevent parts of the model from moving or deforming. We use
hard constraints to implement design goals such as �xing parts of
the surface to a support structure, or for a�aching disconnected
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Fig. 7. Sensitivity Exploration. A bu�erfly model is deformed using the
two dominant modes of the sensitivity matrix (middle and right columns).
In the bo�om row, hard constraints are imposed on the body of the bu�er-
fly (simulation vertices, not control points), leading to di�erent dominant
modes.

parts of the surface (see Figure 7). Let c(x) = 0 denote the set of
all such positions constraints. If the current con�guration already
ful�lls the constraints, we require that

J∆p = 0 , with J =
∂c
∂x
∂x
∂p
. (5)

To enforce hard constraints to �rst order during editing operations,
it su�ces to post-multiply the sensitivity matrix S by a projection
matrix P,

P = I − JT
(
J JT

)−1
J , (6)

to map arbitrary parameter increments ∆p to deformed state in-
crements ∆x in the null-space of the constraints as ∆x = S P∆p.
�is constraint projection scheme assumes that JJT is invertible,
which is the case if S is full rank and if there are no redundant
constraints. It should be pointed out that this approach to enforcing
hard constraints cannot remove dri� and constraint stabilization is
necessary (see Section 5.3).

Sensitivity Decomposition. We incorporate the e�ect of hard con-
straints by computing the SVD of S P. While we always perform the
full decompostion, we generally only visualize the dominant modes
corresponding to the largest singular values. For each of them, we
take the corresponding right singular vector and multiply it by the
sensitivity to obtain the corresponding change in shape which is
then displayed to the user (see Figure 7).

Using the regular sensitivity S in the decomposition may be mis-
leading since the parameter vector p combines control point posi-
tions and cross-sectional widths, i.e., parameters with very di�erent
scales. To avoid bias, we �rst compute the average column norm of
the sensitivity matrix for both control point and width parameters.
We then normalize the columns in order to exhibit identical average
norms before applying the SVD.

(i) (ii)

(iii) (iv)

Fig. 8. Two-Step Optimization for User-Guided Inverse Design.
Given a base shape (i), the user defines an edit (ii) by translating a subset of
the rod vertices. We interactively optimize for a target shape (iii) subject to
linearized equilibrium constraints. Once the target is accepted by the user,
we compute a full nonlinear optimization to obtain the final shape (iv).

5.3 Inverse Design
In addition to forward exploration of the design space, it is o�en con-
venient to directly specify desired changes to the equilibrium shape.
A standard approach to implementing such inverse design operations
is to have the user de�ne an edit relative to a given equilibrium
con�guration, and to perform nonlinear optimization in order to
�nd a feasible shape that best approximates the user-provided tar-
get. In our se�ing, however, this approach is impractical: due to
the restricted space of KPS, there is no guarantee that the target
shape speci�ed by the user will be close to a feasible con�guration—
and computing the closest feasible shape requires time-consuming
nonlinear optimization. �e resulting delay would interrupt the
design process and the computed shape is not guaranteed to meet
the expectations of the user.

Two-Step Optimization. Due to the complex nature of the design
problem, nonlinear optimization cannot be entirely avoided. In
order to still accelerate the design process, we propose a two-step
optimization approach whose goal is to increase the likelihood of
the user-speci�ed target shape to be close to feasible.

In the �rst step, the user speci�es an edited shape x̃ starting from
a given equilibrium con�guration x0. We subsequently compute a
target shape x∗ by minimizing the distance to the user-provided edit,
subject to linearized equilibrium and position constraints. While
the resulting target shape will generally not satisfy the user input
exactly, this optimization step is very fast allowing for interactive
and progressive exploration. Once a satisfying target x∗ shape is
found, the second step performs a fully-nonlinear optimization to
compute the equilibrium shape x that best matches the target. In
this way, the time-consuming nonlinear optimization is executed
only for target designs that are likely feasible.
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Target Optimization. In order to specify desired changes to the
equilibrium shape, the user can select sets of vertices in the de-
formed con�guration and apply rotations, translations, or scaling
transformations to them (Figure 8-ii). We also provide a so� selec-
tion tool, allowing the user to specify per-vertex weights w ∈ [0, 1]
that determine to what extent a given vertex is in�uenced by the
edited shape during optimization. �e edited shape x̃ de�ned in
this way is generally infeasible, i.e., there is no choice of admissible
parameter values such that the corresponding equilibrium con�g-
uration coincides exactly with the user-speci�ed target. However,
performing a nonlinear optimization to compute the closest feasible
target shape would be too time-consuming for interactive explo-
ration. We therefore use sensitivity analysis in order to compute an
approximately feasible target shape that satis�es force and position
constraints to �rst order.

Given a desired change in equilibrium shape ∆x̃ = x̃−x0, we seek
to compute a change in parameters ∆p = p − p0 that minimizes the
distance measure ‖W (∆x̃ − SP∆p) ‖2, where W is a diagonal matrix
of so� selection weights whose entries indicate whether—or to what
extent—the position of a given vertex is de�ned by the editing trans-
formation. Directly minimizing this distance measure with respect
to the unknown ∆p is problematic since the projected sensitivity
matrix SP is rank-de�cient. We therefore add a regularizer ‖J∆p‖2
that only penalizes parameter updates in directions that a�ect the
position constraints.

It should be noted that, while the change in shape SP∆p satis�es
both equilibrium and position constraints to �rst order, we also have
to satisfy fabrication-related constraints on the design parameters,
i.e., maximum and minimum rod widths. One option to enforce
the corresponding bound constraints is by constrained quadratic
programming, but we found even commercial solvers to be too slow
for the interactive rates required by our application. Instead of
enforcing them explicitly, we therefore choose to eliminate bound
constraints through parameter transformation. In essence, we intro-
duce mapped parameters p̂ = ϕ(p) that are asymptotically clamped
to their bounds via a trigonometric transfer function; see [Musial-
ski et al. 2016] for details. Consequently, the sensitivity matrix is
transformed to the new parameter space as Ŝ = S∇pϕ, which also
a�ects the dependent matrices Ĵ and P̂ in (6).

Combining the above components, the target optimization prob-
lem is �nally formulated as

min
∆p̂

1
2

(
‖W

(
∆x̃ − Ŝ P̂∆p̂

)
‖2 + ‖Ĵ∆p̂‖2

)
, (7)

where ∆p̂ = (p̂ − p̂0). By minimizing (7), we obtain the optimal
parameter change ∆p̂∗ for a user-speci�ed edit, subject to linearized
equilibrium and position constraints, and compute the �rst-order
feasible target shape as x∗ = x0 + Ŝ P̂∆p̂∗. Moreover, since Ŝ and
Ĵ are kept constant, (7) is a quadratic minimization problem that
can be solved fast enough for the user to interactively explore �rst-
order feasible edits: the user can modify the equilibrium shape until
the target shape is satisfactory or the norm of the nonlinear forces
exceeds a given threshold, indicating that the linear approximation
is becoming invalid. In either case, the full nonlinear problem is
solved with the current parameter values, and the matrices Ŝ, Ĵ, and
P̂ are recomputed.

Result Optimization. When the �rst-order feasible target x∗ is
satisfactory or the residual forces are excessive, we solve the full
nonlinear constrained optimization problem. �e objective function
is the quadratic distance from the equilibrium con�guration to the
target. To eliminate dri� due to constraint projection, we augment
the objective function with a quadratic term that penalizes the
violation of the hard constraints c(x). We set a larger weight k for
the hard constraints than for the target positions, but in practice,
the two terms hardly interfere since the target is already �rst-order
feasible. In addition to these objective terms, we add nonlinear force
equilibrium constraints as well as bound constraints, leading to the
following optimization problem:

p = arg min 1
2 ‖

(
x∗ − x(p)

)
‖2 +

1
2 k ‖c(x)‖2 (8)

s.t. f(p, x̄(p), x) = 0 and pmin ≤ p ≤ pmax .

We solve this nonlinear optimization problem using a variant of Se-
quential �adratic Programming (SQP). To this end, we initialize the
problem with the equilibrium shape x0 and corresponding parame-
ter vector p0, then alternate between optimization steps and static
equilibrium solves. In each SQP iteration, we solve the correspond-
ing bound-constrained �adratic Program (QP) using the �ickQP
algorithm from the ALGLIB library. In order to e�ciently compute
the objective Hessian, we combine an exact Gauss-Newton-type
expression for the �rst-order part with a BFGS-like approximation
for the second-order part as described in [Nocedal and Wright 2006].
Given a parameter update returned by the QP solver, we compute
the corresponding updated shape by solving for static equilibrium.

Figure 8 shows an example of target and result optimization
during inverse design. Our two-step optimization approach is key
for achieving an interactive user experience while, at the same
time, providing the accuracy demanded by the nonlinearity of the
underlying design problem.

6 RESULTS
We have used our method to design and fabricate a set of Kirchho�
Plateau Surfaces that, taken together, provide an indication of the
diversity of shapes that can be achieved.

6.1 Examples
In a typical design session, the user starts with a minimum structure
and then progressively modi�es the topology and geometry of the
rod mesh through various editing operations. Whenever needed, the
user can visualize the design space using our sensitivity exploration
tool and make targeted edits using inverse design operations. Below
we describe each of these examples in detail and report on the
experiences that we made with our design tools.

Bu�er�y. (Figure 10) �e overall shape of this example was de-
signed through forward editing of the rod topology and geometry,
but the aesthetic aspects required a combination of advanced for-
ward and inverse design tools, as shown also in the accompanying
video. In particular, singular value decomposition of the sensitivity
matrix revealed interesting wing deformations that were used as a
basis for the �nal design. Inverse design operations were used for
adjusting the shape and curvature of the wings.
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Fig. 9. Mask. Simulated design (le�) and physical prototype (right). In
this example, facial features lead to high structural sti�ness, preventing
the surface from reaching the desired curvature; see also Figure 6-i. Rod
spli�ing and inverse design proved essential to achieve both overall shape
and details.

Automotive Concept Design. (Figure 1) As one of the most chal-
lenging examples, this design brings together complex geometric
shapes, �ne detail, and unintuitive topology. Most importantly, the
overall shape of the target object is convex and, consequently, many
of the rods were highly compressed initially. Some of the boundary
rods were removed to release compression and to allow the planar
rod mesh to deploy into an approximately convex shape. Inverse
design operations were used to �esh out important features such as
the windshield, and to adjust the size and volume of the car once
the overall shape was de�ned. Rod spli�ing was also used to add
detail to the front of the car, indicating the headlights.

Mask. (Figure 9) �is example combines complex internal topol-
ogy with the need for large curvature in order to approximate the
shape of a face. �ese two targets compete, and the complexity in
topology leads to high structural sti�ness which, in turn, prevents
the surfaces from achieving the desired curvature. Spli�ing of rods
at multiple points allowed the mask to curve as desired and to em-
phasize salient facial features such as nose and mouth. Both the
overall shape and the details were edited using inverse design.

Warrior’s Armor. (Figure 11) �is composite example showcases
several small parts that are geometrically and topologically simple,

Fig. 10. Bu�erfly. Simulated design (le�) and physical prototype (right).
In this example, interactive deformation feedback was key for the topology
and geometry design of the overall shape. As shown in the accompanying
video, all our modeling tools were used for creating the final result.

Fig. 11. Warrior. Simulated designs (le�) and physical prototypes (right).
For this example, sensitivity exploration and inverse design was used heavily
in order to adjust the size and curvature of the individual parts such as to
conform to the scale of the body.

but the high curvature needed within a small area leads to chal-
lenging fabrication constraints. Some parts such as the arms or the
helmet bene�ted strongly from singular value decomposition of the
sensitivity matrix in order to control their curvature. In addition,
inverse design was used heavily to adjust the size of the di�erent
pieces to a common scale.

Flower. (Figure 12) Another composite example, made of three
parts, that illustrates the possibility to create diverse and appealing
designs through a combination of forward and inverse design op-
erations. As can be seen from the side-by-side view in Figure 12,
this example also indicates very good correspondence between our
simulation and the physically fabricated prototypes.

Design and simulation complexity for all the examples is summa-
rized in Table 1. All designs were computed on a desktop machine
with a 3.10GHz Intel i7 3770S processor with 16GB RAM. Note that
target optimization was interactive for all examples. �e static equi-
librium solver required under one second for all examples, whereas
the �nal result optimization took a few seconds on average.

6.2 Fabrication
For the fabrication of our examples, we used an o�-the-shelf Ul-
timaker 2 FDM printer. �e printed material is a standard PLA
�lament, and we used the material parameters provided by the man-
ufacturer, i.e, Young’s modulus E = 3.31 × 103KPa, Poisson ratio
ν = 0.36, density ρ = 1240Kд/m3. �e membrane fabric that we
used is a highly elastic, �nely kni�ed, elastane-co�on blend. In order
to obtain the material parameters for this fabric, we performed an
experimental estimation of the stretch elastic moduli in both course
and wales directions. We �rst performed several static deformation
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Fig. 12. Flower. This design is one example of the very good agreement
that we observe between the equilibrium shapes predicted by simulation
(le�) and the actual fabricated prototypes (right).

Model Control Rod Membr. Statics Target Result
points nodes nodes (ms) (ms) (s)

Car 81 3292 4803 746 140 7.28
Mask 72 2417 3223 602 146 8.10
Flower 52 1127 2172 418 46 4.32
Bu�er�y 50 2351 2505 226 42 6.22
Helmet 38 1280 3522 575 33 4.13
Shoulder 37 1373 3672 333 14 5.32
Arm 28 1266 3087 311 5 3.52
Shin 46 1540 3219 510 22 3.31
Chest 88 2147 3789 545 92 6.21

Table 1. Summary of design complexity (number of control points), simula-
tion complexity (number of rod and membrane nodes), and solver perfor-
mance (equilibrium solver, target optimization, and result optimization) for
all examples.

tests on a square piece of fabric, then optimized for the material pa-
rameters of a simulated counterpart. �e fabric parameters obtained
in this way are Young’s modulus E = 4.72 × 10−2KPa, Poisson ratio
ν = 0.30, density ρ = 122Kд/m3.

Before printing, the membrane is manually stretched over a
wooden frame, then clamped and inserted into the printing tray. We
draw a calibration square on top of the membrane as a guideline to
ensure the resulting stretch is as uniformly distributed and isotropic
as possible. For each design, the amount of pre-stretch must be
chosen such as to balance fabrication constraints (e.g., minimum
radii) and aesthetic considerations (e.g., absence of wrinkles). We
started with a moderately low value of 40% for all examples and let
the user manually increase pre-stretch if necessary.

Considering the tray size of the printer, we are restricted to small
rod radii. Below some threshold, rods do not bond well to the
fabric. To avoid this problem, we set a lower bound of 0.5mm for
the cross-section. Regarding the printer se�ings, we set head and
bed temperatures to 210◦C and 60◦C respectively. Finally, we used
100% �ow rate and 30mm/s printing speed for PLA �lament with
1.8mm diameter.

7 CONCLUSIONS
We have presented a method for user-guided but computer-assisted
design of Kirchho�-Plateau Surfaces. To circumvent the modeling
challenges of KPS, we have designed simulation and optimization
methods that provide the user with powerful, interactive tools that
allow for intuitive exploration of the design space.

Our work is not free of limitations. First, the materials and fabri-
cation process used set important limitations on the range of results
that can be achieved. As one particular example, we are currently
limited by the tray size of the printer. In order to create larger
models we can, in principle, combine several KPS. �is, however,
raises the question of how to best decompose a desired shape into
pieces that can be well-approximated with KPS. �e segmentation
of arbitrary input models into sets of minimal surface patches is an
interesting direction for future work. Other limitations are related
to the modeling accuracy, both in terms of the rod and membrane
models, as well as the material properties. Higher modeling accu-
racy would likely produce higher accuracy in the results. Finally,
our method could be complemented with automatic topology opti-
mization in order to increase the range of edits that can be achieved
with inverse design operations.
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and Jean-Luc Lévêque. 2006. Super-helices for Predicting the Dynamics of Natural
Hair. In Proc. of ACM SIGGRAPH ’06.

Philippe Block and John Ochsendorf. 2007. �rust Network Analysis: A New Method-
ology for �ree-Dimensional Equilibrium. Journal of the International Association
for Shell and Spatial Structures 48, 3, Article 155 (2007).

Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numer-
ical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95
(July 2014), 11 pages. h�ps://doi.org/10.1145/2601097.2601189

Xiang ’Anthony’ Chen, Stelian Coros, Jennifer Manko�, and Sco� E. Hudson. 2015.
Encore: 3D Printed Augmentation of Everyday Objects with Printed-over, A�xed
and Interlocked A�achments. In ACM SIGGRAPH 2015 Posters (SIGGRAPH ’15). ACM,
New York, NY, USA, Article 3, 1 pages. h�ps://doi.org/10.1145/2787626.2787650

Keenan Crane, Ulrich Pinkall, and Peter Schröder. 2011. Spin Transformations of
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