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Abstract— This paper presents a pipeline for semantic seg-
mentation of trees into their components. Given a single RGB-D
image of a tree, we employ a deep network to predict labels to
classify each pixel of the tree into trunk, branches, twigs and
leaves. Multiple convolutional neural network architectures to
combine the complementary modalities of depth and colour
data are investigated. An asynchronous training approach
where two networks trained separately on RGB and depth
encoded as a 3-channel HHA image are combined using a late
fusion architecture with different learning rates performs the
best. Training and evaluation are performed on a synthetic
dataset of 6 species of broadleaf trees. We further demonstrate
the network’s generalization capabilities, across various tree
species on the synthetic dataset, achieving an accuracy of upto
92.5%. Furthermore, we present a qualitative evaluation of our
approach on real-world data.

I. INTRODUCTION

Automation in agriculture and plantation management
paves way for a cost-effective and time-saving approach to
increasing crop yield. Robotic systems are being deployed to
perform laborious tasks such as dormant pruning [1], fruit
picking [2], weed detection [3] and orchard management [4].
The effectiveness of these tasks directly depends on the
quality of models of vegetation that can be generated from
scans of the environment and in understanding the semantics
within. In this paper we propose an algorithm that segments
parts of a tree into its components, namely trunk, branches,
twigs and leaves.

Recent advances in sensing and motion planning have
enabled the capture of multi-modal, high resolution data
from the environment [5]. This data, vital for robot vision
tasks like mapping and localization, has promoted a growing
amount of research in a wide variety of fields. However,
these methods do not directly translate to environments with
vegetation. This is because, unlike human-made structures,
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natural structures like trees are characterized by complex
geometry, non-parametric surfaces, repeating elements, self
occlusion, non-rigidity and limited variation of colour. For
example, reconstruction techniques such as [6], [7], [8]
perform sub-optimally as they are forced into local minima
due to small repetitive structures in the leaf-regions of a
tree. Similarly camera pose estimation techniques that rely on
correspondence matching [9], [10], [11] again fail due to the
lack of distinctive salient points in these regions. Segmenting
or masking out these regions is one way to address this issue
and forms a strong motivation for the work presented in this
paper.

Such a task involves understanding the semantics of the
scene. While semantic segmentation has been employed for
various robotics applications such as robot manipulation [12],
autonomous navigation [13] and camera localization [14],
its use in segmenting natural structures, like trees, into their
components is still an open area for research. In this paper we
present an approach that bridges this research gap. Moreover,
segmenting trees into wood and leaves enables computation
of metrics such as leaf area index [15] and volume of
wood, which find use in forestry and environment monitoring
applications.

In this paper we propose a pipeline based on deep Con-
volutional Neural Networks (CNNs) the segments a tree into
its components. Given a single RGB-D image, the network
predicts labels classifying each pixel as trunk, branch, twig
or a leaf. As the input data is multi-modal, i.e. consisting of
both colour and depth information, we explore and evaluate
multiple approaches to fuse the two modalities preserving
their complementary benefits. Training a deep neural network
requires a large amount of data and annotating real data
is both cumbersome and impractical. Hence we generate
the required dataset in simulation. Extensive quantitative
evaluation is performed on the synthetic data under various
test scenarios to evaluate the performance of the network and
is presented in this paper. Finally, we also present qualitative
results on real data. In the scope of this paper, we restrict
our analysis to broadleaf trees and do not consider coniferous
trees with needle like leaves.

The key contributions of this paper are as follows.
• A learning-based approach for semantic segmentation

of trees into their components.
• An extensive analysis on various approaches for incor-

porating depth information with colour image data, with
emphasis on a late fusion approach, as well as of the
training scheduling.

• An evaluation of the approach when the network is



trained solely on simulated tree data and tested on real
data.

The rest of the paper is organised as follows. In section
II an overview of related literature is presented, with an
emphasis on CNN based segmentation networks and segmen-
tation of vegetation. Details regarding the generation of the
synthetic dataset of broadleaf trees are presented in section
III. Section IV describes the network architecture along with
different approaches investigated for incorporating depth
information. Results for all the proposed architectures under
various test settings are presented in section V. A qualitative
evaluation of the network on real data is also presented in
the same section. Section VI concludes the paper.

II. RELATED WORK

A. Semantic Segmentation

Deep learning based approaches have surpassed tradi-
tional geometry based approaches for semantic segmentation.
These methods, mostly based on CNNs, typically consist
of a pre-trained encoder as in [16] and a decoder. The
Fully Convolutional Network (FCN) [17], extends CNNs by
replacing the fully connected layers with convolutional ones
thus allowing arbitrary input sizes. FCNs form the basis of
most state-of-the-art segmentation networks. Another highly
successful network, the SegNet [18] follows a similar archi-
tecture, with the novelty being the use of pooling indices
computed in the max-pooling step of the corresponding
encoder to perform non-linear up-sampling. An alternate
solution to upsampling is presented in DeepLab [19]. Multi-
modal learning introduced in [20] leverages complementary
benefits if the different modalities to improve performance.
For example Kwang et al. [21] use multi-spectral images
combining thermal and colour images to detect pedestrians
in a scene. With the availability of commercial RGB-D
sensors, approaches combining depth and colour information
have been developed. Gupta et al. [22] propose the HHA
encoding for depth images and combine features extracted
on this image with colours images using an SVM classifier.
Eitel et al. [23] instead apply a colour-map to normalized
depth images and use that as another 3-channel image stream
similar to colour images. More recently, Valada et al. [13]
use depth information directly but replace the convolutional
layers with residual [24] layers to increase the depth of the
networks. The method proposed in this paper is similar to
the method of [22] but instead we replace the classifier
with a set of trainable convolutional layers. We also use
an asynchronous training approach with different learning
rates for different parts of the network. For a comprehensive
review of deep semantic segmentation, we direct the reader
to [25].

B. Semantic Segmentation of Vegetation

Previous literature on vegetation segmentation mainly ad-
dresses the task of segmenting crops from the background
in an agricultural field. Zheng et al. [26] extract features
from images in different colour spaces and apply the mean-
shift algorithm followed by a simple neural network for
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Fig. 1: Overview of our dataset. A data point consists of
colour, depth and ground truth images (a)-(c). In (d)-(i), the
6 different tree species are shown. Sample images (j)-(l)
illustrate the differences in scale, lighting and species.

segmenting crops from the field. Moorthy et al. [27] follow a
similar approach but use a Bayesian classifier for prediction.
More recently, [28] and [3] propose learning based methods
to separate crops from weeds using RGB and Multi-spectral
images respectively.

However, there is little research on segmenting a tree into
its components. Li et al. [29] use geometric properties like
normal orientation as discriminating features for segmen-
tation, but require manual tuning or heuristics to improve
the predictions. Surface curvatures extracted at multiple
neighbourhood sizes are used as features for segmenting
different parts of a tree in [30], but their method works on
the 3D point cloud of an entire tree. In contrast our method
works on single RGB-D images and does not require the
complete tree to be reconstructed.

III. DATASET

Segmentation of natural structures like trees is a very
specific application. Large image segmentation datasets such
as the SUN dataset [31] have images of nature but the ground
truth segmentation labels are coarse and do not capture finer
details such as leaves and twigs that are relevant to our
work. At the same time annotating pictures of real trees is
impractical. Therefore, we generated a synthetic dataset of
trees for this paper.

3D models of trees were generated using SpeedTree® [32].
These models were imported into a simulation framework
built in Unreal Engine 4.19 [33]. In order to simulate a real-
world robot capture scenario, a drone with an RGB-D camera
was simulated using the AirSim [34] plugin. The RGB-D
camera was modelled after a Kinect One (v2) [35] sensor.

Colour (RGB), depth and ground-truth segmentation im-
ages were collected with the drone flying a spiral trajectory
around the tree. The camera was always pointed towards the
tree with its axis parallel to the ground plane. Images were
also taken at multiple distances from the tree (1m to 8m) to
capture variation in scale.



Fig. 2: A Kinect One (v2) sensor mounted on a garden pole
used for hand-held scanning of trees. The device is powered
using a portable battery.

Typically, a tree has self-occlusions and as a result
the same structure appears completely different even from
slightly different viewpoints. At the same time this also
results shadows that are responsible for a lack of colour
variation across different components of the tree. This was
simulated by illuminating the trees using a natural directional
light.

In this paper we limit our dataset to just broadleaf trees.
We also do not consider external disturbances such as wind
and changes in global illumination during the course of
scanning. Furthermore, there are no flowers or fruits on the
trees. To maintain generality, 6 tree species, with at least 5
instances per species were used providing sufficient variation
in terms of tree topology, leaf density and leaf characteristics.
For every tree, a total of 720 images was taken, resulting in
an overall dataset size of 28800 samples. A set of sample
images representing the dataset is shown in Figure 1.

Since the background is not of interest for our task, a
simple background was chosen in the simulation. In general
this is not a limitation since many state-of-the-art deep
networks, such as SegNet [18], can segment the general class
“vegetation” from other objects in an outdoor scene. We can
use this as a pre-processing step to our algorithm. However,
environments where the background also contains vegetation
can be challenging and will be addressed in future work. In
the scope of this paper, we exclude the background classes
from our evaluation.

Real data for evaluation was collected using a Kinect
One (v2) sensor mounted on a gardening pole as shown in
Figure 2 Images were collected by walking around trees in
a circular path with the Kinect sensor pointed towards the
tree. A similar setup on a drone can also be used to collect
images of larger trees.

IV. NETWORK ARCHITECTURES

In this section we describe all the network architectures
considered for incorporating depth information along with
colour images.

A. RGB network

One of the most successful networks for segmentation
of both indoor and outdoor scenes is SegNet [18]. In this
paper we use it as the baseline and refer to this as the
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Fig. 3: Figure shows the 3 channels of an HHA encoded
depth image. Blue represents small values while red repre-
sents large values. The depth image has no noise added for
the sake of illustration.

RGB network. The VGG [16] weights of the encoder part of
SegNet are initialized to the values optimized by training on
the Imagenet dataset [36]. These are tuned further by training
on our dataset.

B. RGB-D network

As mentioned earlier colour information alone may be
ambiguous due to lack of sufficient variation. Hence using
a complementary modality, such as depth information, is
valuable to improve segmentation results [20]. There are two
common approaches to incorporate depth information. The
first approach is to perform early fusion where the depth
image is remapped to the range of colour images i.e. [0,255]
and concatenated as a fourth channel with the colour image.
With the exclusion of the first layer, no additional changes
are made to the network architecture. However, as the input
substantially differs from that of the RGB network, the pre-
trained weights of the encoder are not relevant anymore.
Hence, we re-train the network from scratch with weights
initialized as described in [37]. We refer to this architecture
as the RGB-D network.

C. RGB-HHA and RGB-HA network

The second approach to incorporate depth information is
to perform late fusion, i.e. in the feature space. The depth
image is encoded as a 3-channel HHA [22] image comprising
of depth, height from the ground and angle of the surface
normal with gravity as the three channels.

A prominent characteristic of natural structures is that the
woody regions, i.e. trunk and branches, appear cylindrical
while, leaves appear flat. The HHA encoding implicitly
captures these characteristics, but still maintains enough raw
data for the network to learn features independently. Hence
this encoding was chosen in this paper.

We compute the angle channel using the algorithm pro-
posed in [38]. All channels are linearly scaled to map
observed values across the training dataset to the range
[1,255]. The value 0 is reserved for pixels with invalid
depth. The depth channel is thresholded and scaled inversely
mapping closest depth to 255 and farthest depth to 1 to
prevent discontinuities between far away points and out-of-
range values. Figure 3 shows the HHA encoding for a sample
depth image (without noise for the sake of illustration).

We use an architecture similar to the one proposed in [23]
where the HHA image is trained in parallel to the RGB
network, referred to as the HHA-net. In this approach, the
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Fig. 4: Architecture of the RGB-HHA(-a) or RGB-HA(-a)
networks. Top row shows the RGB network trained on colour
images while the bottom row is the smaller HHA-net(or HA-
net) trained on HHA(or HA) images. The two modalities are
combined using a late fusion layer followed by the prediction
layer.

HHA-net is only meant to improve the results of the RGB
network but not to achieve stand-alone optimal performance.
It consists of four convolutional layers of 8→ 16→ 32→ 64
filters of dimension 24 → 12 → 6 → 3 respectively. The
larger size in the first layers helps in increasing the receptive
field, thus compensating the absence of max pooling. The
increased number of filters instead boosts the discriminat-
ing power of the features learnt from the previous layers.
Finally, the outputs of the two branches are concatenated
and passed through another convolutional layer before final
classification. We refer to this architecture as the RGB-HHA
network. It is illustrated in Figure 4.

In a general robot scanning scenario, the height above
ground may not always be available, since only a relative
pose with respect to an arbitrary initial reference frame is
typically estimated. In order to account for this lack of
height information, we also train a variation of the RGB-
HHA network where the depth image is encoded as a two
channel image with just depth and angle with the vertical
direction as the channels. We refer to this architecture as the
RGB-HA network.

D. Asynchronous training

In the case of a multi-modal architecture, one modality
might out-weigh the other when the modalities are fused
and trained together. In order to mitigate this effect, we
introduce a technique which we refer to as asynchronous
training. In this approach the RGB network and the HHA-
net (or HA-net) are trained separately independent of each
other. The two networks are then combined using late fusion
as above and fine-tuned together, but with different learning
rates for each network. A very small learning rate was
used for the weights of the HHA(HA)-net thus reducing the
influence of the RGB network on the HHA(HA)-net after
fusion. In comparison, a slightly larger learning rate than
that of the HHA(HA)-net was used for the weights of the
RGB network encoder. This is because the RGB network
weights are initialized using the VGG weights. The rest of

TABLE I: Table shows class frequencies over the entire
dataset.

Class frequency [%]
ground sky trunk branch twig leaf

35.2 28.0 4.4 7.9 1.9 22.6

the trainable variables were trained with higher training rates.
The resulting architecture is asynchronous in the sense that
different sections of the network adapt at different speeds.
We refer to these architectures as the RGB-HHA-a and RGB-
HA-a networks.

E. Class clustering and weighted loss

There are 6 classes in the dataset as acquired from the
simulation; 4 for the components of a tree (trunk, branch,
twig, leaf ) and 2 for background (ground, sky) . As men-
tioned earlier, the background classes are not of importance
and are omitted from the analysis. This division of the tree
into 4 components was designed to explore the capabilities
and limitations of the different network architectures for the
segmentation of finer structures (leaves and twigs), as well
as highly similar classes (branches versus twigs), which is
sometimes hard even for a human observer. However, for
applications such as 3D reconstruction, a simpler division of
the tree into wood and leaf structures might be sufficient. We
compare both the cases where the refined division is referred
to as the 6 class case and the latter the 4 class case.

Classes appear in the images with different frequencies,
as shown in Table I. To compensate for this unbalance, we
explored the use of median frequency weighting as proposed
in [39]. The frequency weights for each class are computed
as the class frequency divided by the median class frequency
over the training data, for every architecture and evaluation.
Note that the distribution of classes is an inherent property of
natural structures and only partly depends on how the images
were taken.

V. EXPERIMENTAL RESULTS

A. Comparison of Architectures

All architectures were trained and tested on the synthetic
dataset, featuring all 6 species of trees. Training was per-
formed on 4 instances of each tree resulting in 17,280
images, while testing was performed on the 5th tree with
a total of 4,320 images. The resulting per-class and overall
accuracies are presented in Table II.

The RGB network is considered as the baseline for the
sake of this analysis. The RGB-D network performs poorly
indicating that the network is unable to learn meaningful
features directly from the depth image in an early fusion
scheme. However, the late fusion architectures show an
improvement over the RGB network. The performance is fur-
ther increased by employing asynchronous training, gaining
on average 1% in accuracy from RGB-HHA to RGB-HHA-a
and 5.5% in accuracy from RGB-HA to RGB-HA-a for the
6 channel case.



TABLE II: Table shows class accuracies for all different network architectures, class cases and weighting schemes. The total
accuracy column excludes the background classes of ground and sky.

Class accuracies
Weighted Non Weighted

trunk branch twig leaf total trunk branch twig leaf total
6

cl
as

se
s

RGB 0.802 0.724 0.170 0.923 0.737 0.894 0.756 0.361 0.858 0.829
RGB-D 0.312 0.432 0.175 0.740 0.625 0.444 0.167 0.339 0.523 0.369
RGB-HHA 0.865 0.738 0.329 0.928 0.839 0.825 0.857 0.693 0.844 0.843
RGB-HA 0.931 0.769 0.286 0.889 0.815 0.970 0.678 0.307 0.873 0.809
RGB-HHA-a 0.910 0.886 0.277 0.921 0.838 0.827 0.780 0.522 0.907 0.861
RGB-HA-a 0.877 0.789 0.407 0.920 0.86 0.922 0.800 0.568 0.908 0.878

4
cl

as
se

s

RGB 0.888 0.870 0.877 0.907 0.881 0.890
RGB-D 0.724 0.749 0.744 0.541 0.373 0.406
RGB-HHA 0.935 0.905 0.916 0.945 0.888 0.908
RGB-HA 0.921 0.913 0.916 0.936 0.902 0.914
RGB-HHA-a 0.942 0.913 0.924 0.924 0.925 0.925
RGB-HA-a 0.944 0.834 0.867 0.932 0.920 0.925

In general the class accuracy for twigs is low while for
the other more frequent classes the accuracies are high.
Employing a weighted loss mostly affects the twig class since
it is the rarest. However, its accuracy decreases since the clas-
sification is biased towards twigs and they are still rare. For
the other classes it is a trade-off with approximately equal
accuracy gains and losses. Nevertheless, even when applying
weighting, the recall for the twigs class only increased by
26% on average, reaching a maximum of 69% for the RGB-
HHA-a network at the expense of recall for other classes.
When combining all the woody classes together, we see
that the accuracies are higher than with the refined division.
We further observe that the HHA and HA predictions are
generally comparable, suggesting that height above ground
may be omitted if not available.

B. Inter-species generalization

To estimate the generalization capabilities of the networks
across various tree species, the two best performing net-
works, RGB-HHA-a and RGB-HA-a for 4 and 6 classes re-
spectively, were selected for further analysis. The number of
training and testing images is kept constant among different
training settings and equal number of images are sampled
from each species and tree instance. A total of 5760 training
and 1440 testing images were used for each setting. In every
setting 3 combinations of species were randomly chosen,
trained on and tested. We refer to predictions on a tree as
being in-species if the training set contains another instance
from the same species as that of the tree, else it is an out-of-
species prediction. The resulting in- and out-of-species test
accuracies are depicted in Figure 5. The in-species accuracy
is approximately constant, indicating that the networks learn
proper descriptors for all the species that they are trained
on. The out-of-species accuracy decreases only by 6% and
10% for the 2 species case and increases quickly with more
species trained on. This suggests that training on a finite set
of species is sufficient to expect decent performance on a
broader species dataset.

C. Noise analysis

In real-world data, the depth images are typically not as
clean as the synthetic data. To investigate the influence of
noise on the prediction output, the HHA networks were
tested on depth images perturbed by noise as described
in [40] which is models the noise of the Kinect One (v2)
sensor. Please note that this noise model is Gaussian and
only covers part of the noise that is seen in real depth images.
Other sources of noise such as shadows at object boundaries
are difficult to model and have not been considered in the
simulation. We observe from Table III that there is drop in
accuracy of about 5% as compared to the accuracies with
clean data.

D. Qualitative evaluation on real-world data

In order to test the potential of the networks on real-world
data, predictions of the networks on real RGB-D images,
acquired using a Kienct One(v2) sensor, were qualitatively
evaluated. These are shown in Figure 6. A major difference
between real and synthetic data is that real depth im-
ages typically contain missing data especially around object
contours (due to infrared shadows) and suffer from other
limitations summarized in [35]. While complicated methods
for improving the quality of these images are available, in
the the scope of this analysis, we limit ourselves to using
a median filter, with a window of 7x7 pixels, to get rid of
small holes and noise.

The RGB-HHA networks trained on noisy data are used
for this analysis. As expected, we see that depth information
helps in predicting correct labels where there is colour
ambiguity. This preliminary deployment of synthetic training
on real world data motivates simulation based training. It
further suggests that incorporating depth in a skip lightweight
architecture augmentation can improve transfer capabilities
to real world applications. We would like to mention that
quantitative evaluation on real data was not possible because
of the absence of labelled datasets of vegetation.



TABLE III: Table shows prediction accuracies for the HHA networks, trained and evaluated on data perturbed by Kinect
One noise model. The total accuracy column excludes the background classes of ground and sky.

Class accuracies for noise analysis
Weighted Non Weighted

trunk branch twig leaf total trunk branch twig leaf total

6
cl

s RGB-HHA 0.644 0.447 0.330 0.926 0.757 0.763 0.748 0.144 0.865 0.791
RGB-HHA-a 0.673 0.636 0.302 0.868 0.771 0.717 0.650 0.089 0.926 0.803

4
cl

s RGB-HHA 0.788 0.916 0.881 0.717 0.938 0.862
RGB-HHA-a 0.764 0.929 0.870 0.814 0.897 0.876

(a) RGB-HHA-a prediction for 4 classes. (b) RGB-HA-a prediction for 6 classes.

Fig. 5: Figure shows in-species (blue) and out-of-species (red, dashed) prediction accuracies for the (a) RGB-HHA-a and
(b) RGB-HA-a architectures, represented as mean and standard deviation of 3 randomly sampled combinations of training
species for each step.

RGB image

4 classes
4 classes

4 classes
6 classes

6 classes
6 classes

HHAimage RGB network RGB-HHA
Non-weighted

RGB-HHA-a

Trunk[ ] =Branches Twigs Leaves Ground SkyWood

Fig. 6: Figure shows the predictions of select networks on
images of real data.

VI. CONCLUSION

In this paper we proposed the use of deep convolu-
tional networks for semantic segmentation of trees into
their components. Multiple network architectures for incor-
porating depth information along with colour images were
analyzed on a synthetic dataset, where a late fusion approach
performed best. Further improvement in performance was
achieved using an asynchronous training procedure with
different learning rates.

For tasks where a division of the natural structure into just
wood and non-wood classes is sufficient, higher accuracy
in segmentation may be achieved. We also show that the
networks generalize well among different species of trees.

Qualitative results on real data suggest that the features
learnt by the network in simulation are meaningful and
transferable to the real world.
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