
Interactive Design of 3D-Printable Robotic Creatures

Vittorio Megaro1 Bernhard Thomaszewski2 Maurizio Nitti2

Otmar Hilliges1 Markus Gross1,2 Stelian Coros3

1ETH Zürich 2Disney Research Zurich 3Carnegie Mellon University

Abstract

We present an interactive design system that allows casual users to
quickly create 3D-printable robotic creatures. Our approach au-
tomates the tedious parts of the design process while providing
ample room for customization of morphology, proportions, gait
and motion style. The technical core of our framework is an effi-
cient optimization-based solution that generates stable motions for
legged robots of arbitrary designs. An intuitive set of editing tools
allows the user to interactively explore the space of feasible de-
signs and to study the relationship between morphological features
and the resulting motions. Fabrication blueprints are generated au-
tomatically such that the robot designs can be manufactured using
3D-printing and off-the-shelf servo motors. We demonstrate the ef-
fectiveness of our solution by designing six robotic creatures with
a variety of morphological features: two, four or five legs, point or
area feet, actuated spines and different proportions. We validate the
feasibility of the designs generated with our system through physics
simulations and physically-fabricated prototypes.

CR Categories: I.2.9 [Artificial Intelligence]: Robotics—
Kinematics and dynamics; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Animation;

Keywords: physical characters, robotics, 3D-printing.

1 Introduction

The desire to create mechanical creatures that are capable of life-
like motions and behaviors dates back to ancient times. However, it
was only during the last century that this vision started to become
reality. Today, mobile robots are ubiquitous in industry and they
start to enter our daily life in the form of electro-mechanical toys,
robotic pets, and household assistants. The recent progress in 3D-
printing technology and the advent of powerful, simple-to-program
hardware platforms like Arduino now open the door to a new gen-
eration of personal robots—unique companions that we custom-
design according to our needs and preferences. Already now, the
rapidly growing community of makers and technology enthusiasts
indicates that there is significant interest in this topic. Nevertheless,
creating compelling robotic creatures is currently a formidable task
that only experienced engineers can successfully undertake.

Driven by the progress in rapid manufacturing technology, the
graphics community has recently started to embrace the challenge
of translating digital characters into physical artifacts [Zhu et al.

Figure 1: Digital designs (left) and physical prototypes (right) for
our Ranger (top), Bobby (middle) and Predator (bottom) designs,
fabricated using 3D-printing and off-the-shelf servo motors.

2012; Coros et al. 2013; Ceylan et al. 2013; Thomaszewski et al.
2014]. While current methods can create physical characters whose
motion closely resemble their digital counterparts, this motion is
merely for display; stable locomotion, however, poses complex re-
quirements on the physics and geometry of motion—criteria that
digital animations fail to fulfill in general.

We present an interactive design system that allows casual users to
quickly design 3D-printable robotic creatures. We are inspired by
the simplicity, power and flexibility of the character design system
by Hecker et al. [2008], empowering novice users to quickly cre-
ate digital characters with custom shape and motion. Our ambition
is to make the design of compelling robotic creatures as accessi-
ble and intuitive. A number of challenges have to be overcome
in order to achieve this goal. First, as opposed to virtual charac-
ters, the motions designed for robotic creatures have to be physi-
cally correct; otherwise, the robot will not move as expected, fail
to move, or simply fall over. This physical feasibility requires a
high degree of coordination between the motions of different body
parts, which is difficult to achieve with traditional animation ap-
proaches. Second, digital characters often exhibit a large number
of degrees of freedom in order to allow for highly expressive ani-
mations. When creating robotic creatures, however, a much more
careful balance between complexity of design, and therefore cost,
and range of achievable motions is required.



Figure 2: The footfall pattern indicates which leg is in stance (white) or in swing (red) mode. In this example, the user interactively adjusts
the footfall pattern such that three legs are always in stance mode.

Overview & Contributions To address the challenges outlined
above, we propose a forward design approach that automates the
tedious parts of the design process while providing ample room for
creativity and personalization. The core contribution of our method
is a fast optimization-based solution that generates stable motions
for legged robots of arbitrary designs. To warrant feedback at inter-
active rates, we depart from conventional space-time approaches,
leveraging a geometric view of trajectory optimization. Tightly in-
tegrated with the optimization, an intuitive set of interactive tools
allows the user to design and edit the morphology, proportions, gait
and motion style of a robotic creature. In order to translate the
digital designs to the physical world, we automatically generate ge-
ometry for the mechanical structure of the robot such that it can be
fabricated using 3D-printing and off-the-shelf servo motors.

2 Related Work

Fabrication-Oriented Design Fueled by advances in rapid man-
ufacturing technologies, the graphics community has seen a grow-
ing number of works that propose computational approaches for
generating physical artifacts. Examples include design systems for
physically-valid furniture pieces [Lau et al. 2011; Umetani et al.
2012], objects whose mass distribution can be precisely controlled
such that they are able to stand [Prévost et al. 2013] or spin sta-
bly [Bächer et al. 2014], free-form gliders with optimized aerody-
namic properties [Umetani et al. 2014] and prototypes that test and
validate the functionality of finished products [Koo et al. 2014]. Our
computational design framework shares the same high-level goal as
these works: empowering casual users in creating complex physi-
cal artifacts without requiring domain specific knowledge. More
specifically, we address the challenge of designing 3D printable
robotic creatures whose morphological features, behaviors and mo-
tion styles can be easily personalized.

Physical Character Design Within the field of fabrication-
oriented design, our work is most closely related to previous meth-
ods for creating physical representations of virtual characters. For
instance, the design systems proposed by Bächer et al. [2012] and
Calı̀ et al. [2012] can be used to design 3D printable characters
with functional joints. Skouras et al. [2013] proposed a method to
automatically optimize the internal distribution of material param-
eters in order to control the ways in which 3D printed characters
deform when subjected to external forces. Several methods that
create mechanical automata from animated digital characters have
also been proposed [Zhu et al. 2012; Coros et al. 2013; Ceylan et al.

2013; Thomaszewski et al. 2014]. These methods focus on the de-
sign of passive mechanical structures, such as linkages and gears,
that propagate the motion of one input motor to the entire system.
Given the limited actuation of these mechanical characters, they can
only perform periodic motions. We remove this restriction by de-
signing robotic creatures that can generate a variety of compelling
motions and stable behaviors.

Robotics Our work is also closely related to the field of robotics,
where a long-standing goal is to automate the design of robotic
systems based on high-level functional specifications. Inspired by
Sims’ work on evolving virtual creatures [1994], a variety of evolu-
tionary methods that aim to co-design a robot’s structure and con-
trol inputs have been investigated [Leger 1999; Lipson and Pol-
lack 2000], and this effort continues today [Auerbach et al. 2014].
Rather than relying on stochastic algorithms, our system puts the
user in the loop with a set of easy-to-use editing tools that pro-
vide control over the creative process. Sharing a goal similar to
ours, several methods that allow users to create origami-inspired,
foldable robots have been proposed recently [Mehta and Rus 2014;
Mehta et al. 2014]. However, while this body of work relies on a
set of pre-defined building blocks that are linked together using a
custom scripting language, our design system allows users to freely
explore a vast space of legged robot designs: two or more legs,
point or area feet and articulated spines are all handled in a unified
manner by our framework.

Motion Generation To generate motions for our physical crea-
tures we draw inspiration from the rich literature on this topic
from both computer animation and robotics. In particular, the mo-
tions we generate are similar to those used by sophisticated robots
like Boston Dynamic’s Little Dog [Neuhaus et al. 2011]. How-
ever, while control solutions reported in the literature are usually
linked intimately to the robots that they are designed for, we rely on
a fully automated approach to generate optimal walking motions
for creatures of arbitrary morphologies. The trajectory optimiza-
tion method we use for this purpose is inspired by a well-known
class of animation methods based on space-time constraints [Witkin
and Kass 1988] which continue to be actively investigated to date
[Wampler and Popović 2009a; Mordatch et al. 2012]. However,
motivated by the need to develop a computationally efficient system
that supports interactive design, as well as by our goal of creating
robotic creatures capable of walking stably using only commodity
hardware, we develop a model that presents important differences,
as will become clear throughout the remainder of the paper. Briefly,



Figure 3: Snapshot of the design interface. Left: the design view-
port with the footfall pattern graph. Right: the preview window
showing the center of pressure of the robot (green) and the support
polygon (red).

rather than modeling full system dynamics and assuming idealized
joint torque actuators, we directly use joint angles as control vari-
ables and explicitly enforce a dynamic stability objective.

3 Method Overview

We propose an end-to-end solution for creating robotic creatures,
implemented as an interactive tool that allows the user to design the
structure and motion of a robot while receiving immediate feedback
on its expected real-world behavior.

Design Interface Our design interface is structured into two
viewports (see Fig. 3): one for editing the structure and motion
of the robot, one for displaying the resulting real-world behavior as
predicted by our optimization or through physics simulation. The
heart of the interface is formed by a set of easy-to-use editing tools.

Structure Editing The user starts by loading a description file
that specifies an initial skeletal structure of the robot, as defined
through a typical hierarchy of bones connected by joints. Initial
geometry is created from this information and a virtual, uni-axial
motor is placed at each joint position. The user can freely edit the
robot’s structure at all times by adding or removing motors, thus
altering the morphology of the design, or by adjusting the position
or orientation of the motors.

Motion Editing The motion of a robotic creature is completely
described by the trajectories of its joints. However, authoring mo-
tions directly in this high-dimensional space is unintuitive, tedious,
and very unlikely to lead to stable movements. We therefore pro-
pose a set of higher-level motion authoring and editing tools, de-
signed to be mutually orthogonal and intuitive for the user.

Motions are largely characterized by their footfall pattern, indicat-
ing for each instant during a gait cycle which of the legs are in
contact with the ground (stance mode) and which ones are in flight
(swing mode). Our interface displays these information as a time-
dependent graph, allowing for quick inspection and direct editing
by the user (see Fig. 2). In particular, the user can change the dura-
tion of the stance and swing phases for any leg and change the rela-
tive ordering of the footfalls. While not all patterns lead to desirable
motions, this is immediately clear upon inspecting the evolution of
the support polygon through time or by observing the motions gen-
erated by our framework. The immediate feedback provided by our

framework allows the user to interactively adjust the footfall pattern
in order to find satisfying solutions.

Higher-level goals such as the walking direction, speed or turning
rate can be provided by the user so as to specify the behavior of
the robotic creatures that are being designed. Further, the user can
control the overall motion style by editing the movement of the
robot’s center of mass and of the feet trajectories. The motions
generated by our optimization-based framework are guided by this
user input, while a set of feasibility constraints ensures that they are
always stable.

Optimization Given the structure and motion goals for a robotic
creature, our system computes time-varying motor values for
dynamically-stable motions using a trajectory optimization ap-
proach. The user can preview the optimized motions using physics-
based simulation and iteratively adapt the design to explore the so-
lution space and converge on a desired result. In order to enable
this seamless forward design experience, to robustly support a wide
variety of morphological features in a unified manner, and to ensure
that the resulting robotic creatures function well using off-the-shelf
components, the model that we propose requires a departure from
conventional approaches.

Space-time optimization methods that consider the full dynamics
of the systems they compute motions for are most general. How-
ever, the complexity of the underlying models brings about a sig-
nificant computational overhead—even for simple creatures, gener-
ating motions is a matter of several minutes [Wampler and Popović
2009b; Mordatch et al. 2012; Wampler et al. 2014], thus clearly
prohibiting the type of interactive design process we seek to en-
able. Furthermore, space-time methods are notoriously character-
ized by challenging optimization landscapes that often lead to unde-
sirable local minima. Our model avoids the complexity of consider-
ing full system dynamics for three main reasons. First, we achieve
important gains in efficiency, with the process of optimizing mo-
tions taking at most a few seconds. Second, in conjunction with
the optimization scheme we employ, our system consistently con-
verges to high-quality solutions. Last, because the internal torques
and ground reaction forces computed through space-time optimiza-
tion cannot be directly reproduced by off-the-shelf servomotors,
and as physical actuators present considerable limitations in terms
of speed, bandwidth and strength, we focus on generating motions
that are more conservative (e.g. no flight phases). In this setting,
the dynamic interplay between the instantaneous center of pressure
and the motion of the center of mass is captured sufficiently well
through an inverted pendulum approximation.

The simplified dynamics model we use is adopted from robotics,
where it is commonly used for model predictive control (MPC).
MPC formulations typically decouple the generation of center of
mass trajectories, motion of the feet and full-body joint angles [Ka-
jita et al. 2003; Dimitrov et al. 2008; Mastalli et al. 2015]. When
the morphology and proportions of a robot are fixed, this strategy
is typically sufficient. However, various heuristics are required to
ensure that constraints between different modules are satisfied, e.g.,
stepping locations can be reached given the center of mass trajec-
tory and robot kinematics. Given that our design system allows
users to generate robot designs with a vast range of morphological
features, such a decoupling is not feasible. Rather, as detailed in
Sec. 4, our trajectory optimization method provides an efficient,
unified formulation for concurrently computing trajectories for the
center of mass and feet that are consistent with the structure and
range of motion of the robotic creatures.

Finishing Once the design iterations have converged, we auto-
matically generate 3D geometry for all body parts, including con-



nectors for the motors, which are then sent to a 3D printer for man-
ufacturing (see Sec. 5).

4 Motion Plan Generation

Given a robot morphology which includes an arbitrary number of
legs with point or area feet, and possibly an actuated spine, our
goal is to compute time-varying motor values that lead to user-
controllable, stable motions. We formulate this task as a trajectory
optimization problem whereby a set of objectives is used to define
an optimal motion. We represent a motion plan P = (P1, . . . ,PT )
as a time-indexed sequence of vectors

Pi = (qi,xi, c
1
i , . . . , c

n
i , e
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n
i w
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i , . . . , w

n
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where qi represents the pose of the creature, i.e., the position and
orientation of the root as well as the angle values for all motors,
and xi denotes the desired position of the creature’s center of mass.
The feet of each limb are defined by one or multiple end effectors.
For each end effector j, 1 ≤ j ≤ n, we use a contact flag cji to
indicate whether it should be grounded (cji = 1) or not (cji = 0) at
a given time ti. Furthermore, we denote the desired position of the
end effectors as ej

i and store a scalar weight wj
i for each of them.

Fig. 4 (left) visualizes our motion plan representation.

Figure 4: The motion plans generated by our framework consist of
trajectories for the center of mass (green), feet (blue), and corre-
sponding full-body poses for the robotic creature (left). An inverted
pendulum model is employed to obtain a relationship between the
center of pressure and the center of mass (right).

4.1 Constraints

We refer to a motion plan as consistent if, for every time sample i,
the following set of conditions is satisfied:

ϕCoM(qi)− xi = 0 , (2)

ϕEE(qi)
j − ej

i = 0 , ∀j . (3)

Here, ϕCoM(q) is a forward kinematics function outputting the po-
sition of the creature’s center of mass (COM) given pose q. Simi-
larly, the function ϕEE(q) computes the end effector positions for
the robot’s limbs given pose q.

In order to generate motions that do not require sophisticated sen-
sors and complex feedback mechanisms, our framework computes
motion plans that are naturally stable. Formally, this criterion is ex-
pressed as a constraint that ensures that at every discrete moment
in time i, the center of pressure (COP) pi falls within the support
polygon defined by the end effectors that are in contact with the
ground:

n∑
j=1

cjiw
j
i e

j
i − pi = 0 , (4)

with the additional constraint that only convex combinations of
grounded end effector positions are allowed to define the location
of the COP:

n∑
j=1

wj
i c

j
i = 1 , wlb ≤ wj

i ≤ 1 , ∀j , (5)

where the lower bound limit wlb, which is set to 0.1 for all our ex-
periments, prevents the COP from moving too close to the boundary
of the support region.

The COP position pi at each time step i is not an explicit parameter
of the motion plan. However, using an inverted pendulum model,
a simple relationship between it and the optimized COM trajectory
can be readily obtained [Kajita et al. 2003]. As illustrated in Fig. 4
(right), the vertical component of the force f applied along the vec-
tor between the COM and the COP is fv = mg + mẍv , where
g = 9.8m\s2. Consequently, by computing the horizontal compo-
nent of f, and by observing the trigonometric relationship between
the height of the COM, xv , and the horizontal projection of the
vector from p to x, the following relationship emerges:

pi = xi −
xv
i ẍi

ẍv
i + g

(6)

The acceleration of the COM trajectory, ẍi, including its vertical
component, is expressed using finite differences as a function of
xi−1, xi and xi+1: ẍi = (xi−1 − 2xi + xi+1)/h

2, where h is the
time step. We note that Eq. ( 4) represents a dynamic stability crite-
rion: while the COP is guaranteed to lie within the support polygon
at all times, the projection of the COM on the ground plane does not
have to. Consequently, the motions generated by our optimization
framework are less conservative than if a static stability criterion
acting solely on the COM was employed.

As the positions of the end effectors are independently defined at
discrete moments in time, an additional constraint is needed in order
to ensure temporal consistency of the motion plan and to avoid foot-
slipping:

(ej
i−1 − ej

i )c
j
i = 0 , (ej

i − ej
i+1)c

j
i = 0 , (7)

for all 2 ≤ i ≤ T − 1. This expression implies that the target po-
sitions of the end effectors are only allowed to change freely when
they are not in contact with the ground.

If a periodic motion is desirable, an additional constraint that relates
the robot’s joint angles, J(q), at the start and end of the motion is
added:

J(q1)− J(qT ) = 0 . (8)

The robotic creatures generated with our system reproduce the
planned motions by directly tracking the optimized joint angle tra-
jectories. It is therefore crucial to ensure that the resulting motion
plans fall within the range of capabilities of the physical motors that
are used. As a simplified actuation model, we place bounds on the
maximum angular velocity at each joint j:

−ωmax ≤
J(qi+1)

j − J(qi)
j

h
≤ ωmax, ∀i, (9)

where ωmax is the maximum achievable speed of the motor.



4.2 Motion Style Objectives

If Eqs. (2-8) are satisfied, the motion plan is termed admissible,
as it corresponds to a stable motion. In general, many such mo-
tion plans exist for a given robot morphology and footfall pattern.
We therefore provide several objectives and high-level controls that
allow users to intuitively explore the space of admissible motions.

The smoothness of the motion is the first attribute that users can
control via an objective defined through a finite difference approxi-
mation of the second derivatives of the robot pose trajectory:

ESmooth =
1

2

T∑
i

||qi−1 − 2qi + qi+1||2 . (10)

With the motion editing interface provided by our system, users can
also directly influence the motion style of the robotic creatures they
design. To this end, two regularizing terms provide target trajecto-
ries for the motion of the COM and the end effectors:

EStyleCOM =
1

2

T∑
i=1

||xi − xD
i ||2 (11)

EStyleEE =
1

2

T∑
i=1

n∑
j=1

||ej
i − eDj

i ||2 (12)

We note that although the target trajectories may lead to unstable
motions if employed directly, they are used just as a guide. Con-
sequently, the user can edit them freely, without needing to worry
about feasibility constraints, in order to uncover the range of motion
styles achievable by the robot they are designing.

The walking and turning speed of the robotic creatures are con-
trolled through two separate terms which measure the difference
between the pose of the robot at the start and end of the motion
trajectory:

xT − x1 = dD (13)

τ(qT )− τ(q1) = τD (14)

where dD and τD are the desired values for the net distance trav-
eled and turning angle, respectively, and the function τ(q) returns
the turning angle from pose q.

4.3 Optimization

We cast the problem of generating feasible motion plans as a multi-
objective, constrained optimization problem where the degrees of
freedom are the robot poses at each time instance, the trajectories
of the end effectors and the center of mass, and the end effector
weights which define the trajectory of the center of pressure. The
contact flags are directly specified by the foot-fall pattern and are
thus not treated as free parameters during the optimization. As
described above, we have structured the conditions on the robot’s
motion into constraints that model vital requirements for success-
ful locomotion, and objectives that influence the style of the mo-
tion. When translating these terms into an optimization problem
however, we have to carefully balance the importance of exact con-
straint satisfaction against the numerical difficulties associated with
non-linear, non-convex systems of equations. We therefore treat the
nonlinear Eqs. (2-4) as soft constraints by minimizing their squared
residuals weighted by a large constant (104 for all experiments).
The linear equality and inequality relations described by Eqs. (5),

Figure 5: Convergence plot showing the value of the objective
function while optimizing all parameters at once (blue) versus a
two-step optimization scheme (red).

(7), (8) and (9) are treated as hard constraints. The weights asso-
ciated with the motion style objectives (10-14) can be interactively
set by the users of our system to emphasize different priorities they
might have. However, they are kept constant for all our experi-
ments. To minimize the resulting constrained optimization prob-
lem we use OOQP [Gertz and Wright 2003], as the inner loop of
our Sequential Quadratic Programming solver.

As can be seen in Table 1, generating motion plans requires our
framework to solve non-linear systems of equations with hundreds
of unknowns—the exact number depends on the complexity of the
robot’s design and it is linear in the number of time samples that de-
fine the motion trajectories. Given that analytic derivatives for the
constraints and objectives we formulate can be readily computed,
and because the resulting Hessians are sparse, computing optimal
motions can be done efficiently, typically requiring less than 3−5s
of computation time when starting from scratch. During the iter-
ative design process, as the user adjusts the proportions or motion
style of their robot, previously computed motion plans are used to
warm-start the optimization process, thus further reducing the com-
putational burden and leading to a seamless interactive experience.

To increase convergence rates when optimizing a motion plan from
scratch we employ a two-step optimization process. As illustrated
in Fig 5, which shows the value of the objective while generating
in-place walking motions for our Ranger robot, 10 iterations are
first executed while the end effector trajectories are kept constant
(546 parameters in total), followed by additional iterations where
the full set of parameters (714) is optimized for. In contrast to a
typical scheme where all parameters are optimized from the begin-
ning, we observe improvements in convergence rates of up to 50%.
This performance improvement is due to Eq. (4) becoming convex,
which gives rise to a smoother optimization landscape where inter-
mediate solutions can be efficiently arrived at. These intermediate
solutions then furnish a good starting point for the global optimiza-
tion which quickly convergences to a nearby local minimum. Each
step of the global optimization takes on average 0.08s.

5 Generation of 3D Printable Mechanical
Structures

The designs thus far produced by our system provide only an
abstract description of the robotic creatures our users intend to
create. In particular, the placement and orientation of virtual
motors, the relative location of the end effectors and the skele-
tal structure that specifies their connectivity define the morphol-



ogy and body proportions of the designs. Before proceeding
to fabrication, our system au-
tomatically generates 3D print-
able geometry for the robot’s
mechanical structure. To this
end, our system starts with a
CAD model of available servo-
motors, as visualized in the in-
set figure. In a pre-processing
step we generate two tight-
fitting 3D models that directly
attach to the servomotors with screws or rivets, enclose them, and
become part of the geometry generated by our system. The ge-
ometry of the enclosing models allows for a ±90 degrees range of
motion for each servomotor.

We collectively refer to the attachment parts of each servomotor
and the models that define the geometry of the end effectors as
structural features. The problem of creating the mechanical de-
sign a robot’s body parts thereby reduces to generating geometric
models that connect consecutive pairs of structural features sfi and
sfj . We note that mounting brackets are typically used for this pur-
pose. However, as the shape and functionality of mounting brackets
are pre-defined such that they can be mass-produced, they signifi-
cantly restrict the set of possible relative positions and orientations
between pairs of structural features. We therefore opt to create cus-
tom, 3D printable connections instead.

As illustrated in Fig. 6 a), each structural feature outputs a set
of possible attachment points (green). As a step towards gen-
erating a geometric model that connects a pair of structural fea-
tures, our system computes a mapping between the attachment
points output by sfi and sfj . More specifically, we first com-
pute the convex polygons of the attachment points projected
on a plane perpendicular to the vector between sfi and sfj .

Figure 6: Generating 3D-
printable geometry.

We then compute the convex hull
of the attachment points whose
projections define the two convex
polygons, as seen in Fig. 6 b).
If fabricated using a Fused Fil-
ament Fabrication device, where
the infill rate can be used to con-
trol the trade-off between weight
and structural integrity, then the
geometry of the body part can be
obtained by performing a union
operation between the computed
convex hull and the models that
enclose the servomotors. How-
ever, for other 3D printing tech-
niques, such as Selective Laser
Sintering, our system can au-
tomatically create a lightweight
structure inspired by engineering
principles. More specifically, our system generates truss structures
directly from the convex hull computed at the previous step. The
edges of the convex hull that connect one attachment point on sfi to
another on sfj define the main elements of the structure, and addi-
tional connective struts are added procedurally, as shown in Fig. 6
c). The density of the connective struts and their thicknesses are
user-specified, as they depend on the material used for fabrication.

The geometric structures automatically generated by our frame-
work are functional and they allow the robotic creatures designed
with our system to be fabricated through 3D printing. However, in
order to enhance the aesthetics of the designs, we allow users to
augment the generated geometry with existing 3D models, if de-
sired. To accomplish this, users position the existing 3D models

relative to the desired robot body part, and a union operation is per-
formed to generate the fused mesh. As a simplification, the added
3D models are assumed to not significantly alter the mass distri-
bution of the robotic creature (i.e., they are lightweight shells). If
this assumption is not valid, it is trivial to recompute the mass and
moment of inertia of each body part based on the user-provided
geometry and re-optimize the motion plans.

6 Results and Discussion

We have used our interface to design a diverse set of robotic crea-
tures, two of which were physically fabricated for validation. The
results that we present in this section demonstrate that our method
is indeed a powerful tool, allowing users to author a broad range of
designs with explicit and intuitive control over morphology and mo-
tion style. Our design methodology offers a number of key benefits
over the alternative of manual design. In particular, while keyfram-
ing and other conventional methods are very successful for digital
animation, the motions of our robotic creatures are subject to real-
world physics. Anticipating and incorporating these effects dur-
ing the design process is very difficult, even for experts. The gaits
generated using our motion optimization, in contrast, precisely co-
ordinate the movements of the feet and the body such as to en-
sure smoothness and stability for robots of various designs. Conse-
quently, our system allows for an intuitive exploration of the rela-
tionship between a robot’s morphological features and its ability to
produce compelling, purposeful motions.

Below we highlight several aspects that are key to our approach and
discuss observations from experimental validation.

6.1 Design Interface & Workflow

Structure Editing Thanks to the fast turnaround rates of the un-
derlying optimization, our interface allows for quick, easy, and in-
tuitive editing of a creature’s structure and motion. As shown in the
accompanying video, the user can freely edit the morphology of the
robot by dragging on motor handles until the predicted motion—
always visible and up-to-date in the preview viewport—is satisfy-
ing. For these edits in particular, convergence is very good since we
can warm-start the optimization with a previously optimized mo-
tion plan. However, when changing axes of rotation, the joint-angle
trajectories used for warm-starting can lead to drastically different
trajectories of the end effectors. We therefore simply re-initialize
the optimization process, which then takes about 3 seconds on av-
erage to arrive at a solution. We also restart the optimization process
from scratch when the morphology of a design is altered by adding
or removing motors.

Morphology Editing A particularly compelling feature of our
method is that it supports arbitrary morphologies. As demonstrated
by our results, we support creatures with arbitrary numbers of legs,
including bipeds, quadrupeds, and more exotic cases such as the
five-legged creature shown in Fig. 3. Furthermore, the configura-
tion of the legs is very flexible: the robotic creatures we show are
designed with three or four motors per leg, while our biped robot
(Fig. 7) also features actuated ankles for a total of five motors for
each leg. Area or point feet are specified by designating one or more
end effectors for each limb. Actuated bodies are also supported: our
Ranger (Fig. 1) and Predator (Fig. 3) robots each have one motor
that allows their shoulders to rotate relative to their pelvis, while the
Salamander design (Fig. 8) uses two actuators for the tail and five
for its flexible spine. It is worth noting that this generality is a direct
consequence of our formulation—no special treatment is required.



Figure 7: Six robotic creatures designed with our interactive system: one biped, four quadrupeds and one five-legged robot.

Motion Editing Our system offers three sets of tools that allow
the user to author and edit the motion of a given robot in largely
orthogonal dimensions: the footfall pattern, the velocity of the cen-
ter of mass, and trajectories for the feet and the center of mass.
The accompanying video illustrates these tools through a range
of motion edits on the Bobby model (Fig. 2), a quadruped robot
with 12 motors and thus similar in complexity to commercially-
available mid-range robots. The footfall pattern graph allows the
user to quickly explore different gaits, simply by dragging on the
stance/swing phase widgets of the individual legs. As the video
shows, the different gaits are also well-reflected by the physical
prototype. High-level motion goals are formulated simply by pre-
scribing constant linear or angular velocity for the body of the robot
to achieve forward or sideway motion, or to turn in place. Once a
rough motion has been laid out, the trajectory editing tool can be
used to further flesh out the characteristics of the gait such as to
give it personality and style.

Creature Finishing Our method automatically generates geom-
etry for the various body parts based on the shape and location of
the motors and end-effectors. However, in order to increase the aes-
thetic appeal of the final designs, the user can replace these meshes
or augment them with manually designed shells. In that case, we
assume that the mass and inertia properties for the new parts do not
significantly deviate from the old geometry such that the robot can
walk as expected with the original animation. We note that it is
always possible to recompute angle trajectories in order to account
for changed mass properties, but if these changes are significant, the
optimization might have to substantial alter the style of the resulting
motion.

Figure 8: Salamander: our framework automatically generates
swaying tail and spine motion, leading to a natural-looking gait.

On-Board Control After the robotic creatures are fabricated and
assembled, off-the-shelf servos are used to drive their motions. We
use a combination of position and velocity control to ensure that the
servo motors produce smooth motions and remain in sync with each
other. Control signals are computed at fixed time intervals. Briefly,
for motor i at time t we estimate the target joint position qi(t+ δt)
by interpolating the corresponding optimized motion trajectory, and
read the servo’s current position, αi(t). The control board then sets
the motor’s maximum angular speed to (qi(t + δt) − αi(t))/δt,
while its goal position is set to qi(t + δt). We use δt = 0.15s for
all our experiments.

6.2 Validation

We performed a set of experiments in order to assess the feasibility
of the motion plans generated by our method. First, we employ
black-box physics simulations as a way of providing a preview of
the expected real-world behavior of each robot design. We use the
Open Dynamics Engine [ODE 2007] for this purpose and model
the robots as articulated rigid body systems. The joint trajectories
computed during the motion optimization stage are used to define
time-varying targets for Proportional-Derivative controllers, used to
model the actuators at each joint.

In order to achieve motion planning at interactive rates, our op-
timization scheme uses an approximate dynamics model. More
concretely, asking the center of pressure to fall within the support
polygon is a necessary but not sufficient condition, as it ignores the
friction-induced limitation on the tangential contact forces and dy-
namic effects that may become significant for fast limb movements.
In order to assess the impact of this simplification, we measured the
error in tracking the planned center of mass trajectories over a full
motion cycle for our Ranger model. We ran this experiment on
three different motions with stride durations of 0.5, 1 and 2 sec-
onds, and observed a net final error in center of mass position of
1.57, 0.62 and 0.18cm respectively, when comparing the planned
motion against the result of the simulation. As a point of reference,
each limb of this robotic creature is about 50cm in length and it was
tasked with walking forward using step lengths of 20cm. Although
a growing discrepancy from the motion plan becomes apparent as
the speed of the motion increases, the simulated robot was able
to walk successfully each time. However, for biped designs like
Hunter, such errors can lead to failures due to the high COM and
comparatively small area of the support polygon. Physics simula-
tions will immediately reveal such unwanted behaviors, allowing
the designer to take appropriate measures by adjusting their design.

To further validate the results of our system, we created physi-
cal prototypes for the Bobby and the Ranger character. We used
3D-printed body parts and off-the-shelf hardware—12 Dynamixel



MX-28 actuators daisy-chained to a CM-700 Robotis Servo Con-
troller board and powered by a LiPo battery. Even before com-
paring the motion predicted in simulation to the results observed on
the real-world protoypes, we can identify several sources of inaccu-
racy resulting from idealizing assumptions made by the simulation
model. In particular, we assume ideal actuators and perfectly rigid
body parts. In reality, the amount of torque that motor can exert
is limited, but the maximum torque also decreases with increas-
ing angular velocity—a complex behavior that is more difficult to
model. Furthermore, while 3D-printing allows for quick and easy
customization of the robot’s geometry, the limited accuracy of cur-
rent consumer-end printers together with the finite compliance of
the printed body parts leads to deformations that are not accounted
for in the simulation. As a concrete manifestation, we observed
that the feet of the Ranger model do not rise as high as seen in
simulation (approximately 8cm measured at the apex vs. 10cm
in simulation). Despite these sources of error, we observed good
agreement between the overall motions of our physical prototypes
and the behavior predicted in simulation.

Finally, it should be noted that it takes on the order of minutes to the
design these creatures, but hours to assemble and even days to print.
This fact implies that building prototypes is very time-consuming
and expensive—and it is the ambition of our method to produce
final digital designs without the need for physical iterations.

7 Limitations and Future Work

We presented an interactive, end-to-end solution for designing 3D-
printable robotic creatures whose morphology, proportions, gaits
and motion styles can be easily personalized. Using our system,
we were able to design a diverse set of legged robots, each created
in a matter of minutes. Our method efficiently generates stable,
user-controllable walking motions for robots with a vast array of
morphological features. The most immediate benefit of our system
is therefore that it enables an interactive exploration of the space of
feasible robot designs without requiring any domain specific knowl-
edge from its users.

Although the space of robots and motions that our solution can
currently generate is substantial, our system does have limitations
that present exciting avenues for future work. For example, mo-
tions that exhibit flight phases cannot currently be produced, as our
model requires the existence of at least one point of contact be-
tween the robot and the ground at any moment in time. Further-
more, the model simplifications that we exploit for efficiency result
in differences between the predicted and real-world behavior of the
robots. These differences are most pronounced for fast motions and
increase as the size of the support polygon decreases relative to the
height of the center of mass. For instance, the bipedal robot that we
designed is capable of walking, but unsurprisingly, it can fall quite
easily when perturbed. This limitation highlights the need to inte-
grate feedback mechanisms that adapt the motion plan in real-time

# Legs Spine # motors # motion plan
DOFs parameters

Bobby 4 0 12 429
Dino 4 0 14 735

Salamander 4 8 20 861
Ranger 4 1 13 714
Hunter 2 0 10 387

Predator 5 1 16 840

Table 1: An overview of the complexity of robot designs we created
with our system.

based on sensor data.

We are also excited about the challenge of making the process of
authoring complex behaviors easily accessible to casual users. We
are encouraged by the ease with which gaits and motion styles can
be specified using our easy-to-use editing tools. We plan to extend
these tools such that users can specify a motion repertoire that in-
cludes switching between gaits, portraying rich personalities and
interacting appropriately with objects and humans. Finding appro-
priate abstractions for intuitively authoring such high-level behav-
iors is an interesting subject for future work.
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