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Object Classification Based on Unsupervised Learned Multi-Modal
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Abstract— For autonomous driving applications it is critical
to know which type of road users and road side infrastructure
are present to plan driving manoeuvres accordingly. Therefore
autonomous cars are equipped with different sensor modalities
to robustly perceive its environment. However, for classification
modules based on machine learning techniques it is challenging
to overcome unseen sensor noise. This work presents an
object classification module operating on unsupervised learned
multi-modal features with the ability to overcome gradual or
total sensor failure. A two stage approach composed of an
unsupervised feature training and a uni-modal and multi-
modal classifiers training is presented. We propose a simple
but effective decision module switching between uni-modal and
multi-modal classifiers based on the closeness in the feature
space to the training data. Evaluations on the ModelNet 40
data set show that the proposed approach has a 14% accuracy
gain compared to a late fusion approach operating on a noisy
point cloud data and a 6% accuracy gain when operating on
noisy image data.

I. INTRODUCTION

For autonomous driving applications it is important to
know which type of road users surround the ego vehicle and
which kind of road side infrastructure is present in the current
traffic scene. Using a multi-modal sensory setup for classi-
fying road users and road side infrastructure is a reasonable
choice: firstly different modalities capture complementary in-
formation which is beneficial for classification and secondly,
multiple sensors allows for robustifying classification against
modality losses.

State of the art research test vehicles are usually equipped
with multiple sensors like lidar, radar, camera and ultrasonic
sensors. Data retrieved from these sensors are often pro-
cessed in a sequential pipeline for object recognition: first
the strength of a single modality in detecting the object
are exploited and afterwards it is classified within another
modality [7], [8], [20]. However if a single modality fails
the whole pipeline fails. So different fusion techniques or
redundant processing units are used to deliver results even
if one modality fails to support the idea of robustifying the
perception system.

One could argue that modality losses could easily be
detected on system level and be tackled in simply switching
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between single modality classifiers. Compared to complete
modality loss it is nearly impossible to detect noisy data
already on system level. Therefore sensor setup choices for
autonomous driving follow the idea that different modalities
overcome challenging scenarios in a complementary way due
to different sensing technologies. So if one sensing technol-
ogy is prune to errors in one scenario another modality is
usually added to the system which is not disturbed in this
specific scenario. For example a camera could capture noisy
images under difficult lighting conditions whereas a lidar
is not affected due to its sensing technology. However if
the classification module is not exploiting the benefit of this
behaviour through detecting it, the benefit of complementary
sensing technologies is lost in terms of robustness.

Classifiers utilizing machine learning techniques achieve
astonishing results within the image domain and recently also
on 3D data. One drawback on most of these techniques is
that they have to be exposed to specific sensor noise during
training time in order to overcome it as suggested in [2],
[10]. From an implementation point of view it is unfeasible
to model realistically all kind of sensor noise. Furthermore
it is also impractical to record all type of sensor noise due
to the enormous time consumption, and even though there
is no guarantee for whole coverage. Thus, it is important
that classifiers overcome also noisy input data which is not
present in the training set.

Within this work we propose a multi-modal architecture
for classification, which overcomes gradual or total sensor
failure. First, multi-modal features are learned in an unsu-
pervised manner. Then, these learned features are further
used as input for a supervised classifier which explicitly
handles noise not seen during training stage. We evaluate
the proposed architecture with a scenario including lidar and
camera sensors while the architecture can be easily extended
with other modalities. In summary, the contributions of this
work are:

• An unsupervised multi-modal feature extraction from
image and 3d-point cloud data

• Supervised classification using multi-modal features
with overcoming gradual or total sensor failure

II. RELATED WORK

In this section related work for multi-modal fusion ap-
proaches in automotive applications is discussed in Sec. II-
A and for other research fields in Sec. II-B. Finally within
Sec. II-C literature about point cloud feature extraction and



reconstruction is discussed1.

A. Multi-modal fusion approaches in automotive applica-
tions

Some learning approaches follow a sequential processing
pipeline detect objects within one modality first and then
classify them within another modality [8], [20], [7]. However
if one of the modalities fail, the whole classification task
fails. Another sequential processing approach is to first
semantically label images and use this information together
with computed disparity map from stereo cameras to obtain
the labeled object proposals [25]. A late fusion approach
is applied in an end-to-end learning fasshion in [16]. The
authors introduce a sensor drop strategy during training in
order to overcome modality losses. They report negligible
policy drops when evaluating on modality losses and noisy
input. Following their approach in training a late fusion
classifier on our data set resulted in serious accuracy drops
as reported in Sec. IV. Except for [16], none of the fusion
approaches report the ability to overcome modality losses.

B. Multi-modal fusion in other research fields

Multi-modal features can be learned unsupervised using
Autoencoder (AE) architectures as proposed in [17] and
[5]. During training the AE is exposed to all possible input
combinations including modality losses. Thus, it is able to
overcome modality losses. Compared to ours, these works
are trained on data containing modality losses which our
classifier is explicitly not. AE architectures without special-
ized feature extractions for each modality use fully connected
neural networks for processing each input separately [18],
[5]. Early fusion, late fusion and temporal fusion strategies
for multi-modal input are evaluated in means of accuracy
for a gesture detection application in [18], which leads to
similar accuracies for all fusion approaches. This finding
is in line with suggestions in [23] and [1] that there is
no clear preferable strategy yet when to fuse modalities. A
late fusion scheme with fusing modality specific features
for video and audio input is presented [26] to compute
interestingness for video streams. Similar modality specific
features are also applied for semantic segmentation tasks
as in [28]. Here, late fusion weights are computed for
each class based on early feature layers and so they are
able to adapt to different challenging conditions. Whereas
the class weights are learned in a data driven approach
in [28], authors in [4] propose a late fusion based on a
statistical fusion approach taking the performance of each
single modality classifier into account. However, compared
to our method, these approaches trained their classifiers with
containing known challenging conditions already in their
training set. Except [17] and [5] whose architectures are
trained on modality losses none of the other architectures
reports overcoming total sensor failures.

1Please note that the focus of this work lies on learned features and
learned multi-modal data fusion for sensor failures. We are aware of other
works using traditional approaches for feature extraction and fusion but they
are not discussed here due to space limitations.

C. Point cloud handling

Point clouds are processed with 2D convolutions after
projecting the point cloud as presented in [27]. The draw-
back of 2D projections is losing 3D information to some
extend but on the other hand well known convolutions from
image processing can be applied. Point clouds could also be
transferred to 3D voxel grids and convolved with 3D kernels
as suggested in [14], [13]. Alternatively, combinations of 3D
convolutions and 2D convolutions are applied as suggested
in [22]. 3D convolution implementations are very limited
due to high memory consumption. Architectures for object
classification, or respectively detection and classification,
operating directly on the point cloud data structure are
presented in [21], [31].

Object point clouds are reconstructed from image features
in [12]. Therefore image features are extracted utilizing
convolutional neural network (CNN) architecture and fully
connected layers for reconstructing the point clouds. We
follow their approach in extracting image features for re-
constructing point clouds. Similar to our work, unsupervised
feature learning strategies for point cloud features are also
proposed in [11], [30], with the intention for further usage
in supervised classification tasks. Compared to ours, which
uses the raw point cloud structure, in [11] the point cloud
is first voxelized before 3D convolutions and respectively
deconvolutions are applied. For processing the raw point
cloud a graph based encoder which computes features taking
neighboring points into account is used in [30]. Whereas our
point cloud processing only computes per point functions
following [21]. Although we propose a multi-modal feature
approach we compare our point cloud feature extraction
performance to [30] in Sec. IV-B. Furthermore, we follow
the suggestion using the Chamfer distance as loss between
reconstructed and ground truth point cloud as it is proposed
in [12] and [30].

III. METHOD

Within this section first the architecture visualized in Fig. 1
for learning unsupervised multi-modal features is presented.
We start with discussing the image processing pipeline
in Sec. III-A and continue in Sec. III-B with the point
cloud processing pipeline. Then the sensor drop module is
described in Sec. III-C. Afterwards the supervised classifier
(see Fig. 2) operating on the previously unsupervised learned
features is described in Sec. III-D. Finally the decision
module is described in Sec. III-E which enables robustness
against sensor failures.

A. Image Encoder / Decoder

The image encoding and decoding block within the archi-
tecture is highlighted with a dashed green rectangle in Fig. 1.
The encoding part follows the image feature extraction
from [12]. This feature extraction architecture stacks multiple
convolutional layers and extracts a 3x4x128 feature code per
image. In comparison to [12] batch normalization is applied
for each convolutional block.



Fig. 1. The architecture for unsupervised feature extraction is visualized.
Processing blocks for image encoding and decoding are shown in green.
Within the Image Encoder image features are extracted following [12]. The
processing blocks for point cloud encoding and decoding are visualized
in blue. For extracting point cloud features we utilized the PointNet [21]
architecture within the Point Cloud Encoder. The Sensor Drop Network
following [16] supports the network in becoming invariant to sensor losses
and is shown in red.

For decoding the stacked feature code is splitted in
point cloud features and image features again. The code
representing image features is processed through a CNN
using convolutional filters and transposed convolutions. The
code representing point cloud features is first reshaped to
two dimensional structure of shape 48x32x1. Afterwards
convolutional layers and transposed convolutions are applied
to the point cloud features. Once both features are processed
by individual CNNs the output is concatenated and a con-
volution is applied on the fused output. The mean squared
error loss on pixel values is used for comparing the generated
output image to the gray scale version of the input image.

B. Point Cloud Encoder / Decoder

The point cloud encoding and decoding block within the
architecture is highlighted with a dashed blue rectangle in
Fig. 1. The encoding block uses the global feature extraction
from the PointNet architecture [21]. We extract 1536 global
point cloud features per input cloud to compute a balanced
amount of point cloud and image features.

Similar to the image decoder the code gets first splitted
into point cloud features and image features within the
decoder. Both features are separately processed by a fully
connected network inspired by the decoder presented in [12].
These networks consist of parallel applied fully connected
layers which are then summed up. Finally the output of
the image feature processing and the point cloud feature
processing is concatenated and further processed by a multi
layer perceptron (MLP) to fuse both processing streams.
In comparison to [12] no short cuts between encoder and
decoder are used because the main objective is learning
descriptive features. The loss for comparing the generated
output point cloud to the input pointcloud is based on the
Chamfer distance as suggested in [12] and [30].

C. Sensor Drop

The aim of the sensor drop network is supporting the
presented unsupervised architecture in becoming invariant to
sensor losses following [16]. It is highlighted with a dashed
red rectangle in Fig. 1. During training time either all point
cloud features or all image features or no features are set
to zero. The decision if and which features are set to 0 is
drawn from a categorical distribution. This is one possibility

to ensure that at least one modality is presented to the
network. In comparison to [16] the features are activated with
a hyperbolic tangent (tanh) nonlinearity before concatenation
with the aim of scaling features accordingly.

D. Classifier

Weights within the encoders get fixed after the unsuper-
vised training step. The now extracted features are forwarded
to classification module highlighted with a dashed orange
rectangle in Fig. 2. The classifier follows the idea of splitting
the code into image and point cloud features like both
decoders do. Both features are processed by a fully connected
architecture separately and single classifiers are trained for
each modality in a pretraining step. Furthermore, a mean
feature representation is stored and updated for each single
class per modality during the classifier training. Afterwards,
a late fusion module scales and adds up outputs from the
single modality classifier. The late fusion classifier is trained
following the sensor drop strategy with the intention to over-
come modelity losses. However, empirical results (see Tab. II
and Fig. 11) show that the late fusion classifier works best if
both modalities produce good results or both modalities have
weaknesses. Compared to uni-modal classifiers the accuracy
of the late fusion classifier also drops significantly if one of
the modalities is noised.

E. Decision Module

Therefore we propose a simple but effective decision
module (see Fig. 2) to overcome this accuracy drop by
the late fusion classifier. This decision modules switches
between uni-modal classifiers and the late-fusion classifier on
basis of feature closeness to the training data set. Therefore,
the cosine similarity between the stored mean feature vector
and the predicted class feature vector is computed. Based
upon a simple threshold comparison the decision module
chooses either a uni-model or the multi-modal classifier.
Please note that training data does not contain noise or
modality losses since we want to show the ability of the
decision module overcoming unseen noise or failures.

IV. EVALUATIONS

Before starting with discussing the experiments conducted
on the proposed unsupervised learning architecture and the
supervised classifier, the used data sets are presented in
Sec. IV-A. Following the evaluation on the quality of unsu-
pervised learned features is presented in Sec. IV-B. Finally
in Sec. IV-C the performance of the classifier is evaluated on
noise patterns and modality losses not present in the training
data.

A. Data Set for Experiments

For training unsupervised features we use 3D object mod-
els and corresponding textures from the ShapeNet Models
Core v2 [6]. This data set covers 55 common object classes
with approximiatly 51300 different object models. The clas-
sifier is trained on the ModelNet 40 data set presented in
[29]. This data set contains 3D models from 40 common



Fig. 2. The classifier operating on previously learned features is shown. It switches between uni-modal and multi-modal classifiers based on the closeness
in feature space to the training data to overcome senor failures and noisy data which are not present in the training data set.

object categories (e.g: car, airplane, person, laptop ecetera).
In order to retrieve a full model point cloud we utilize
the pyntcloud python library [9] and random sample 2048
points from the objects. Following the preprocessing steps
in [21] all objects get centered and normalized to units sphere
before sampling. For capturing images we utilize Blender [3].
Except where explicitly stated these data is used throughout
all experiments.

B. Evaluation on Quality of Unsupervised Learned Features

1) Quantitative Results: We are following [30] to evaluate
the performance of the AE for learning descriptive features
in first performing an unsupervised training on the ShapeNet
data set and then reporting the accuracy of a linear support
vector machine (SVM) on the ModelNet 40 data set. We
utilize the implementation from [19] for the SVM and
use the same training and testing split is used as in the
ModelNet 40 benchmark [29]. We evaluate three different
models of our proposed architecture which are visualized in
Fig. 3. In order to compare the purely point cloud based
unsupervised architectures to results stated in [30] we
run Model 1 additionally on the same data set as used in
[30]. Furthermore, to compare the effect of Sensor Drop
Network we run experiments on Model 2 and Model 3 with
and without Sensor Drop Network enabled. All models are
trained for 50 epochs before the SVM classifier is trained.
The SVM results on uni-modal and multi-modal features are
stated in Tab. I. For Model 2 and Model 3 results reported on
uni-modal features are based on simply splitting the multi-
modal feature vector accordingly to point cloud and image
features.

As it can be seen from the first experiment the proposed
point AE achieves 86.7% which would score second best
reported by the results in [30]. One could argue that our
feature vector is unnecessarily large compared to [30]. The
reason for this is that our AE architecture follows idea
from [12] for the image encoder in reconstructing point
clouds from images. For using a balanced amount of features
between point clouds and images we enlarge the point cloud
feature size. Furthermore we are not using a graph based
point cloud encoder like [30] and are so not exploiting point

Fig. 3. The point cloud to point cloud AE is highlighted in red and referred
as Model 1, the point cloud and image to point cloud AE is highlighted
in green and referred as Model 2 and the presented multi-modal AE is
highlighted in blue and referred as Model 3. After training all models on
the ShapeNet dataset, their learned feature performance is evaluated on the
ModelNet 40 dataset using a linear SVM as classifier.

neighbourhood relations while still achieving a reasonable
accuracy. The obvious benefit for not using graph based
encoder is that a graph has not to be build up for every
point cloud which results in a faster execution time. From
the results stated in Tab. I a clear benefit for using multi-
modal features cannot be seen. We hypothesize that fusing
modalities does not lead to an accuracy improvement of the
classifier if one of the modalities performs already well.
However, we observe a small drop when enabling sensor
drop during training. We hypothesize that if sensor drop is
enabled the architecture must be trained for more epochs to
achieve the same accuracy as without sensor drop since it is
not seeing the same amount of data in the decoders.

2) Qualitative Results: We also show the ability of the
decoders to reconstruct full object point clouds computed
from images and depth sensor input. For this evaluation the
same training and validation data set as in [12] is used.
Within Fig. 4 the reconstruction of a car is visualized using
both modalities as input as well as only image and only point
cloud features when enabling the sensor drop switch.

C. Evaluation on Supervised Classifier and Decision Module

Within this section we present figures on uni-modal, late
fusion and the proposed classifier accuracy and additionally
the classifier choice ratio for the proposed method. The



TABLE I
EVALUATION OF FEATURE QUALITY

Model SVM acc.
Point Cloud & Image

SVM acc.
Point Cloud

SVM acc.
Image

Model 1
data from [30] - 86.7% -

Model 1 - 86.3% -
Model 2

wo sensor drop 85.87% 86.97% 78.36 %

Model 2
w sensor drop 85.47% 87.33% 78.85 %

Model 3
wo sensor drop 86.2% 87.05% 78.3 %

Model 3
w sensor drop 84.7% 85.9% 78.6 %

Input Rec. Both Rec. Points Rec. Image

Fig. 4. We trained the network on the same training and validation data
which is used in [12]. We show a car reconstruction from the validation
set given both modality features, only point cloud features and only image
features. Within this scenario the network is trained to reconstruct the whole
object point cloud using the point cloud generated from the depth image as
input. The ground truth is shown in red and the reconstructed point cloud
in blue.
classifier choice ratio states the ratio of how often the uni-
modal and respectively the late fusion classifier are chosen
by the proposed decision module. Due to assumption of
having different sensing technologies we especially focus on
results disturbing one modality while not noising the other
modality. Nevertheless, we also state figures when noising
both modalities on the example of Gaussian noise. Please
note that the first entry in each of the following figure
represents the results on undisturbed data to compare the
effects of adding noise.

First, Gaussian noise is added to the point cloud with
increasing σpc. As it can be seen in Fig. 5 with increasing
noise level our decision module prefers the uni-module
image classifier. The noisiest level is also stated in Tab. II
where it can bee seen that our proposed decision module
outperforms the late fusion classifier by more than 14% and
is only 5% less accurate than the uni-modal image classifier.

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 5. Gaussian noise is added to the point cloud with increasing σpc.
The proposed classifier prefers the image classifier when the point cloud
becomes too noisy.

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 6. Objects are augmented with an increasing simulated spray
cloud. The point cloud classifier is not robust against this noise and drops
immediately so the proposed classifier mainly chooses the image classifier
which performs better than the late fusion classifier.

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 7. An increasing amount of points within the point cloud are set to
zero which simulates different sensor measurement failures. The point cloud
feature extraction as well as the point cloud classifier are quite robust against
this noise and therefore the late fusion performs in most of the experiments
better than the uni-modal image classifier. So the late fusion classifier is
mainly chosen by the proposed classifier.

The second noise pattern applied to the point cloud is
the spray noise. Here, point clouds with increasing size
following a normal distribution with σ = 0.25 are randomly
attached to objects. These kind of additive point clouds are
a common issue within automotive perception, especially in
rainy environment due to the spray cars produce on wet
street or exhaust clouds. We can observe an immediate drop
within the uni-modal classifier accuracy in Fig. 6. This is
due to the chosen point cloud encoder. Since the encoder
especially focuses on corner points and edges which are
furthest away from object center it gets fooled by these
additional point clouds. However, it can also be seen that the
proposed classifier follows the image classifier and produces
nearly as good classification results and exceeds the late
fusion classifier.

The next evaluation is run on densed out point clouds
where an increasing amount of random points are set to the
coordinates (0,0,0) to simulate sensor failures. The results
for this experiment are visualized in Fig. 7. We observe that
the point cloud encoder can handle this noise type much
better than the spray noise. We hypothesize this is due to
the fact that important corner points are still present (or its
neighbors) which is not changing the overall appearance of
the object. Within this experiment we observe good results
from the late fusion classifier which results in preferring this
classifier over the image classifier most of the time. However,
if all points are zeroed, our proposed classifier exceed the late
fusion classifier by 1.1%.

The first experiment conducted on images adds Gaussian
noise (see Fig. 8). In the corner case σimg = 60 the proposed



(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 8. Gaussian noise is added to the image with increasing σimg . The
proposed classifier prefers the point cloud classifier with increasing σimg .

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 9. Salt and pepper noise is applied to an increasing amount of
image pixels. The proposed classifier immediately relies on the point cloud
classifier and achieves throughout a better accuracy than the late fusion
classier.
classifier exceeds the late fusion classifier by more than 5%
as stated in Tab. II. As it is shown in [15] and [24] that salt-
and-pepper noise has strong influence on CNN performance
we also performed tests on this impulsive noise and on shot
noise to evaluate the image classifier performance on them.
The results are plotted in Fig. 9 for salt-and-pepper noise.
The image classifier accuracy drops immediately and the
proposed classifier mainly chooses the output of the uni-
modal point cloud classifier. Results for shot noise follow a
similar pattern as for salt-and-pepper noise. In Fig. 10 the
image is overlayed with randomly rotated black squares with
increasing size until a complete image failure is simulated in
setting all pixel values to 0. It can be seen that the proposed
method prefers the uni-modal point cloud classifier again and
achieves more than 4% better accuracy compared to the late
fusion approach within the complete image failure case.

Finally, we apply Gaussian noise to both input modalities
and report the results in Fig. 11. It can be seen that the late
fusion classifier outperforms the uni-modal classifiers and is
therefore preferred by our proposed classifier.

V. CONCLUSION AND FUTURE WORK

Within this work we present an architecture for learning
multi-modal features in an unsupervised way. Quantitative
results on the extracted feature quality are presented on the
example of linear SVM classification results. Furthermore,
qualitative results for reconstructing both modalities when
enabling the sensor drop switch are shown. Even though the
sensor drop generalization technique gives promising results
for feature extraction in supporting the reconstruction of
other modalities, it does not support the late fusion approach
to overcome sensor failures on our data set, especially in
the case of noisy input data. Thus, we introduce a classifier

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 10. The image is disturbed with a black square applied to random
rotations and increasing square size. Please not that in the last experiment
’All 0’ all pixel values are set to 0. With increasing square size the proposed
classifier outperforms the late fusion approach.

(a) Classification Accuracy (b) Classifier Choice Ratio

Fig. 11. Gaussian noise is added to both input modalities. The proposed
classifier prefers throughout the late fusion classifier.
which uses a simple but effective decision module switch-
ing between different uni-modal and multi-modal classifiers
based on the closeness in the feature space to the training
data. Hence, it overcomes sensor failures and noise which
are not present in the training set.

In future work we will further investigate the effect of
sensor drop generalization to different fusion techniques like
early or deep fusion for unsupervised feature extraction.
Furthermore we will investigate the closeness in feature
space idea from a data driven approach to see if other
metrics can be found to reason about the extracted feature
quality compared to features extracted from the training set.
Beside overcoming sensor failure this could help in detecting
unknown noise patterns in sensor data. Additionally we will
investigate the extension of the network to radar sensors
which are commonly used in automotive setups. Since radar
sensors provide a point cloud with velocity information we
could utilize similar encoding structures as for depth point
clouds and extend the decoders accordingly.

TABLE II
RESULTS OF CORNER CASES

input data Point Cloud
Classifier

Image
Classifier

Late Fusion
Classifier

Proposed
Classifier

undisturbed img
undisturbed pc 83.16% 78.81% 86.20% 85.27%

failure img
undisturbed pc 83.16% 4.06% 77.35% 81.41%

undisturbed img
failure pc 4.06 % 78.81% 77.31% 78.41%

img Gauss noise
(σimg = 60)
undisturbed pc

83.16% 9.58% 73.46% 79.22%

undisturbed img
pc Gauss noise

(σpc = 0.3)
4.42% 78.81% 59.09% 73.74%
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