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Abstract
Strain limiting is a widely used approach for simulating biphasic materials such as woven textiles and biological tissue that
exhibit a soft elastic regime followed by a hard deformation limit. However, existing methods are either based on slowly converg-
ing local iterations, or offer no guarantees on convergence. In this work, we propose a new approach to strain limiting based on
second order cone programming (SOCP). Our work is based on the key insight that upper bounds on per-triangle deformations
lead to convex quadratic inequality constraints. Though nonlinear, these constraints can be reformulated as inclusion conditions
on convex sets, leading to a second order cone programming problem—a convex optimization problem that a) is guaranteed
to have a unique solution and b) allows us to leverage efficient conic programming solvers. We first cast strain limiting with
anisotropic bounds on stretching as a quadratically constrained quadratic program (QCQP), then show how this QCQP can be
mapped to a second order cone programming problem. We further propose a constraint reflection scheme and empirically show
that it exhibits superior energy-preservation properties compared to conventional end-of-step projection methods. Finally, we
demonstrate our prototype implementation on a set of examples and illustrate how different deformation limits can be used to
model a wide range of material behaviors.

1. Introduction

From biological tissues in plants and animals to woven textiles
and 3D-printed chainmail—many natural and human-made ma-
terials exhibit complex stress-strain responses characterized by
strong nonlinearities and direction-dependent behavior. For exam-
ple, due to their yarn-level structure, many textiles initially exhibit
only weak resistance to deformation but stiffen rapidly beyond a
direction-dependent threshold. Another extreme example is given
by the 3D-printed chainmail shown in Fig. 1. One way of modeling
this biphasic behavior is to use concepts from nonlinear elasticity in
combination with experimentally acquired data. An alternative ap-
proach that enjoys widespread use in computer animation is to use
strain limiting, which combines a soft elastic material with hard
constraints on the maximum allowed deformation.

Many strain limiting methods enforce deformation limits per
spring or element, using, e.g., Gauss-Seidel like iterations [P∗95,
BFA02, TPS09]. While simplicity is an advantage of this local
approach, convergence is often exceedingly slow, in particular
if tight deformation bounds are used. Another class of methods
combines individual constraints into a globally-coupled problem.
While this strategy can greatly accelerate convergence, existing
methods either solve only a linearized version of the problem
[GHF∗07,PCH∗13] or resort to nonlinear programming techniques
to deal with potentially nonconvex constraints [NSO12, JLGF17].
In either case, there are no formal guarantees on convergence.

In this work, we propose a new approach to strain limiting based
on second order cone programming (SOCP). Using a finite element
discretization, we model bounds on triangle deformations in given
material directions using quadratic inequality constraints. Our work
is based on the key insight that bounds on compression lead to non-
convex constraints, whereas bounds on stretching lead to convex
constraints. Though nonlinear, stretching constraints can be refor-
mulated as inclusion conditions on convex sets, leading to a second
order cone programming problem—a convex optimization problem
that a) is guaranteed to have a unique solution and b) can be solved
much more efficiently than a general nonlinear program [ART03].

To develop our formulation, we first cast strain limiting with
anisotropic bounds on stretching as a quadratically constrained
quadratic program (QCQP), then show how this QCQP can be
mapped to a second order cone programming problem. We further
propose a constraint reflection scheme and empirically show that it
exhibits superior energy-preservation properties compared to con-
ventional end-of-step projection methods. Finally, we demonstrate
our prototype implementation on a set of examples and illustrate
how different anisotropic deformation limits can be used to model
a wide range of material behaviors.
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Figure 1: Two examples of 3D-printed chainmail with experimen-
tally measured deformation limits. Orange areas in the plots indi-
cate the variation of experimental data.

2. Related Work

Modeling the mechanical behavior of materials is a problem
that received much attention in computer animation; see, e.g.,
[XSZB15, LB15] for recent examples. For textiles, the spectrum
ranges from simple mass spring systems with manually specified
stiffness coefficients [P∗95,BFA02] to continuum mechanics mod-
els with material parameters extracted from real-world measure-
ments [WOR11, MBT∗12]. Instead of modeling fabrics using gen-
eral nonlinear elasticity, another approach is to approximate them
as biphasic materials that exhibit low stiffness for small deforma-
tions followed by a quasi-inextensible limit. Strain limiting is a way
of modeling these biphasic materials.

The idea of strain limiting goes back to the work of Provot
[P∗95] who experimented with mass-spring simulations using ex-
plicit time integration. Using lower stiffness coefficients allowed
for larger time steps, but led to undesirable over-elongation ef-
fects. Provot corrected for these artifacts by iteratively adjusting
vertex positions after every integration step. This relatively sim-
ple idea has been widely successful and was used and extended
in numerous works. For example, Bridson et al. [BFA02] integrate
strain limiting and collision handling as layers in a velocity filter-
ing stack. Thomaszewski et al. [TPS09] extended strain limiting to
the continuum-mechanics setting by enforcing bounds on the en-
tries of the co-rotated Cauchy strain tensor. Subsequent work intro-
duced limits on the principal strain to achieve isotropic [WOR10]
and anisotropic [HCPO13] behaviors, and proposed extensions to
quadratic strain measures [MCKM15].

While all the above approaches enforce strain limits locally by
iterating over individual springs and elements, another line of work
aimed at globally-coupled enforcement based on constrained opti-
mization techniques. For example, Goldenthal et al. [GHF∗07] pro-
pose a fast projection scheme in which constraints are linearized
and combined into a global system. The corresponding system is
solved repeatedly until the constraint violation is sufficiently small.
While this approach is computationally more efficient than sim-
pler per-element iterations, there are no formal convergence guar-
antees. Nevertheless, fast projection has been extended to triangle
meshes [EB08], and it has been used for augmenting conventional
simulators with energy-momentum conservation [DLL∗18].

In the context of haptic simulation, Perez et al. [PCH∗13] pro-
pose a globally-coupled treatment of strain limiting and frictional
contact, combining linearized constraints into a linear complemen-
tarity problem that is solved with Projected Gauss-Seidel. The re-
sulting method is fast enough to enable haptic interaction, although
tight constraint enforcement cannot be guaranteed due to the lin-
earized formulation.

In contrast, Jin et al. [JLGF17] propose a fully nonlinear formu-
lation in which inequality constraints on edge lengths are enforced
in an iterative fashion using an active set-like algorithm. While Jin
et al. stress the importance of their constraint relaxation and tight-
ening scheme to avoid undesirable local minima, our formulation
is convex and is therefore guaranteed to converge to a single global
optimum.

Generalizing the idea of strain limiting, Position-based Dynam-
ics (PBD) is a constraint-based animation technique that has been
widely successful in computer animation; see [BMM15] for an
overview. In analogy to developments in strain limiting, Bouaziz
et al. [BML∗14] introduced a method that combines the local
constraint projections of PBD into a global solve. Overby et al.
[OBLN17] showed that the formulation by Bouaziz et al. is equiv-
alent to solving a corresponding constraint optimization problem
using the Alternating Direction of Multipliers Method (ADMM)
and can thus benefit from progress in ADMM solvers [ZPOD19].
While ADMM is often the method of choice when it comes to solv-
ing non-convex optimization problems, our formulation is convex
from the ground up. Nevertheless, some SOCP solvers are imple-
mented using ADMM on their inside.

3. Theory

We consider discrete elastic surfaces represented by triangle
meshes with two sets of vertices, x̄ and x, holding undeformed and
deformed positions, respectively. Let xi

k, x̄k
i denote deformed and

undeformed vertex positions for a given triangle Ti. Using a finite
element discretization over the space of piece-wise linear functions,
the deformation gradient F ∈ R3×2 is the unique matrix that maps
undeformed edge vectors to their deformed counterparts as

(xi
k−xi

l) = F(x̄i
k− x̄i

l) . (1)

It is evident from this expression that F is a linear function of the
deformed positions x—a fact that allows us to formulate bounds on
stretching as quadratic inequality constraints.
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Figure 2: Our method can enforce stretching limits in arbitrary material directions including isotropic, orthotropic, and fully anisotropic
constraints. Top row: polar plots showing input curves for deformation limits and sample locations for which constraints are enforced.
Bottom row: simulation results for a static drape test using a mesh resolution of 60×60.

3.1. Deformation Limits as Quadratic Constraints

Orthotropic and anisotropic materials show variations in their
stress-strain response as a function of the direction of deformation.
Likewise, deformation limits are generally direction-dependent. In
order to properly enforce these limits, we must first establish how
to measure deformation in arbitrary directions. Using the deforma-
tion gradient from (1) for a given deformed triangle, we can quan-
tify the directional deformation for any unit-length material-space
direction d̄ ∈ R2 as the squared length of the transformed vector,
i.e.,

s(d̄) = dT d = d̄T FT Fd̄ . (2)

Values s(d̄)≥ 1 indicate stretching, whereas s(d̄)≤ 1 implies com-
pression. By parameterizing the direction d̄ through a single scalar,
d̄=d̄(αi), we obtain a continuous measure of deformation in polar
space. We note that, for any direction α, this measure is a quadratic
function of the element’s deformed positions xi

k. Next, we discuss
how to impose limits on deformations.

We assume that deformation limits are provided through m sam-
ples, (αi,bi), consisting of an angle αi ∈ [−π/2,π/2] and a stretch
limit bi. We then impose a set of quadratic inequality constraints,
i.e., s(αi,x) ≤ b2(αi) ∀i . Before we can proceed to a conic refor-
mulation, we must first transform these constraints into a different
form. To this end, we observe that for any material-space direction
d̄i, the corresponding deformed vector di(x) is a linear function of
x and we write

di(x) = F(x)d̄i = Aix , (3)

where Ai = ∇x(Fd̄i) ∈ R3×9 holds products between the partial
derivatives of F and components of d̄i (see Appendix). We can now
rewrite the quadratic constraints as

si(x) = s(αi,x) = ||Aix||2 = xT AT
i Aix≤ b2

i . (4)

3.2. Constraint Projection as QCQP

We simulate biphasic materials using a step-and-project approach
[GHF∗07]: we first compute candidate positions x̂ using a standard
implicit time stepping scheme without deformation constraints. We
then project these candidate positions onto the constraint manifold
by computing the closest configuration that satisfies all constraints,
i.e.,

min
1
2
||x− x̂||2 such that (5)

xT AT
i Aix≤ b2

i ∀i .

The above expression describes a quadratically-constrained
quadratic program (QCQP). Since the matrices AT A are symmet-
ric positive semi-definite, this QCQP is convex and thus has a sin-
gle global optimum. Conversely, imposing lower bounds on defor-
mation corresponds to multiplying the quadratic constraint by −1.
The matrix−AT

i Ai is evidently negative semi-definite and the con-
straint is no longer convex. Interestingly, the bilateral version of
this constraint is likewise nonconvex. This can be understood geo-
metrically since the feasible set for the quadratic equality constraint
corresponds to an ellipsoidal surface which is not a convex set: for
any two points on the surface, the line connecting the two points
does not belong to the feasible set. These observations are valu-
able as they assert that our projection problem—which enforces
bounds on stretching but not compression—has a unique solution.
This is a crucial property that previous formulations did not possess
or expose. However, in order to leverage the full computational ad-
vantages that this setting offers, we must transform (5) into a conic
formulation as follows.
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3.3. Conic Reformulation

Conic Programs (CP) are optimization problems in which inequal-
ity constraints are expressed as set inclusion conditions on convex
cones [LVBL98, AG03]. A set K ⊂ Rn is called a convex cone if
for each y,z ∈ K we have y+ z ∈ K and for each y ∈ K we have
αy ∈ K for all α ≤ 0. We focus on quadratic (i.e., second-order)
cones, which are defined as

Qn+1 = {(t,y) ∈ Rn+1 | ||y||2 ≤ t} . (6)

While quadratic cones directly allow for Euclidean norm con-
straints, it is often more convenient to impose constraints on
squared norms. To this end, we use so-called rotated second-order
cones, which are defined as

Qn+1
r = {(u,v,y) ∈ Rn+2, u,v≥ 0 | ||y||22 ≤ 2uv} . (7)

To convert the quadratic inequality constraints (4) into equiva-
lent second-order cone constraints, we first introduce two auxiliary
variables ti and yi such that

ti = b2
i , (8)

yi = Aix .

The quadratic constraint is now readily expressed in a second-order
cone form as

xT AT
i Aix≤ b2

i ⇐⇒ ( 1
2 , ti,yi) ∈Qk+2

r . (9)

With all constraints reduced to conic form, we must now transform
the quadratic objective function in (5) into a linear form. This can
be accomplished by first writing out the quadratic objective as

min
1
2

xT x−xT x̂+ 1
2

x̂T x̂ . (10)

Omitting the constant term and introducing an additional auxiliary
variable t0, this quadratic objective is equivalent to

min
x,t0

t0− x̂T x s.t. xT x≤ 2t0 , (11)

where the quadratic inequality constraint can be directly translated
into conic form as outlined above. Combining the conic reformula-
tions for the objective and all constraints, we arrive at

min
x,t0,ti,yi

t0− x̂T x such that (12)

(1, t0,x) ∈Qn+2
r

ti = b2
i ∀i,

yi = Aix ∀i,

( 1
2 , ti,yi) ∈Qk+2

r ∀i .

With the above formulation, we have converted our constraint pro-
jection problem into SOCP form. It is therefore guaranteed to have
a unique solution, and that solution can be computed with any
SOCP solver (we use Mosek 9.3).

4. Time Stepping

When implemented as a post-step velocity filter in the spirit of
[BFA02], our SOCP formulation integrates seamlessly with stan-
dard time-stepping schemes and collision response methods. This

Algorithm 1 Step-and-Reflect

1: procedure STEPANDREFLECT(x0,v0)
2: x̃1/2,ṽ1/2← ImplicitEulerStep(x0,v0, ∆t

2 )
3: x1/2← StrainLimitingSOCP(x̃1/2)
4: v1/2 = x1/2−x0

∆t/2

5: x̂1/2 = 2x1/2− x̃1/2,v̂1/2 = v1/2

6: x̃1, ṽ1← ImplicitEulerStep(x̂1/2, v̂1/2)
7: x1←StrainLimitingSOCP(x̃1)
8: v1 = x1−x̂1/2

∆t/2

Figure 3: A schematic visualization of our quasi-symmetric step-
and-reflect method. We first step to the middle of the time interval,
where we apply twice the correction necessary to satisfy deforma-
tion constraints. We then integrate from mid-step to the end of the
interval and apply a standard projection step.

step-and-project (SAP) approach generally leads to stable and visu-
ally pleasing motion. We notice, however, that it largely inherits the
numerical dissipation of lower-order implicit integration schemes,
which manifests as a loss of kinetic energy and dynamic detail over
time; see the accompanying video.

To improve upon this behavior, we follow the idea by Zehnder
et al. [ZNT18] and experiment with a quasi-symmetric constraint
reflection scheme that we refer to as step-and-reflect (SAR).

To this end, we first integrate to the middle of the time interval,
where we enforce constraints by solving (12). We then apply twice
the correction required to satisfy all constraints which, visually, re-
flects the current configuration to the other side of the constraint
manifold (i.e., the boundary between feasible and infeasible con-
figurations). We step from this reflected configuration to the end of
the interval, where we apply a standard constraint projection. See
Fig. 3 for a visual summary and Algorithm 1 for a pseudo-code
description of this scheme.

The rationale of this step-and-reflect approach is that, in anal-
ogy to symmetric (i.e., time-reversible) integration schemes, the
quasi-symmetric arrangement of constraint correction and integra-
tion steps should lead to better energy conservation [HLW06]. Sim-
ilar to Zehnder et al. [ZNT18], we indeed observe that the reflec-
tion scheme leads to better energy conservation, as can be seen
in Fig. 4. The plot also shows that, unlike the implicit Euler and
step-and-project approach, the energy evolution for the step-and-
reflect scheme shows slight oscillations around a smoothly evolv-
ing curve. We conjecture that this behavior might be akin to the
fluctuations observed in symplectic integration methods which, al-
though non-monotonic, exhibit excellent long-term energy conser-
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vation [HLW06]. Using a second-order reflection scheme [NZT19]
might further improve energy conservation.

We additionally experimented with BDF-2 variants of our end-
of-step projection and reflection schemes for comparison. By di-
rectly replacing implicit Euler with BDF-2 in SAP, we recover the
projection method by English and Bridson [EB08] to which we re-
fer as BAP. In addition, we also implemented a reflection version
of BAP, termed BAR, but noticed instability problems when using
the BDF-2 formula for the mid-step velocity v1/2. As shown in Fig.
4, the energy curves of BDF-2 methods exhibit larger fluctuations,
but show overall better energy conservation as expected. Finally,
we also investigate the impact of step size on our SAR method. As
can be seen in Fig. 5, SAR is robust even for large step sizes even
though energy conservation deteriorates.

5. Results

We tested our method on a number of static and dynamic examples
that we discuss below. In all cases, we use a square sheet of fabric
with 0.5m side length initialized in the xz-plane and fixed at two
corners. We use constant strain triangle (CST) elements [TPS09]
and hinge-based elements [GHDS03] for modeling the in- and out-
of-plane behavior of the material, respectively. We set the material
thickness to 0.5mm, its density to 200kg/m3, and use a Young’s
modulus 1800Pa and a Poisson’s ratio of 0.41. Using these param-
eters, we evaluate our method for different deformation limits and
different mesh resolutions.

Our method allows us to freely impose arbitrary bounds on
stretching in any material direction. This, in turn, enables simu-
lation of a large variety of materials, including quasi-inextensible
isotropic materials, orthotropic fabrics with tight and loose bounds
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Figure 4: Evolution of total energy over time for different methods
on a swinging cloth example with 1% isotropic strain limits. Un-
constrained implicit Euler (IE) loses energy more rapidly than our
SOCP approach with end-of-step projection (SAP). Our step-and-
reflect method (SAR) further improves energy conservation. For
BDF-2 versions of projection (BAP) and reflection (BAR) methods,
we obtain even lower numerical damping, but larger energy fluctu-
ations.

in different directions, as well as fully anisotropic weaves. As illus-
trated in Fig. 2, different combinations of deformation limits lead
to different static drapes—and a similarly rich variety in dynamic
behavior, as shown in the accompanying video. Another dynamic
example illustrates the feasibility of combining our method with
standard collision resolution algorithms (see Fig. 6).

During all these experiments, we observed that our SOCP-based
method is extremely robust, yielding stable results for both static
and dynamic examples that precisely satisfy all constraints, regard-
less of the deformation limits. We attribute this favorable behavior
to the strict convexity of our formulation.

5.1. Performance

We analyze the performance of our method by measuring the aver-
age time spent inside the SOCP solver across 100 simulation steps
of our swinging cloth example using different mesh resolutions.
Note that our SAR method involves two projections, so we average
across 200 SOCP solves. For reference, we also present the average
time spent inside the Newton solver for implicit integration. As can
be seen from Tab. 1, the timings for the SOCP solver and implicit
Euler are comparable for small and moderate problem sizes. For
larger problems, however, computation times increase much more
rapidly for SOCP, taking roughly 8s per time step for 10,000 de-
grees of freedom and approximately 30,000 inequality constraints.

We further evaluated the impact of constraint tightness on com-
putation times, but observed almost no effect when decreasing
bounds from 20% to 0.1%. Similarly, we noticed only slight
changes (approximately 20%) in computation time when increas-
ing the number of constraints per element from 4 to 18.

To analyze the performance of our SOCP formulation, we com-
pare to two common strain limiting methods: 1) solving a general
nonlinear programming (NLP) problem (similar to [JLGF17]) and
2) using Gauss-Seidel (GS) to iteratively enforce constraints per
element (similar to [TPS09]). We solve the SOCP using MOSEK
9.3 with default parameters, whereas the NLP is solved using Ipopt
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Figure 5: Evolution of total energy over time for different step sizes
on a swinging cloth example with 1% isotropic strain limits.
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Figure 6: Our SOCP-based strain limiting method can be integrated into standard collision resolution approaches. Here we use simple
penalty functions that prevent intersection during time integration and enforce isotropic strain limits of 0.1%.

Table 1: Performance of our method compared to unconstrained
implicit Euler (IE), general nonlinear programming (NLP), and
Gauss-Seidel (GS) as a function of mesh resolution under isotropic
strain limiting. Timings are averaged across 100 animation steps.
The symbol ∗ indicates that some steps did not converge whereas
− indicates solver failure.

Mesh resolution 10×10 20×20 40×40 60×60

IE 0.017s 0.064s 0.361s 1.318s

1%
strain

Ours 0.108s 0.285s 1.289s 4.060s
NLP 0.436s ∗21.009s − −
GS 0.422s ∗7.184s ∗54.725s ∗100.033s

10%
strain

Ours 0.107s 0.278s 1.242s 3.790s
NLP 0.405s ∗27.001s − −
GS 0.016s 0.238s 6.311s ∗48.427s

3.14 with default parameters. For GS, flag convergence once con-
straint violations drop below 1e-6 and set the maximum number of
iterations to 1e5. As shown in Tab. 1, our method stands out over
these two alternatives, especially for high-resolution meshes and
tight deformation bounds. In addition, we can see that both NLP
and GS may not converge or even fail to handle the problem for
high-resolution meshes. In contrast, our SOCP method handles all
of these cases robustly.

All examples were run on a machine with an Intel Core i9-7900X
3.3GHz processor and 32 GB of RAM.

6. Conclusion

We presented a new formulation for strain limiting based on second
order cone programming. Unlike previous methods for globally-
coupled strain limiting, our formulation is convex from the ground
up and is guaranteed to have a single optimum. We have translated
our quadratic inequality constraints into the conic form, allowing
us to leverage powerful conic programming solvers.

While our SOCP excels at enforcing bounds on stretching, it can-
not handle bounds on compression since the corresponding con-
straints are not convex. We argue that, for thin sheet materials such
as textiles, this is a worthwhile compromise as compressions gen-
erally lead to immediate out-of-plane buckling.

Our initial results demonstrate the feasibility of our approach and
indicate that, by setting arbitrary bounds on stretching in arbitrary
directions, a large range of interesting material behaviors can be
modeled. Our experiments further indicate that our SOCP-based
approach is unconditionally robust, yielding stable and temporally
smooth animations even for tight deformation bounds.

Computation times seem to be largely unaffected by constraint
tightness and the number of constraints per element, but they
grow rather rapidly with respect to mesh resolution. However, our
method still outperforms conventional approaches by large mar-
gins, especially for high-resolution meshes and tight deformation
bounds. While our formulation will automatically benefit from
progress in SOCP solvers, multi-resolution approaches that enforce
constraints on coarser levels than the simulation mesh might be a
worthwhile direction for future exploration.

We have demonstrated that our method can be combined with a
simple collision response approach. However, future work should
investigate ways of integrating our method with advanced collision
handling frameworks such as [NSO12] or [LKJ21].

While we have focused on in-plane behavior, it would also be
interesting to develop quadratic formulations for bending deforma-
tion limits. Enforcing limits on bending deformation would enable
simulating materials such as quasi-rigid chainmail.

Our results, both qualitative and quantitative, focus on simple
geometries and simple test cases. While they constitute a proof-of-
concept, we would like to confirm the promising behavior of our
method on clothing examples with production-level complexity.

Finally, we believe that many other animation problems can
benefit from conic programming reformulations. One particularly
interesting case would be frictional contact modeling, for which
SOCP methods have already shown their promise [BW07].
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Appendix A

For the deformation gradient F ∈ R3×2, we compute it as

F =
dx
dx̄

=
dxN(x̄)

dx̄
= x dN(x̄)

dx̄
= xB , (13)

where N is the shape functions for the triangle. Therefore, we get
the matrix A in Equation (3) as

A =

d̄
d̄

d̄

T



B1
B1

B1
B2

B2
B2

B3
B3

B3



T

, (14)

where Bi indicates the i-th row of matrix B.
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