
An Advection-Reflection Solver for Detail-Preserving Fluid Simulation

JONAS ZEHNDER, Université de Montréal
RAHUL NARAIN, University of Minnesota and Indian Institute of Technology Delhi
BERNHARD THOMASZEWSKI, Université de Montréal

Fig. 1. Our new reflection solver applied to a vortex leap-frogging problem (top row). During 10s of simulation the two vortex rings move through each other
multiple times and stay well separated. By contrast, in a standard advection-projection method with MacCormack advection (bottom row), the two vortices
merge immediately and never separate afterwards.

Advection-projection methods for fluid animation are widely appreciated

for their stability and efficiency. However, the projection step dissipates

energy from the system, leading to artificial viscosity and suppression of

small-scale details. We propose an alternative approach for detail-preserving

fluid animation that is surprisingly simple and effective. We replace the

energy-dissipating projection operator applied at the end of a simulation

step by an energy-preserving reflection operator applied at mid-step. We show

that doing so leads to two orders of magnitude reduction in energy loss,

which in turn yields vastly improved detail-preservation. We evaluate our

reflection solver on a set of 2D and 3D numerical experiments and show

that it compares favorably to state-of-the-art methods. Finally, our method

integrates seamlessly with existing projection-advection solvers and requires

very little additional implementation.

CCS Concepts: • Computing methodologies → Physical simulation;
Computer graphics; Animation;

Additional Key Words and Phrases: fluid simulation, advection, reflection,

energy conservation

ACM Reference Format:
Jonas Zehnder, Rahul Narain, and Bernhard Thomaszewski. 2018. An Advec-

tion-Reflection Solver for Detail-Preserving Fluid Simulation. ACM Trans.

Authors’ addresses: Jonas Zehnder, Université de Montréal, jonas.zehnder@umontreal.

ca; Rahul Narain, University of Minnesota, Indian Institute of Technology Delhi,

narain@cse.iitd.ac.in; Bernhard Thomaszewski, Université de Montréal, bernhard@iro.

umontreal.ca.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association

for Computing Machinery.

0730-0301/2018/8-ART85 $15.00

https://doi.org/10.1145/3197517.3201324

Graph. 37, 4, Article 85 (August 2018), 8 pages. https://doi.org/10.1145/

3197517.3201324

1 INTRODUCTION
Advection-projection methods are widely used for fluid animations

in computer graphics. Splitting mass transport and conservation

into different steps allows for stable and efficient integration, and

advances in higher-order advection schemes (e.g. [Selle et al. 2008])

have greatly reduced the well-known numerical diffusion caused

by the semi-Lagrangian advection step. However, the splitting of

the time integration scheme itself induces numerical dissipation, as

kinetic energy is transferred to divergent modes during advection

and then lost after projection. This numerical dissipation manifests

as rapid decay of large vortices and leads to suppression of small-

scale swirling motion. Since visual complexity is a central goal in

fluid animation, much effort has been spent on combating numerical

dissipation: apart from higher-order advection schemes mentioned

above, energy-preserving integration [Mullen et al. 2009], a pos-

teriori correction of the velocity field [Fedkiw et al. 2001; Zhang

et al. 2015], and injection of procedurally-generated detail [Kim et al.

2008b] are among the strategies that have been pursued so far.

In this work, we propose an alternative approach to detail-pre-

serving fluid animation that is surprisingly simple and effective: we

replace the energy-dissipating projection operator applied at the

end of a simulation step by an energy-preserving reflection operator

applied at mid-step; see Fig 2. We show that doing so leads to an

order of magnitude reduction in divergent kinetic energy, which in

turn leads to vastly improved preservation of vortices and small-

scale detail. This analysis also exposes our method to be first-order

structurally symmetric, which motivates an analogy to (and compar-

ison with) symmetric projection methods for structure-preserving

integration of constrained mechanical systems [Hairer et al. 2006].

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

https://doi.org/10.1145/3197517.3201324
https://doi.org/10.1145/3197517.3201324
https://doi.org/10.1145/3197517.3201324

85:2 • J. Zehnder, R. Narain, and B. Thomaszewski

u0

ũ1

u1 u0

ũ1/2

û1/2
ũ1

u1

u0

ũ1/2

u1/2

ũ1

u1

Fig. 2. A geometric interpretation of our method. Left: In a standard advec-
tion-projection solver, projection to the divergence-free subspace causes
kinetic energy loss (red). Middle: Our reflection solver uses an energy-
preserving reflection (yellow) halfway through the advection step, dramati-
cally reducing the energy loss caused by the final projection. Our method
has effectively identical computational cost to an advection-projection solver
with half the time step (right), but loses less energy.

We show that even the simplest methods from this category are com-

putationally much more expensive and less stable. By contrast, our

method preserves the appreciable splitting property of advection-

projection methods while offering energy and detail preservation

similar to fully-symmetric methods.

Our method integrates seamlessly with existing advection-pro-

jection solvers and is agnostic to the choice of advection scheme

and pressure discretization. Furthermore, it uses the basic advection

and projection steps as primitives, and therefore requires very little

additional implementation. We evaluate our reflection solver on an

extensive set of 2D and 3D examples and compare its behavior to a

number of alternative methods. The results of these comparisons

indicate that, for equal computational costs, our method leads to

vastly improved energy and vorticity preservation.

2 RELATED WORK
Our review of related works focuses primarily on Eulerian fluid

simulation methods, as our approach does not apply to Lagrangian

particle-based methods like SPH [Ihmsen et al. 2014]. Also, we will

only discuss schemes for solving the core Navier-Stokes equations,

omitting the diversity of techniques in graphics for artificially inject-

ing detail such as vorticity confinement [Fedkiw et al. 2001], vortex

particles [Selle et al. 2005], and turbulence synthesis [Thuerey et al.

2013].

Most Eulerian methods in graphics follow a Chorin-style advec-

tion-projection scheme [Chorin 1968] introduced to graphics by

Stam [1999]. The effectiveness of the advection-projection approach

stems from three main ingredients: (i) operator splitting decouples

the pressure term from the remaining inertial and internal forces, (ii)

semi-Lagrangian advection [Robert 1981] permits large time steps

unimpeded by the CFL condition, and (iii) staggered grids [Foster

and Metaxas 1996; Harlow and Welch 1965] allow for accurate

computation of the pressure projection. While this approach is

unconditionally stable, it exhibits noticeable energy loss over time

even for inviscid flows. Small-scale vortices and turbulent flows tend

to decay especially rapidly, leading to a loss of visually interesting

detail. Much work in computer graphics has focused on minimizing

this numerical dissipation.

As discussed in the introduction, there are two main reasons for

the loss of energy in an advection-projection method: the discretiza-

tion error in the semi-Lagrangian advection step, which manifests

as artificial diffusion, and the splitting error caused by decoupling of

the advection and projection steps. To reduce the diffusion in semi-

Lagrangian advection, Fedkiw et al. [2001] and Kim et al. [2008a]

have proposed higher-order interpolation schemes to improve spa-

tial accuracy. Kim et al. [2005, 2007] introduced the BFECC method

which performed multiple backward and forward advection steps to

correct both spatial and temporal error. This approach was simpli-

fied by Selle et al. [2008], who proposed a semi-Lagrangian variation

of the MacCormack method and demonstrated second-order accu-

racy in space and time. Molemaker et al. [2008] proposed the use of

the QUICK advection scheme [Leonard 1979] for low-dissipation

advection, although it is limited by the CFL condition for stability.

In this context, hybrid particle-and-grid methods like FLIP [Zhu and

Bridson 2005] and APIC [Jiang et al. 2015] are very attractive as they

exhibit little numerical diffusion of this form, because they track

the advected quantities on Lagrangian particles which are largely

unaffected by the grid interpolation.

In contrast to the improvements in low-diffusion advection

schemes, much less attention has been paid to the error introduced

by the splitting scheme itself. In graphics, this has been pointed

out by Elcott et al. [2007] and Zhang et al. [2015], who noted that

semi-Lagrangian advection transfers energy into divergent modes

which are then annihilated by the projection step. This is true even

for the FLIP and APIC methods, which employ the same advection-

projection splitting. Elcott et al. instead adopted the vorticity for-

mulation of the fluid equations, in which the primary variable is

the vorticity rather than the velocity field. Other vorticity-based

methods in graphics include Angelidis and Neyret [2005]; Park and

Kim [2005]; Weißmann and Pinkall [2010]. Since the vorticity repre-

sentation automatically yields a divergence-free velocity field, such

methods do not require a projection step, and consequently do not

suffer the associated energy loss. Particularly notable is the method

of Mullen et al. [2009], which is time-reversible and offers exact en-

ergy preservation through the use of a symplectic integrator, albeit

at the cost of requiring the solution to a nonlinear system at each

time step. Nevertheless, advection-projection methods continue to

enjoy widespread use in industry and academic research, possibly

due to their relative simplicity, efficiency, and flexibility in compari-

son to vorticity methods [Zhang et al. 2015]. Therefore, we believe

that advances in energy preservation for advection-projection meth-

ods are still highly desirable.

Remaining within the advection-projection framework, Zhang

et al. [2015] counteracted the artificial dissipation caused by the pro-

jection step by explicitly tracking the lost vorticity and re-injecting

it into the fluid. Thus, their work seeks to preserve vorticity but not

necessarily the energy of the fluid. In contrast, we propose a simple

modification to the splitting scheme which reduces the projection

error without requiring explicit tracking and correction. We also

provide a simple proof that our scheme preserves kinetic energy to

a higher degree than traditional advection-projection methods.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

An Advection-Reflection Solver for Detail-Preserving Fluid Simulation • 85:3

3 THEORY
To set the stage for our theoretical developments, we start with a

minimal review of advection projection methods before we intro-

duce our reflection solver. For context and comparison, we subse-

quently introduce two fully-symmetric projection methods.

For notational convenience, we will refer to the velocity field

at the beginning and end of the time step as u0 and u1 respec-

tively, instead of un and un+1. We will also adopt the convention

that divergence-free velocity fields are undecorated, e.g. u1/2, while
velocity fields with nonzero divergence are denoted ũ (before pro-

jection) or û (after reflection).

3.1 Advection-Projection Solvers
The starting point for our developments are the inviscid, incom-

pressible Navier-Stokes equations

∂u
∂t
+ (u · ∇)u = −

1

ρ
∇p + f (1)

∇ · u = 0 , (2)

where u is the continuous velocity field of the fluid, p is the pressure,

ρ the density and f denote external forces such as buoyancy and

gravity. Advection-projection methods discretize the velocities on a

Eulerian grid and split the equations into three (or more) different

steps:

Advection ũ1 = A(u0; u0,∆t)

Forcing ũ1 += ∆t f

Projection u1 = P ũ1 .

In the above expressions, A(u; u0,∆t) is an advection operator that

implements a semi-Lagrangian discretization of the advection equa-

tion,
∂u
∂t + (u0 · ∇)u = 0. Furthermore, P is a projection operator

that maps a given velocity field to its closest divergence-free field

(under the kinetic energy metric). This operator uses the Helmholtz-

Hodge decomposition, which splits any vector field u = v +w into

a curl-free part v and a divergence-free part w. P simply discards

the curl-free part, Pu = w, by solving a Poisson problem.

For conciseness, we will neglect the forcing step in the following

and focus on the central advection and projection steps. In practice,

we apply external forces immediately after each advection.

Lemma 1. If a vector field ũ has divergence Θ(∆tk), the kinetic
energy loss due to projection, 1

2
∥ũ∥2 − 1

2
∥P ũ∥2, is Θ(∆t2k).

Proof. The pressure projection can be interpreted as decom-

posing the post-advection velocity ũ into two orthogonal com-

ponents, ũ = P ũ + v, where v is the curl-free part. Due to the

orthogonality of the Helmholtz-Hodge decomposition, we have

∥ũ∥2 = ∥P ũ∥2 + ∥v∥2. Therefore, the energy loss
1

2
∥ũ∥2 − 1

2
∥P ũ∥2

is precisely the kinetic energy of the curl-free part,
1

2
∥v∥2. Fur-

thermore, the curl-free part v is determined by the divergence of

ũ and depends linearly on it; that is, we can write v = H (∇ · ũ)
for some linear operator H .

1
If ∇ · ũ = Θ(∆tk), it can be expressed

1
In particular, H = ∇∆−1

, where ∆−1
denotes the inverse of the Laplace operator with

the appropriate problem-defined boundary conditions.

as ∇ · ũ = δ ∆tk + o(∆tk) for some scalar field δ . Thus we have

1

2
∥v∥2 = 1

2
∥Hδ ∥2∆t2k + o(∆t2k) = Θ(∆t2k). �

Using this result, we show that an advection-projection solver

can at best only preserve energy to first order in time.

Theorem 2. The kinetic energy loss due to the projection step of
the advection-projection method is Θ(∆t2).

Proof. Expanding the advection operator into its Taylor series,

ũ1 = u0 − (u0 · ∇)u0∆t +O(∆t2). (3)

we find that the divergence of the advected velocity field is

∇ · ũ1 = ∇ · u0 − ∇ · ((u0 · ∇)u0)∆t +O(∆t2) (4)

= −∇ · ((u0 · ∇)u0)︸ ︷︷ ︸
δ (u0)

∆t +O(∆t2). (5)

For a divergence-free velocity field u, it can be shown that the rate

of divergence δ (u) is proportional to the second invariant of the

velocity gradient,

∑
i j

∂ui
∂x j

∂uj
∂xi

, and is not in general zero. Therefore,

we have ∇ · ũ1 = Θ(∆t), resulting in an energy loss of order Θ(∆t2).
�

3.2 Reflection Solver
We would like to avoid the second-order energy loss during pro-

jection while still achieving zero divergence at the end of the time

step. The intuition for our approach is that, instead of correcting

the velocity at the end of the time step, we can over-compensate
in the middle: we advect to the middle of the time interval and

apply twice the correction needed to obtain a divergence-free field

such as to anticipate the divergence incurred during the second half.

Geometrically, this operation can be interpreted as symmetrically

changing from one side of the divergence-free manifold to the other,

hence the term reflection; see Fig. 2. Concretely, the reflection solver

proceeds as follows:

ũ1/2 = A(u0; u0, 1
2
∆t)

u1/2 = P ũ1/2

û1/2 = 2u1/2 − ũ1/2

ũ1 = A(û1/2; u1/2, 1
2
∆t)

u1 = P ũ1 .

As it is preferable to perform semi-Lagrangian advection using

a divergence-free velocity field (otherwise the advection equation

does not correspond to a conservation law for the advected quantity),

we use the projected mid-step velocity u1/2 in the second semi-

Lagrangian advection step. Note that the reflection velocity û1/2

can also be written directly as û1/2 = Rũ1/2, where R = 2P − I is
the reflection operator. The final projection u1 = P ũ1 guarantees
divergence-free velocity at the end of the time step. However, if the

rate of divergence does not vary much across the time step, then

ũ1 will already be close to divergence-free. Indeed, this intuition is

confirmed by the following statement.

Theorem 3. The kinetic energy loss due to the projection step of
the reflection solver is O(∆t4).

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

85:4 • J. Zehnder, R. Narain, and B. Thomaszewski

Proof. Using the Taylor series expansion of the advection oper-

ator, we approximate the mid-step velocities as

ũ1/2 = u0 − (u0 · ∇)u0∆t/2 +O(∆t2) , (6)

û1/2 = u0 − R(u0 · ∇)u0∆t/2 +O(∆t2) , (7)

where we have used the fact that Ru0 = u0 since u0 is already

divergence-free. An analogous first-order approximation of the end-

of-step velocity before projection, ũ1, yields

ũ1 = û1/2 − (u1/2 · ∇)û1/2∆t/2 +O(∆t2) (8)

=
(
u0 − R(u0 · ∇)u0∆t/2

)
(9)

−
(
(u0 +O(∆t)) · ∇

) (
u0 +O(∆t)

)
∆t/2 +O(∆t2) (10)

= u0 − R(u0 · ∇)u0∆t/2 − (u0 · ∇)u0∆t/2 +O(∆t2) (11)

= u0 − 2P
(
(u0 · ∇)u0

)
∆t/2 +O(∆t2) . (12)

From this, it is evident that ũ1 is divergence-free to first order,

i.e. ∇ · ũ1 = O(∆t2). Therefore, the resulting energy loss is of order

O(∆t4). �

The good energy-preserving properties of our reflection solver

are further assured by the fact that

Theorem 4. The reflection operator preserves kinetic energy.

Proof. The pressure projection w = Pu can be interpreted as

finding w as the closest point to u in the space of divergence-free

vector fields, under the metric defined by kinetic energy [Batty et al.

2007]. Consequently, P is an orthogonal projection with respect to

kinetic energy, and v andw are orthogonal to each other in the sense

that ⟨v,w⟩ =
∭

ρv ·w dV = 0. Using the definition of the reflection

operator, we have for the reflected velocity fieldRu = 2w−u = w−v.
Comparing the kinetic energies, we find that

1

2

⟨Ru,Ru⟩ =
1

2

(⟨w,w⟩ + ⟨v, v⟩) =
1

2

⟨u, u⟩. (13)

�

These results also point to the stability of our method, since

the reflection operator preserves energy, while the final projec-

tion can only reduce it. In conjuction with the stability of semi-

Lagrangian advection operations, one would like to argue that the

reflection method is unconditionally stable. This argument does not

go through smoothly, however, as advection is stable in a slightly

different sense: it is monotonic in the field values, not necessarily

in energy. However, the same caveat applies to all other advection-

projection solvers used in graphics. As such we expect to see un-

conditional stability in practice, independent of the time step size.

It is worth noting here that the reflection solver does not neces-

sarily improve the accuracy of the solution over projection solvers,

since it still incurs error due to self-advection using a “frozen” veloc-

ity field. For time-varying flows the method remains only first-order

accurate in time, as we show in Section 4.3. Instead, the benefit

of the reflection approach is a higher degree of energy conserva-

tion. This is analogous to how BDF2 and implicit midpoint are both

second-order accurate integration schemes, but implicit midpoint

has significantly better conservation properties.

3.3 Symmetric Projection Methods
The results of the previous section suggest that our reflection solver

is first-order structurally symmetric: even though the advection oper-

ator itself is not, the structure of the advection-reflection-advection

sequence is symmetric. This observation prompted us to draw the

analogy to symmetric manifold projection methods, a class of in-

tegrators for conservative mechanical systems known for their ex-

cellent long-term energy conservation [Hairer et al. 2006]. Indeed,

by composing the advection-projection step with its adjoint—and

vice-versa—we obtain two immediate candidates for symmetric

advection-projection schemes.

We start by defining some key terms, followingHairer et al. [2006].

The adjoint of a time-stepping scheme Φ(· ,h) is the inverse of its
time reversal, Φ∗(· ,h) = Φ−1(· ,−h). A time-stepping scheme is

symmetric, or time-reversible, if it is equal to its adjoint. Compos-

ing any consistent first-order scheme Φ with its adjoint yields a

symmetric second-order scheme, Ψ(· ,h) = Φ∗(· ,h/2) ◦ Φ(· ,h/2).
Strictly speaking, the adjoint of the pressure step does not exist

because P as a linear operator is not invertible. In this section, we

interpret P as an arbitrary perturbation normal to the divergence-

free manifold, defining P(u;p) = u − ∇p for any pressure field p.
This operation is self-adjoint: P∗(u;p) = P−1(u;−p) = P(u;p).

APA∗. The first scheme is obtained by composing the advection-

projection step, AP , with its adjoint PA∗
. Geometrically, we first

advect to the middle of the time step to obtain ũ1/2 and project onto
the divergence-zero manifold. To implement PA∗

, we solve for a

pressure field p used to compute velocity perturbations ∆up = −∇p
normal to the manifold, as well as divergence-free end-of-time-step

velocities u1 such that, when advecting u1 backward in time, we

end up at the perturbed mid-step velocities û1/2 = ũ1/2 − ∇p. This
sequence of coupled operations translates into a system of nonlinear

equations,{
A(u1; u1,− 1

2
∆t) − (A(u0; u0, 1

2
∆t) − ∇p) = 0

∇ · u1 = 0

}
. (14)

in which the projection and perturbation steps combine into a single

operation, which is why we mnemonically refer to this scheme as

APA∗
. We note that this system is similar to the one derived by

Mullen et al. [2009]. We solve (14) with Newton’s method and, as do

Mullen et al., approximate the Jacobian of the advection operator

with the identity matrix. When applying block Gaussian elimination

to the resulting saddle-point systems, we recover the same Poisson

problem encountered in standard advection-projection methods,

∇2(∆p) = ∇ · rAPA∗ , (15)

albeit with a different right hand side rAPA∗ that we omit here for

brevity. This pressure solve must be performed once per Newton

iteration, providing us with updated perturbations ∆p and corre-

sponding velocity updates.

PA∗AP . The second scheme is obtained by composing the adjoint

of the advection-projection step with itself, leading to the mnemonic

sequence PA∗AP . As a geometric interpretation, we solve for pertur-

bations p and mid-step velocities u1/2 such that 1) advecting from

the middle to the end and applying the correction −∇p leads to

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

An Advection-Reflection Solver for Detail-Preserving Fluid Simulation • 85:5

Fig. 3. 2D vortex sheet example: comparison of the density distribution (top) and the vorticity magnitude (bottom) for a fixed point in time (10s) as obtained
for the various solvers. Far right : kinetic energy as a function of time.

divergence-free velocities, and 2) advecting from the middle back-

wards leads to the perturbed initial velocities u0 − ∇p. Combining

these operations together leads to a system of nonlinear equations,{
A(u1/2; u1/2,− 1

2
∆t) −

(
u0 − ∇p

)
= 0

∇ ·

(
A(u1/2; u1/2, 1

2
∆t) − ∇p

)
= 0

(16)

that we solve for the mid-step velocities u1/2 and the unknown per-

turbation field p using Newton’s method. This scheme is analogous

to the symmetric projection method describe by Hairer et al. [2006]

and, upon approximation of the Jacobian with the identity matrix

and block Gaussian elimination, leads again to a standard pressure

solve (the details of which we leave out for conciseness).

Discussion. We provide qualitative and quantitative evaluations

for these symmetric projection methods in Section 4 and compare

them to our reflection solver. But even before further analysis, we

can already expect these methods to have much higher computa-

tional cost than our reflection solver: solving the systems to suffi-

cient accuracy requires several Newton iterations, each with one

(resp. two) advection steps and a pressure solve. Furthermore, while

the use of an approximate Jacobian is justified by the difficulty of

computing the full Hessian, it warrants the use of line search for

convergence control. However, since the systems of equations do

not derive from a minimization problem with associated objective

function, we can only monitor the norm of the residual—a poor

measure of progress that can even prevent convergence.

4 RESULTS
We investigated the qualitative and quantitative behavior of our

reflection solver on a set of 2D and 3D experiments commonly

used in the literature. We compare our results to those obtained for

conventional advection-projection solvers and report our findings

below.

Solvers & Setup. For the 2D experiments, we use our own solver

based on a MAC grid discretization. To implement internal obstacles

in the flow, we use the method of Batty et al. [2007] and apply

corresponding modifications to the matrix of the pressure solves.

The 3D examples are based on the Mantaflow library [Thuerey and

Pfaff 2016], which we modified slightly to implement our reflection

solver.

We compare the following solvers: stable fluids with first-order

semi-Lagrangian advection (SF) as described by Stam [1999], stable

fluids withMacCormack advection (MC) [Selle et al. 2008], our reflec-
tion solver (R), as well as the symmetric projection methods (APA∗

)

and (PA∗AP). Statistics on all experiments and solvers—including

step size, grid size, and computation time—are listed in Table 1.

Since our reflection solver requires two advection operations and

two pressure solves per time step, we use twice the step size when

comparing to SF andMC, giving us essentially identical computation

time.

4.1 2D Results
Since two-dimensional flows are generally easier to interpret and

compare, we begin our analysis in the 2D setting.

2D Vortex Sheet. We initialize a disc-shaped region in the center

of the scene with a rigid rotation as the initial velocity field. After

Table 1. (1) 2D Vortex Sheet, (2) Taylor Vortices, (3) Vortex Shedding, (4)
Spiral Maze, (5) Vortex Leap-Frogging, (6) Ink Drop, (7) Smoke Plume, (8)
Smoke Plume with Sphere
The time step was doubled for the reflection solver when producing the
results to keep cost similar to the projection method. The time step was
reduced for PA∗AP and APA∗ to satisfy the CFL condition.

Resolution Domain size ∆t
Iter. time (s)

MC MC+R

1 256 × 256 1 × 1 0.025 0.0281 0.055

2 256 × 256 1 × 1 0.025 0.0285 0.055

3 512 × 128 1 × 0.25 0.0025 0.0322 0.0638

4 256 × 256 0.75 × 0.75 0.025 0.0558 0.1107

5 256 × 128 × 128 256 × 128 × 128 0.25 5.59 10.43

6 128 × 64 × 64 128 × 64 × 64 1 0.27 0.57

7 128 × 256 × 128 128 × 256 × 128 1 5.73 10.66

8 128 × 256 × 128 128 × 256 × 128 1 7.97 13.48

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

85:6 • J. Zehnder, R. Narain, and B. Thomaszewski

Fig. 4. 2D Taylor vortices. Left : initial vorticity magnitude and results for
the three solvers after 10s . Right : kinetic energy as a function of time.

initialization, no additional energy is injected into the system, allow-

ing us to investigate the (long-term) energy conservation properties

of the different solvers.

Fig. 3 shows an overview of density and vorticity magnitude fields

obtained for the various solvers applied to this problem. While the

differences in dynamic behavior are best observed in the accompa-

nying video, it can be seen that our reflection solver MC+R shows

slightly better detail preservation in the density field than MC and

much less vorticity diffusion. Moreover, the temporal evolution of

kinetic energy shown in Fig. 3 (right) speaks a very clear language:

SF rapidly dissipates energy, which drops to two thirds of its initial

value after roughly 6s .MC performs better, but still loses one third of

its energy after 13s . By contrast, our reflection solver preserves en-

ergy much better, losing less than 3% over the entire animation (20s).
For reference, the symmetric projection methods both preserve en-

ergy perfectly, but they require roughly 10 times more computation

time. What is worse, however, is that both methods lead to visually

disturbing artifacts in the density field and very noisy vorticity (see

Fig. 3). We have investigated this behavior intensively but could

not find a problem with our implementation. We conjecture that

the reason for these artifacts lies in the semi-Lagrangian advection

operator: the interpolations performed when tracing back through

the velocity field act as a low-pass filter, i.e., information is lost due

to interpolation. Although the continuity of the flow provides some

amount of regularization, the effective inversion of this low-pass

filter during A∗
is numerically unstable, explaining both the arti-

facts and the intermittent convergence problems that we observed.

Although we intended these symmetric methods to be reference so-

lutions, we found them to be unusable in practice and will therefore

not discuss them further.

Taylor Vortices. Another frequently used 2D example is that of two

vortices of the same sign placed at a given initial distance. Depending

on this initial distance, the analytical solution for this problem will

lead to the vortices either merging or separating. Following Mullen

et al. [2009], we choose the initial distance slightly larger than the

critical value and investigate the behavior of the solvers. For both

SF and MC, the vortices merge shortly after the beginning of the

simulation, whereas they separate as predicted by the analytical

solution using our reflection solver.

Vortex Shedding. This example investigates the behavior of the

different solvers in combination with internal boundaries, leading to

Fig. 5. 2D vortex shedding: comparison of the vorticity magnitude distribu-
tions for SF, MC, and MC+R for a fixed point in time (6s).

Fig. 6. A vortex in a spiral maze (left) correctly advects itself to the center
(right).

dynamic and visually rich vortex shedding. As can be seen from Fig.

5, MC initially produces similar behavior in the sense that roughly

the same number of vortices is shed during the first 6 seconds.

However, whereas our reflection solver approximately preserves

the vorticity of the shed vortices, there is a clear decay in vorticity

(from left to right) for MC. The video also shows that the behavior

for SF is qualitatively very different and the numerical viscosity is

clearly visible.

Spiral Maze. An example introduced by Mullen et al. [2009] con-

tains a pair of vortices in a 2D domain with many boundaries form-

ing a spiral maze. In the absence of dissipation, one of the vortices

should advect itself to the center of the maze. As shown in Fig-

ure 6, our method produces the expected behavior. Interestingly,

unlike the results of Mullen et al., we also observe additional vortex

shedding due to flow separation at the convex corners of the maze.

4.2 3D Results
To investigate the behavior of our reflection solver in 3D, we chose

a set of examples frequently used in the literature.

Vortex Leap-Frogging. This classical example is initialized with

two concentric vortex rings of different radii but equal circulations.

In the analytical solution for the completely inviscid, conservative

case, the two vortices will produce a leap-frogging motion that

continues indefinitely. However, reproducing this behavior with

Eulerian methods has been a challenging problem due to the ten-

dency for numerical dissipation to diffuse the vortices into each

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

An Advection-Reflection Solver for Detail-Preserving Fluid Simulation • 85:7

SF MC FLIP

Fig. 7. 3D smoke plume with different advection schemes. In each pair, we
compare the same simulation frame computed using a standard projection
solver (left) and our reflection solver (right).

other. As can be seen in Fig. 1, when using theMC solver, the vortex

rings merge into a single one during the first leap-through motion.

By contrast, our solver successfully produces several leap-frogging

moves in which the rings remain clearly separated. We refer to

the accompanying video for a better illustration of this fascinating

phenomenon.

Ink Drop. A spherical density field is initialized with constant

horizontal velocity. Using our reflection solver, the velocity gradient

at the sphere’s interface immediately leads to the formation of a large

vortex, leaving behind it a trail of turbulent fluid that develops into

increasingly complex patterns. While the MC solver can reproduce

the vortex formation, the flow has much more viscosity and the

trail it leaves behind is devoid of any detail. Please refer to the

accompanying video.

Smoke Plume. As another classical example, we simulate a smoke

plume by modeling a spherical density source subject to a constant

density-proportional buoyancy. The action of buoyancy leads to

the formation of a characteristic vortex front, followed by turbu-

lent breakup of the rising smoke column; see Fig. 7. We have com-

pared the standard advection-projection scheme with our advection-

reflection solver with three different advection schemes: SF,MC, and
FLIP [Zhu and Bridson 2005]. While the overall qualitative behavior

is similar for most cases, our reflection solver uniformly yields more

pronounced vortical motion and stronger turbulence due to the

reduced artificial dissipation. In the accompanying video, we also

show an example with a spherical obstacle in the path of the plume.

4.3 Convergence Analysis
In order to validate our theoretical result for the improved order of

accuracy of our method, we compared different solvers with differ-

ent parameters on a 2D smoke plume example. We let the simulation

run for 2s such that an interesting flow field develops, and compute

the divergence before projection at the end of a given time step. Fig.

8 shows a log-log plot of this pre-projection divergence as a function

of the step size. It can be seen that, for the SF and MC methods, the

divergence decreases linearly with the step size. For our reflection

10-4 10-3 10-2 10-1 100
10-10

10-8

10-6

10-4

10-2

100

D
iv
er
ge
nc
e

Fig. 8. Norm of the divergence before the projection step for different step
sizes and different solvers. Reverse Limiter refers to the clamping of the
interpolated field value in the MacCormack scheme.

solver, however, the decrease is indeed quadratic, irrespective of

whether it is combined with first order or MacCormack advection.

Another observation that we made in this context is that because

in this test we only increased the resolution in time, not in space,

clamping the interpolated field value in the MacCormack scheme

slows the convergence of the norm of the divergence.

To evaluate the accuracy of our method, we performed a conver-

gence test using a 2D Taylor-Green vortex with initial conditions

uTG = (sin(2πx) cos(2πy),− cos(2πx) sin(2πy)).

In the inviscid case, this is a steady flow with u constant over time.

We also simulated an example with initial velocity u = uTG + (1, 0)
and periodic boundary conditions, which should result in a pure

translation of the vortex. We ran both examples to 1s, and computed

the RMS error in velocity with respect to the analytical solution.

Figure 9 shows a log-log plot of this error as a function of time step.

For the steady flow, our reflection solver exhibits third-order con-

vergence, since energy loss is the only source of error in this case.

For the unsteady flow, the error caused by the use of the “frozen”

velocity field in self-advection dominates, and we observe similar

first-order convergence for both projection and reflection methods.

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

O (∆t)

O (∆t3)

∆t

R
M
S
e
r
r
o
r
i
n
u

10
−3

10
−2

10
−1

O (∆t)

O (∆t2)

∆t

MC
MC + R
MC + R + Extrapolation

Fig. 9. RMS error in velocity after one second for (left) the 2D Taylor-Green
vortex, and (middle) the Taylor-Green vortex with added translation. “Ex-
trapolation” denotes advection with the velocity field 2u1/2 − u0 in the
second half-step. Right : Initial velocity fields for both cases are visualized.

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

85:8 • J. Zehnder, R. Narain, and B. Thomaszewski

However, when performing this test we noticed that convergence

appears to be improved to second order by performing the second

advection half-step using an “extrapolated” velocity field 2u1/2 −u0,
as a first-order approximation of u1. We leave a detailed investiga-

tion of this effect to future work.

5 CONCLUSIONS
We presented a new method for detail-preserving fluid animation

that improves on current advection-projection solver: it replaces the

energy-dissipating projection applied at the end of a simulation step

with an energy-preserving reflection in the middle of the interval.

Compared to existing advection-projection methods, the central

advantages of our reflection solver are that i) it has provably bet-

ter energy-conservation properties, and ii) it empirically leads to

much less vorticity diffusion and preserves more detail for equal

computational costs. Furthermore, our method integrates readily

with existing grid-based solvers and is very easy to implement.

5.1 Limitations & Future Work
While our reflection solver preserves energy and vorticity very well,

it does not do so perfectly. One reason is that the semi-Lagrangian

advection step is itself not energy-preserving. Another one is that

the projection at the end still removes energy from the system, albeit

at a much smaller rate than current advection-projection solvers.

While the improved energy and vorticity behavior generally lead

to visually richer animations, our solver does not introduce detail

where none should arise according to the true solution. In visual

effects, however, it is often desirable to artificially enhance results,
e.g., by amplifying vorticity or injecting turbulence. Our solver

can, in principle, be used on conjunction with such methods and

it would be interesting to investigate its behavior in this context.

Furthermore, we also like to combine our reflection solver with

the recent advection-enhancing methods of Zhang et al. [2015] and

Chern et al. [2016].

Extensions to simplicial grids are another direction worth explor-

ing. Finally, we would like to apply the reflection solver to other

constraint-projection applications such as inextensible cloth [Gold-

enthal et al. 2007] and volume-preserving solids [Irving et al. 2007]

that have so far relied on the step-and-project approach.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive and

thoughtful feedback. This work was supported by the Discovery

Grants Program of the Natural Sciences and Engineering Research

Council of Canada (NSERC).

REFERENCES
Alexis Angelidis and Fabrice Neyret. 2005. Simulation of Smoke Based on Vortex Fila-

ment Primitives. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA ’05). 87–96. https://doi.org/10.1145/1073368.1073380

Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A Fast Variational

Framework for Accurate Solid-fluid Coupling. ACM Trans. Graph. 26, 3 (July 2007).

https://doi.org/10.1145/1276377.1276502

Albert Chern, Felix Knöppel, Ulrich Pinkall, Peter Schröder, and Steffen Weißmann.

2016. Schrödinger’s Smoke. ACM Trans. Graph. 35, 4 (July 2016), 77:1–77:13. https:

//doi.org/10.1145/2897824.2925868

Alexandre Joel Chorin. 1968. Numerical solution of the Navier-Stokes equations. Math.
Comp. 22 (1968), 745–762. https://doi.org/10.1090/S0025-5718-1968-0242392-2

Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007.

Stable, Circulation-preserving, Simplicial Fluids. ACM Trans. Graph. 26, 1 (Jan. 2007).
https://doi.org/10.1145/1189762.1189766

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual Simulation of Smoke.

In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). 15–22. https://doi.org/10.1145/383259.383260

Nick Foster and Dimitri Metaxas. 1996. Realistic Animation of Liquids. Graphical
Models and Image Processing 58, 5 (Sept. 1996), 471 – 483. https://doi.org/10.1006/

gmip.1996.0039

Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun.

2007. Efficient Simulation of Inextensible Cloth. ACM Trans. Graph. 26, 3 (July 2007).
https://doi.org/10.1145/1276377.1276438

Ernst Hairer, Christian Lubich, and Gerhard Wanner. 2006. Geometric Numerical
Integration: Structure-Preserving Algorithms for Ordinary Differential Equations; 2nd
ed. Springer, Dordrecht. https://cds.cern.ch/record/1250576

Francis H. Harlow and J. Eddie Welch. 1965. Numerical Calculation of Time-Dependent

Viscous Incompressible Flow of Fluid with Free Surface. The Physics of Fluids 8, 12
(1965), 2182–2189. https://doi.org/10.1063/1.1761178

Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias

Teschner. 2014. SPH Fluids in Computer Graphics. In Eurographics 2014 - State of
the Art Reports. https://doi.org/10.2312/egst.20141034

Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. 2007. Volume Conserving Finite

Element Simulations of Deformable Models. ACM Trans. Graph. 26, 3 (July 2007).

https://doi.org/10.1145/1276377.1276394

Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin.

2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4
(July 2015), 51:1–51:10. https://doi.org/10.1145/2766996

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2005. FlowFixer: Us-

ing BFECC for Fluid Simulation. In Proceedings of the First Eurographics Conference on
Natural Phenomena (NPH’05). 51–56. https://doi.org/10.2312/NPH/NPH05/051-056

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, and Jarek Rossignac. 2007. Advections

with Significantly Reduced Dissipation and Diffusion. IEEE Transactions on Visual-
ization and Computer Graphics 13, 1 (Jan. 2007), 135–144. https://doi.org/10.1109/
TVCG.2007.3

Doyub Kim, Oh-young Song, and Hyeong-Seok Ko. 2008a. A Semi-Lagrangian CIP

Fluid Solver without Dimensional Splitting. Computer Graphics Forum 27, 2 (April

2008), 467–475. https://doi.org/10.1111/j.1467-8659.2008.01144.x

Theodore Kim, Nils Thürey, Doug James, and Markus Gross. 2008b. Wavelet Turbulence

for Fluid Simulation. ACM Trans. Graph. 27, 3 (Aug. 2008), 50:1–50:6. https://doi.
org/10.1145/1360612.1360649

B.P. Leonard. 1979. A stable and accurate convective modelling procedure based on

quadratic upstream interpolation. Computer Methods in Applied Mechanics and
Engineering 19, 1 (1979), 59 – 98. https://doi.org/10.1016/0045-7825(79)90034-3

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Junyong Noh. 2008. Low

Viscosity Flow Simulations for Animation. In SCA ’08: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation. 9–18. https://doi.org/
10.2312/SCA/SCA08/009-018

Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun.

2009. Energy-preserving Integrators for Fluid Animation. ACM Trans. Graph. 28, 3
(July 2009), 38:1–38:8. https://doi.org/10.1145/1531326.1531344

Sang Il Park and Myoung Jun Kim. 2005. Vortex Fluid for Gaseous Phenomena. In

Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’05). 261–270. https://doi.org/10.1145/1073368.1073406

André Robert. 1981. A stable numerical integration scheme for the primitive meteoro-

logical equations. Atmosphere-Ocean 19, 1 (1981), 35–46. https://doi.org/10.1080/

07055900.1981.9649098

Andrew Selle, Ronald Fedkiw, Byungmoon Kim, Yingjie Liu, and Jarek Rossignac. 2008.

An Unconditionally Stable MacCormack Method. J. Sci. Comput. 35, 2-3 (June 2008),
350–371. https://doi.org/10.1007/s10915-007-9166-4

Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method

for smoke, water and explosions. ACM Transactions on Graphics (TOG) 24, 3 (July
2005), 910–914. https://doi.org/10.1145/1073204.1073282

Jos Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. 121–128. https://doi.org/10.1145/311535.311548

Nils Thuerey, Theodore Kim, and Tobias Pfaff. 2013. Turbulent fluids. InACM SIGGRAPH
2013 Courses. ACM, 6.

Nils Thuerey and Tobias Pfaff. 2016. Mantaflow. http://mantaflow.com. (2016).

Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based Smoke with Vortex Shed-

ding and Variational Reconnection. ACMTrans. Graph. 29, 4 (July 2010), 115:1–115:12.
https://doi.org/10.1145/1778765.1778852

Xinxin Zhang, Robert Bridson, and Chen Greif. 2015. Restoring the Missing Vorticity in

Advection-projection Fluid Solvers. ACM Trans. Graph. 34, 4 (July 2015), 52:1–52:8.

https://doi.org/10.1145/2766982

Yongning Zhu and Robert Bridson. 2005. Animating Sand as a Fluid. 24 (July 2005),

965–972. https://doi.org/10.1145/1073204.1073298

ACM Transactions on Graphics, Vol. 37, No. 4, Article 85. Publication date: August 2018.

https://doi.org/10.1145/1073368.1073380
https://doi.org/10.1145/1276377.1276502
https://doi.org/10.1145/2897824.2925868
https://doi.org/10.1145/2897824.2925868
https://doi.org/10.1090/S0025-5718-1968-0242392-2
https://doi.org/10.1145/1189762.1189766
https://doi.org/10.1145/383259.383260
https://doi.org/10.1006/gmip.1996.0039
https://doi.org/10.1006/gmip.1996.0039
https://doi.org/10.1145/1276377.1276438
https://cds.cern.ch/record/1250576
https://doi.org/10.1063/1.1761178
https://doi.org/10.2312/egst.20141034
https://doi.org/10.1145/1276377.1276394
https://doi.org/10.1145/2766996
https://doi.org/10.2312/NPH/NPH05/051-056
https://doi.org/10.1109/TVCG.2007.3
https://doi.org/10.1109/TVCG.2007.3
https://doi.org/10.1111/j.1467-8659.2008.01144.x
https://doi.org/10.1145/1360612.1360649
https://doi.org/10.1145/1360612.1360649
https://doi.org/10.1016/0045-7825(79)90034-3
https://doi.org/10.2312/SCA/SCA08/009-018
https://doi.org/10.2312/SCA/SCA08/009-018
https://doi.org/10.1145/1531326.1531344
https://doi.org/10.1145/1073368.1073406
https://doi.org/10.1080/07055900.1981.9649098
https://doi.org/10.1080/07055900.1981.9649098
https://doi.org/10.1007/s10915-007-9166-4
https://doi.org/10.1145/1073204.1073282
https://doi.org/10.1145/311535.311548
http://mantaflow.com
https://doi.org/10.1145/1778765.1778852
https://doi.org/10.1145/2766982
https://doi.org/10.1145/1073204.1073298

	Abstract
	1 Introduction
	2 Related Work
	3 Theory
	3.1 Advection-Projection Solvers
	3.2 Reflection Solver
	3.3 Symmetric Projection Methods

	4 Results
	4.1 2D Results
	4.2 3D Results
	4.3 Convergence Analysis

	5 Conclusions
	5.1 Limitations & Future Work

	Acknowledgments
	References

