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Abstract— In this paper we present an end-to-end deep
learning framework to turn images that show dynamic content,
such as vehicles or pedestrians, into realistic static frames.
This objective encounters two main challenges: detecting all the
dynamic objects, and inpainting the static occluded background
with plausible imagery. The former challenge is addressed
by the use of a convolutional network that learns a multi-
class semantic segmentation of the image. The second prob-
lem is approached with a conditional generative adversarial
model that, taking as input the original dynamic image and
its dynamic/static binary mask, is capable of generating the
final static image. These generated images can be used for
applications such as augmented reality or vision-based robot
localization purposes. To validate our approach, we show
both qualitative and quantitative comparisons against other
state-of-the-art inpainting methods by removing the dynamic
objects and hallucinating the static structure behind them.
Furthermore, to demonstrate the potential of our results, we
carry out pilot experiments that show the benefits of our
proposal for visual place recognition1.

I. INTRODUCTION

Dynamic objects degrade the performance of vision-based
robotic pose-estimation or localization tasks. The standard
approach to deal with dynamic objects consists in detecting
them in the images, and further classifying them as not
valid information for such purposes. However, we propose
to instead modify these images so that the dynamic content
is converted realistically into static. We consider that the
combination of experience and context allows us to halluci-
nate, i.e., inpaint, a geometrically and semantically consistent
appearance of the static structure behind dynamic objects.

Turning images that contain dynamic objects into realistic
static frames reveals several challenges:

1) Detecting such dynamic content in the image. By this,
we mean to detect not only those objects that are known
to move such as vehicles, people and animals, but also
the shadows and reflections that they might generate,
since they also change the image appearance.

2) Inpainting the resulting space left by the detected dy-
namic content with plausible imagery. The resulting
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Fig. 1: Images at the same location with different dynamic content
such as cars or pedestrians (top row) can be converted into the same
static image, i.e., a dynamic-object-invariant space (bottom row).

image would succeed in being realistic if the inpainted
areas are both semantically and geometrically consistent
with the static content of the image.

The former challenge can be addressed with geometrical
approaches if a sequence of images is available. This proce-
dure usually consists in studying the optical flow consistency
along the images [1], [2]. In the case in which only one
frame is available, deep learning is the approach that excels
at this task by the use of Convolutional Neural Networks
(CNNs) [3], [4]. These frameworks have to be trained with
the previous knowledge of what classes are dynamic and
which ones are not. Recent works show that it is possible to
acquire this knowledge in a self-supervised manner [5], [6].

Regarding the second challenge, recent image inpainting
approaches that do not use deep learning use image statistics
of the remaining image to fill in the holes. The work of
Telea [7] estimates the pixel value with the normalized
weighted sum of all the known pixels in the neighbourhood.
While this approach generally produces smooth results, it is
limited by the available image statistics and has no concept of
visual semantics. However, neural networks learn semantic
priors and meaningful hidden representations in an end-
to-end fashion, which have been used for recent image
inpainting efforts [8]–[11]. These networks employ convo-
lutional filters on images, replacing the removed content
with inpainted areas that usually have both geometrical and
semantic consistency with the rest of the image.

Both challenges can also be seen as one single task:
translating a dynamic image into a corresponding static
image. In this direction, Isola et al. [12] propose a general-
purpose solution for image-to-image translation.

In this paper we present an end-to-end deep learning
framework to transform images that have dynamic content
into realistic static frames. This can be used for augmented
reality, cinematography, and vision-based localization tasks.

https://github.com/bertabescos/EmptyCities


It could also be of interest for the creation of high-detail
road maps, as well as for street-view imagery suppliers as a
privacy measure to replace faces and license plates blurring.

Just like Isola et al. [12] succeed in translating images
from day to night, aerial to map view, sketches to photos,
etc., our paper builds on their work to translate images from a
dynamic space into a static one. The main difference between
our objective and his is that, while they apply the same
translation to the whole image, we keep the static areas of the
image almost untouched, and translate the dynamic parts into
static ones. We have adapted their framework to our specific
task by introducing a new loss that, combined with the
integration of a semantic segmentation network achieves the
final objective of creating a dynamic-object-invariant space.
An example of our pipeline results can be seen in Fig. 1.

II. RELATED WORK

Previous works have attempted to reconstruct the back-
ground occluded by dynamic objects in the images with
information from previous frames [13]–[16]. When only one
such frame is available, the occluded background can only
be reconstructed by image inpainting techniques.

Image Inpainting. Among the non-learning approaches
to image inpainting, propagating appearance information
from neighboring pixels to the target region is the usual
procedure [7]. These methods succeed in dealing with narrow
holes, where color and texture vary smoothly, but fail when
handling big holes, resulting in over-smoothing. Differently,
patch-based methods [17] operate by iteratively searching
for relevant patches from the image non-hole regions. These
approaches are computationally expensive and therefore not
fast enough for real-time applications. Moreover, they do not
make semantically aware patch selections.

Deep learning based methods usually initialize the image
holes with a constant value, and further pass it through a
CNN. Context Encoders [11] were among the first ones to
successfully use a standard pixel-wise reconstruction loss, as
well as an adversarial loss for image inpainting tasks. Due
to the resulting artifacts, Yang et al. [18] take the result from
Context Encoders as input and then propagates the texture
information from non-hole regions to fill the hole regions as
post-processing. Song et al. [19] use a refinement network
in which a blurry initial hole-filling result is used as the
input, then iteratively replaced with patches from the closest
non-hole regions in the feature space. Iizuka et al. [10]
extend Content Encoders by defining both global and local
discriminators, then apply a post-processing. Following this
work, Yu et al. [9] replaced the post-processing with a
refinement network powered by the contextual attention
layers. The recent work of Liu et al. [8] obtains amazing
inpainting results by using partial convolutions.

In contrast, the work by Ulyanov et al. [20] proves that
there is no need for external dataset training. The generative
network itself can rely on its structure to complete the
corrupted image. However, this approach usually applies
several iterations (�50000) to get good and detailed results.

Fig. 2: Block diagram of our proposal. We first compute the
segmentation of the RGB dynamic image, as well as its loss against
the ground-truth. Then, the dynamic/static binary mask is obtained,
and used together with the dynamic image to compute the static
image. Its loss is back-propagated until the RGB dynamic image.

Our work does not perform pure inpainting but image-to-
image translation with the help of a mask, coming from a
semantic segmentation network. This means that we cannot
initialize the “holes” with any placeholder values since we do
not want to learn that pixels with this particular value have to
be transformed. In our case, our input consists of the dynamic
original image with the dynamic/static mask concatenated.
Different from the other approaches, we perform this task in
gray scale instead of in RGB. The motivation for this is that
learning a mapping from 1D!1D instead of from 3D!3D
is simpler and therefore leads to having less room for
wrong reconstructions. In addition, many visual localization
applications only need the images grayscale information.
Still, as future work, we consider including a RGB version.
Moreover, note that using the image-to-image translation
approach allows us to slightly modify the image non-hole
regions for better accommodation of the reconstructed areas.

III. SYSTEM DESCRIPTION

Fig. 2 shows an overview of our system during training
time. First of all, we obtain the pixel-wise semantic segmen-
tation of the RGB dynamic image (SS) and we compute its
loss against the ground-truth. Then, the segmentation of only
the dynamic objects is obtained with the convolutional layer
DynSS. Once we have this dynamic/static binary mask, we
convert the RGB dynamic image to gray scale and compute
the static image, also in gray scale, with the use of a U-Net,
which has been trained in an adversarial way (mGAN). The
loss of this generated image, in addition to the appearance
L1 loss, are back-propagated until the RGB dynamic image,
together with the previous computed semantic segmentation
loss. All the different stages, as well as the ground-truth
generation, are described in subsections III-A to III-D.

A. Data Generation

We have explored our method using CARLA [21].
CARLA is an open-source simulator for autonomous driving
research, that provides open digital assets –urban layouts,
buildings, vehicles, pedestrians, etc.– and supports flexible
specification of sensor suites and environmental conditions.
We have generated over 12000 image pairs consisting of a
target image captured with neither vehicles nor pedestrians,



and a corresponding input image captured at the same
pose with the same illumination conditions, but with cars,
tracks and people moving around. These images have been
recorded using a front and a rear RGB camera mounted
on a car. Their ground-truth semantic segmentation has
also been captured. By manually selecting those dynamic
classes (vehicles and pedestrians), we can easily obtain
the ground-truth dynamic/static segmentation too. CARLA
offers two different towns that we have used for train-
ing and testing, respectively. Our dataset, together with
more information about our framework, is available on
https://bertabescos.github.io/EmptyCities/.

At present, we are limited to training on synthetic datasets
since, to our knowledge, no real-world dataset exists that
provides RGB images captured under same illumination
conditions at identical poses over long trajectories, with and
without dynamic objects.

B. Dynamic-to-Static Translation

A Generative Adversarial Network (GAN) is a generative
model that learns a mapping from a random noise vector z to
an output image y, G: z ! y [22]. In contrast, a conditional
GAN (cGAN) learns a mapping from observed image x and
optional random noise vector z, to y, G : fx, zg ! y [23],
or G : x! y [12]. The generator G is trained to produce
outputs indistinguishable from “real” images by an adver-
sarially trained discriminator D, which is trained to do as
well as possible at detecting the generator’s “fakes”.

The objective of a cGAN can be expressed as

LcGAN (G,D) = Ex,y[logD(x, y)]+

Ex[log (1�D(x,G(x)))], (1)

where G tries to minimize this objective against an ad-
versarial D that tries to maximize it. Previous approaches
have found it beneficial to mix the GAN objective with a
more traditional loss, such as L1 or L2 distance [11]. The
discriminator’s job remains unchanged, but the generator is
tasked not only with fooling the discriminator, but also with
being near the ground-truth in a L1 sense, as expressed in

G� = arg min
G

max
D
LcGAN (G,D) + λ1 � LL1(G), (2)

where LL1(G) = Ex,y[jjy�G(x)jj1]. The recent work of
Isola et al. [12] shows that cGANs are suitable for image-
to-image translation tasks, where the output image is con-
ditioned on its corresponding input image, i.e., it translates
an image from one space into another (RGB appearance to
drawings, day to night, etc.). The main difference between
our objective and his is that, while they apply the same
mapping to the whole image, we want to keep almost
untouched the static areas of the input image, and we want
to translate the dynamic parts into plausible static ones. This
problem could also be seen as inpainting. However, our
method differs in that, in addition to changing the content
of the image hole regions, it might also change the non-
hole areas for a more realistic output (for example, dynamic
objects shadows could also be removed even if unmasked).

(a) Input (b) cGAN (c) mGAN (d) Ground-truth

Fig. 3: Qualitative results of the improvements achieved by
conditioning the discriminator on both input and dynamic/static
mask (c), instead of only on the input (a), as cGANs do (b).

It is well known that L2 and L1 losses produce blurry
results on image generation problems, i.e., they can capture
the low frequencies but fail to encourage high frequency
crispness. This motivates restricting the GAN discriminator
to only model high frequency structures. Following this
idea, Isola et al. [12] adopt a discriminator architecture
that classifies each N � N patch in an image –rather than
classifying the image as a whole– as real or fake.

For our objective, object masks are specially considered to
re-formulate the training objectives. We adopt a variant of the
cGAN that we call mGAN. mGANs learn a mapping from
observed image x and binary mask m, to y, G : fx,mg ! y.
When applying this, we see that the dynamic objects in the
image have been inpainted with high frequency texture but
there are many artifacts (see Fig. 3b). One of the reasons is
that, in most of the training images the relationship between
the static and dynamic regions sizes is unbalanced, i.e.,
static regions occupy usually a much bigger area. This leads
us to believe that the influence of dynamic regions on the
discriminator response is significantly reduced. As a solution
to this problem, we propose to change the discriminator loss
so that there is more emphasis on the main areas that have
to be inpainted, according to

LmGAN (G,D) = Ex,y[logDm(x,m, y)]+

Ex[log (1�Dm(x,m,G(x,m)))], (3)

where Dm(x,m, y) = D(x, y) 
 (1 + m � (γ � 1)). The
operator 
 means the element-wise matrix product, and the
parameter γ is a scalar that has been set to 2. A greater γ
value leads to better inpainting results in the masked areas,
but the quality of the unmasked ones is compromised. A
smaller γ value has very little effect on the results with regard
to the original discriminator setup. A good trade-off between
the emphasis given to the masked compared to the unmasked
regions is obtained with γ = 2. Fig. 3b shows our output if
the discriminator is conditioned only on the input, in contrast
with the dicriminator conditioned on both the input and the
mask (Fig. 3c). The last one shows more realistic results.
This training procedure is diagrammed in Fig. 4.

C. Semantic Segmentation

Semantic Segmentation (SS) is a challenging task that ad-
dresses many of the perception needs of intelligent vehicles
in a unified way. Deep neural networks excel at this task, as

https://bertabescos.github.io/EmptyCities/


Fig. 4: The discriminator D has to learn to differ between the real images (y) and the images produced by the generator (G(x; m)). D
is conditioned by both the dynamic/static binary mask m and the input image x to make a better decision about the origin of the image.

they can be trained end-to-end to accurately classify multiple
object categories in an image at pixel level. However, few
architectures have a good trade-off between high quality
and computational resources. The recent work of Romera
et al. [4] (ERFNet) uses residual connections to remain
efficient while retaining remarkable accuracy.

Romera et al. [4] have made public some of their trained
models [24]. We use for our approach the ERFNet model
with encoder and decoder both trained from scratch on
Cityscapes train set [25]. We have fine tuned their model
to adjust it to our inpainting approach by back-propagating
the loss of the semantic segmentation LCE(SS), calculated
using the class weights they suggest, w, and the adversarial
loss of our final inpainted model LmGAN (G,D). The SS
network’s job can be therefore expressed as:

SS� = arg min
SS

max
D
LmGAN (G,D) + λ2 � LCE(SS), (4)

where LCE(SS) = w[class] � (log(
∑

j exp(ySS [j])) �
ySS [class]). Its objective is to produce an accurate semantic
segmentation ySS , but also to fool the discriminator D.

D. Dynamic Objects Semantic Segmentation

Once the semantic segmentation of the RGB image is
done, we can select those classes known to be dynamic
(vehicles and pedestrians). This has been done by applying
a SoftMax layer, followed by a convolutional layer with a
kernel of n� 1� 1, where n is the number of classes, and
with the weights of those dynamic and static channels set to
wdyn and wstat respectively. wdyn and wstat are calculated
following wdyn =

n�ndyn

n and wstat = �ndyn

n , where ndyn
stands for the number of dynamic existing classes.

The consequent output passes through a Tanh layer to
obtain the wanted dynamic/static mask. Note that the defined
weights wdyn and wstat are not changed during training time.

A possible extension of this work would contain a greater
list of dynamic objects, such as construction sites, posters or
temporary festival booths. This is not included at this time
due to the lack of availability of training data.

IV. EXPERIMENTAL RESULTS

A. Main Contributions

Here we report the improvements achieved by using, for
our particular case, gray-scale instead of RGB images. We
also show how the error drops down when using a generator
G that learns a mapping from observed image x and binary
mask m to y, G: fx,mg ! y, instead of a mapping

Experiment G(x)RGB G(x) G(x,m) G(x,m)
D(x, y)RGB D(x, y) D(x, y) D(x,m, y)

L1(%) 2.27 1.87 1.21 0.97
L1in(%) 9.87 9.17 6.69 6.00
L1out(%) 2.02 1.61 1.00 0.78

TABLE I: Quantitative evaluations of the performance of our
contributions in the inpainting task on the test synthetic images.

from image x to y, G: x ! y. Furthermore, we report
how conditioning the discriminator on both the input and
the binary mask D(x,m, y), instead of on only the input
D(x, y), helps getting better results, see Table I.

The existence of many possible solutions renders difficult
to define a metric to evaluate image inpainting [9]. Neverthe-
less, we follow previous works and report the L1 error. Using
RGB images usually leads to obtaining inpainting efforts on
colorful areas such as cars, but also road signals and traffic
lights, that we certainly want to keep untouched. The main
improvement carried out by working in gray scale is in the
unmasked areas L1out. By using the mask to train both the
generator G and the discriminator D, we obtain a more
accurate static-to-dynamic translation in both the masked
(L1in) and unmasked regions. Results reported from now
on are obtained with G(x,m) and D(x,m, y), i.e., mGANs.

B. Inpainting Comparisons

We compare qualitatively and quantitatively our “inpaint-
ing” method with three other approaches:

� Geo: a state-of-the-art non-learning based approach [7].
� Lea1, Lea2: two deep learning based methods [9], [10].
Since both Lea1 and Lea2 are methods conceived for

general inpainting purposes, we directly use their released
models [9], [10] trained on the Places2 dataset [26]. We
provide them with the same mask than to our method to
generate the holes in the images. We evaluate qualitatively
on the 3000 images from our synthetic test dataset, and on
the 500 validation images from the Cityscapes dataset [25].
We can see in Figs. 5 and 6 the qualitative comparisons
on both datasets respectively2. Visually, we observe that
our method obtains a more realistic output. Also, it is the
only one capable of removing the shadows generated by
the dynamic objects even though they are not included in
the dynamic/static mask (Fig. 5 row 2). The utilized masks

2Results generated with both inpainting methods Lea1 and Lea2 have
been generated with the color images at a 256 � 256 resolution and then
converted to gray scale for visual comparison with our network’s output.



(a) Input (b) Geo [7] (c) Lea1 [9] (d) Lea2 [10] (e) Ours (f) Ground-truth

Fig. 5: Qualitative comparison of our method (e) against other inpainting techniques (b), (c), (d) on our synthetic dataset.

Experiment Geo [7] Lea1 [9] Lea2 [10] Ours

L1in(%) 6.66 10.45 10.49 6.00

TABLE II: Quantitative results of our method against other
inpainting approaches in our CARLA dataset.

are included in the images in Fig. 5a. Table II shows the
quantitative comparison of our method against Geo, Lea1
and Lea2 on our CARLA dataset. For a fair comparison we
only report the L1 error within the mask L1in. Reporting
the non-hole regions error would be unfair since the other
methods are not conceived to notoriously change them.

Regarding the Cityscapes dataset evaluation, quantitatively
measuring the performance of the different methods is not
possible since ground-truth does not exist. In view of these
results, we claim that our approach outperforms both quali-
tatively and quantitatively the other methods in such task.

C. Transfer to Real Data

Models trained on synthetic data can be useful for real
world vision tasks [27]–[30]. Accordingly, we provide a
preliminary study of synthetic-to-real transfer learning using
data from the Cityscapes dataset [25], which offers a variety
of real-world environments similar to the synthetic ones.

When testing our method on real data, we see qualitatively
that results are not as good as with the CARLA images
(Fig. 6e). This happens because such data has different
statistics than the real one, and therefore cannot be easily
used. The combination of real and synthetic data is possible
during training despite the lack of ground-truth static real
images. In the case of the real images, the network only
learns the texture and the style of the static real world by
encoding its information and decoding back the original
image non-hole regions. The synthetic data is substantially

more plentiful and has information about the inpainting
process. The rendering, however, is far from realistic. Thus,
the chosen representation attempts to bridge the reality gap
encountered when using simulated data, and to remove the
need for domain adaptation. Fig. 6f shows how adding real
images in the training process leads the testing in real data
to give slightly better results3. Still, the results are not as
accurate/realistic as the ones obtained with CARLA images.

Differently, using a CycleGAN type approach [31] would
allow us to work with real-world imagery and hence delete
this domain adaptation requirement. This approach would
learn our desired mapping in the absence of paired images.

D. Visual Localization Experiments

We believe that the images generated by our framework
have a potential use for visual localization tasks. Even though
utilizing only the static parts of images would also bring
benefits to localization systems such as ORB-SLAM [32],
DSO [33], SVO [34], etc., they would require modifications,
as for example in DynaSLAM [13] among others [1], [35].
Using inpainted images rather than just masked images
allows us to use whichever localization system with no mod-
ification. This is a remarkable strength of our framework. As
a proof of concept, we conduct three additional experiments.

First, we generated a CARLA dataset consisting of 20
different locations with 6 images taken per location. These 6
images show a different dynamic objects setup (Fig. 1). Then
the global descriptors (from an off-the-shelf CNN [36]) com-
puted from the different versions of the same location were
compared. The euclidean distance between the descriptors
of the scenes with dynamic objects was always greater than

3We perform extensive data augmentation –Gaussian blur, Gaussian noise,
brightness, contrast and saturation– to avoid overfitting to the synthetic data.



(a) Input (b) Geo [7] (c) Lea1 [9] (d) Lea2 [10] (e) S!Real (f) S+R!Real

Fig. 6: Qualitative comparison of our method (e), (f) against other image inpainting approaches (b), (c), (d) on the Cityscapes validation
dataset [25]. (e) shows our results when the training images are all synthetic (S). Albeit, (f) shows our results when real images from the
Cityscapes dataset have been incorporated into our training set together with the synthetic CARLA images with a ratio of 1=10 (S+R).

(a) Ref (b) Query (c) Empty Ref (d) Empty Query

Fig. 7: (a) and (b) show the same location at different times
with different viewpoints, weather conditions and dynamic objects
setups [37]. The place recognition work by Olid et al. [36] fails to
match them as the same place. However, it succeeds in matching
them when our framework is previously employed –(c) and (d)–.

that of the images after dynamic removal and inpainting. A
32% average reduction in the distance was observed.

In the second experiment, we generated 6 CARLA images
at 6 different locations with a very similar vehicle setup.
With the same global descriptor used in the previous experi-
ment, we compared the distances between all possible image
pair combinations. Then, we obtained the inpainted images
with our framework, and computed the same distances. We
repeated this experiment 4 times varying the vehicle setup
used and saw that the mean distance of the inpainted sets
was higher than that of the original images by 65%.

The third experiment was conducted with real world
images from the SVS dataset [37]. We performed place
recognition [36] with both the original images, and the ones
processed by our framework. In the first case, this task was
successful in 58% of the cases, whereas with our images the
success rate was of 67%. Fig. 7 shows a case in which our
framework makes place recognition successful. Even though
the inpainting algorithm is not perfect and might introduce
false appearance, the two images global descriptors are closer
with the fake static images than with the dynamic ones.

In view of these results, our framework brings closer
images from the same place with different dynamic objects
while pulling apart images from different places but with
similar dynamic objects. We are confident that localization
and mapping systems could benefit from these advances.

Also, we expect similar methods to show comparable im-
provements by incorporating our proposal. An extended ver-
sion of this work would include such inquiries. Furthermore,
a strong benefit of our approach is that such methods would
require no modification to work with our processed images.

E. Timing Analysis

Reporting our framework efficiency is crucial to judge its
suitability for robotic tasks. The end-to-end pipeline runs at
50 fps on a nVidia GeForce GTX 1070 8GB with images of a
256�256 resolution. Out of the 20 ms it takes to process one
frame, 18 ms are invested into obtaining its SS, and 2 ms are
used for the inpainting task. Other than to deal with dynamic
objects, the SS may be needed for many other tasks involved
in automatic navigation. In such cases, our framework would
only add 2 extra ms per frame. Based on our analysis, we
consider that the inpainting task is not the bottleneck, even
though higher resolution images may be needed.

V. CONCLUSION

We have presented an end-to-end deep learning framework
that takes as input an RGB image from a city environment
containing dynamic objects such as cars, and converts it
into a gray realistic image with only static content. For this
objective, we develop mGANs, an adaptation of generative
adversarial networks for inpainting problems. The provided
comparison against other state-of-the-art inpainting methods
shows that our approach performs better. Also, our approach
has a feature that makes it different from other inpainting
methods: areas of the non-hole image can be changed for
the objective of a more realistic output. Further experiments
show that visual localization and mapping systems can
benefit from our advances without any further modification.

Future work might include, among others, converting the
resulting static images from gray scale to color [38], [39].
Also, exploiting higher-resolution models would be conve-
nient for robotic labours, as well as carrying out more re-
search efforts on its transferability to the real world domain.
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