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Abstract
Precisely estimating a robot’s pose in a prior, global map is a fundamental capability for mobile robotics, e.g.
autonomous driving or exploration in disaster zones. This task, however, remains challenging in unstructured, dynamic
environments, where local features are not discriminative enough and global scene descriptors only provide coarse
information. We therefore present SegMap: a map representation solution for localization and mapping based on the
extraction of segments in 3D point clouds. Working at the level of segments offers increased invariance to view-point and
local structural changes, and facilitates real-time processing of large-scale 3D data. SegMap exploits a single compact
data-driven descriptor for performing multiple tasks: global localization, 3D dense map reconstruction, and semantic
information extraction. The performance of SegMap is evaluated in multiple urban driving and search and rescue
experiments. We show that the learned SegMap descriptor has superior segment retrieval capabilities, compared to
state-of-the-art handcrafted descriptors. In consequence, we achieve a higher localization accuracy and a 6% increase
in recall over state-of-the-art. These segment-based localizations allow us to reduce the open-loop odometry drift by
up to 50%. SegMap is open-source available along with easy to run demonstrations.
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1 Introduction

Mapping and localization are fundamental competencies for
mobile robotics and have been well-studied topics over the
last couple of decades (Cadena et al. (2016)). Being able to
map an environment and later localize within it unlocks a
multitude of applications, that include autonomous driving,
rescue robotics, service robotics, warehouse automation
or automated goods delivery, to name a few. Robotic
technologies undoubtedly have the potential to disrupt those
applications within the next years. In order to allow for the
successful deployment of autonomous robotic systems in
such real-world environments, several challenges need to be
overcome: mapping, localization and navigation in difficult
conditions, for example crowded urban spaces, tight indoor
areas or harsh natural environments. Reliable, prior-free
global localization lies at the core of this challenge. Knowing
the precise pose of a robot is necessary to guarantee reliable,
robust and most importantly safe operation of mobile
platforms and also allows for multi-agent collaborations.

The problem of mapping and global localization has
been well covered by the research community. On the
one hand, a large body of algorithms use cameras and
visual cues to perform place recognition. Relying purely
on appearance has, however, significant limitations. In spite
of tremendous progress within this field, state-of-the-art
algorithms still struggle with changing seasons, weather or
even day-night variations (Lowry et al. (2016)). On the
other hand, several approaches address the variability of

appearance by relying instead on the 3D structure extracted
from LiDAR data, which is expected to be more consistent
across the aforementioned changes. Current LiDAR-based
Simultaneous Localization and Mapping (SLAM) systems,
however, mostly use the 3D structure for local odometry
estimation and map tracking, but fail to perform global
localization without any prior on the pose of the robot (Hess
et al. (2016)).

There exist several approaches that propose to use 3D
point clouds for global place recognition. Some of them
make use of various local features (Rusu et al. (2009); Salti
et al. (2014)), which permit to establish correspondences
between a query scan and a map and subsequently estimate
a 6-Degree-of-Freedom (DoF) pose. The performance of
those systems is limited, as local features are often not
discriminative enough and not repeatable given the changes
in the environment. Consequently, matching them is not
always reliable and also incurs a large computational cost
given the number of processed features. Another group
of approaches relies on global descriptors of 3D LiDAR
scans (Yin et al. (2018)) that permit to find a correspondence
in the map. Global descriptors, however, are view-point
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dependent, especially when designed for only rotational-
invariance and not as translation-invariant. Furthermore,
a global scan descriptor is more prone to failures under
dynamic scenes, e.g. parked cars, which can be important for
reliable global localization in crowded, urban scenarios.

We therefore present SegMap∗: a unified approach for
map representation in the localization and mapping problem
for 3D LiDAR point clouds. SegMap is formed on the
basis of partitioning point clouds into sets of descriptive
segments (Dubé et al. (2017a)), as illustrated in Figure 2.
The segment-based localization combines the advantages of
global scan descriptors and local features – it offers reliable
matching of segments and delivers accurate 6-DoF global
localizations in real-time. The 3D segments are obtained
using efficient region-growing techniques which are able to
repeatedly form similar partitions of the point clouds (Dubé
et al. (2018b)). This partitioning provides the means for
compact, yet discriminative features to efficiently represent
the environment. During localization global data associations
are identified by segment descriptor retrieval, leveraging
the repeatable and descriptive nature of segment-based
features. This helps satisfy strict computational, memory and
bandwidth constraints, and therefore makes the approach
appropriate for real-time use in both multi-robot and long-
term applications.

Previous work on segment-based localization considered
hand-crafted features and provided only a sparse representa-
tion (Dubé et al. (2017a); Tinchev et al. (2018)). These fea-
tures lack the ability to generalize to different environments
and offer very limited insights into the underlying 3D struc-
ture. In this work, we overcome these shortcomings by intro-
ducing a novel data-driven segment descriptor which offers
high retrieval performance, even under variations in view-
point, and that generalizes well to unseen environments.
Moreover, as segments typically represent meaningful and
distinct elements that make up the environment, a scene can
be effectively summarized by only a handful of descriptors.
The resulting reconstructions, as depicted in Figure 1, can be
built at no extra cost in descriptor computation or bandwidth
usage. They can be used by robots for navigating around
obstacles and visualized to improve situational awareness of
remote operators. Moreover, we show that semantic labeling
can be executed through classification in the descriptor
space. This information can, for example, lead to increased
robustness to changes in the environment by rejecting inher-
ently dynamic classes.

To the best of our knowledge, this is the first work
on robot localization that is able to leverage the extracted
features for reconstructing environments in three dimensions
and for retrieving semantic information. This reconstruction
is, in our opinion, a very interesting capability for
real-world, large-scale applications with limited memory
and communication bandwidth. To summarize, this paper
presents the following contributions:

• A data-driven 3D segment descriptor that improves
localization performance.
• A novel technique for reconstructing the environment

based on the same compact features used for
localization.

Figure 1. An illustration of the SegMap approach. The red and
orange paths represent the trajectories of two robots driving
simultaneously in opposite directions through an intersection.
In white we show the local segments extracted from the
robots’ vicinity and characterized using our compact data-driven
descriptor. Correspondences are then made with the target
segments, resulting in a successful localization depicted with
green vertical lines. A reconstruction of the target segments is
illustrated below, where colors represent semantic information
(cars in red, buildings in light blue, and others in green),
all possible by leveraging the same compact representation.
We take advantage of the semantic information by performing
localization only against static objects, improving robustness
against dynamic changes. Both the reconstruction and semantic
classification are computed by leveraging the same descriptors
used for global prior-free localization.

Figure 2. Exemplary segments extracted from 3D LiDAR data
collected in a rural environment. These segments were extracted
with an incremental Euclidean distance-based region-growing
algorithm and represent, among others, vehicles, vegetation and
parts of buildings (Dubé et al. (2018b)).

• An extensive evaluation of the SegMap approach
using real-world, multi-robot automotive and disaster
scenario datasets.

In relation to the Robotics: Science and System conference
paper (Dubé et al. (2018a)), we make the following
additional contributions:

• A comparison of the accuracy of our localization
output with the results of recently published technique
based on data-driven global 3D scan descriptors (Yin
et al. (2018)).

∗SegMap is open-source available along with easy to run demonstrations
at www.github.com/ethz-asl/segmap. A video demonstration is
available at https://youtu.be/CMk4w4eRobg
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• An evaluation of trajectory estimates by combining
our place recognition approach with a state-of-the-art
3D LiDAR-based SLAM technique (Zhang and Singh
(2014)).
• A triplet loss descriptor training technique and its

comparison to the previously introduced classification-
based approach.
• A particularly lightweight variant of our SegMap

descriptor that can be deployed on platforms with
limited computational resources.

The remainder of the paper is structured as follows:
Section 2 provides an overview of the related work in the
fields of localization and learning-based descriptors for 3D
point clouds. The SegMap approach and our novel descriptor
that enables reconstruction of the environment are detailed
in Section 3 and Section 4. The method is evaluated in
Section 5, and finally Sections 6 and 7 conclude with a short
discussion and ideas on future works.

2 RELATED WORK
This section first introduces state-of-the-art approaches to
localization in 3D point clouds. Data driven techniques using
3D data which are relevant to the present work are then
presented.

Localization in 3D point clouds Detecting loop-closures
from 3D data has been tackled with different approaches. We
have identified three main trends: (i) approaches based on
local features, (ii) global descriptors and (iii) based on planes
or objects.

A significant number of works propose to extract local
features from keypoints and perform matching on the basis
of these features. Bosse and Zlot (2013) extract keypoints
directly from the point clouds and describe them with a
3D Gestalt descriptor. Keypoints then vote for their nearest
neighbors in a vote matrix which is eventually thresholded
for recognizing places. A similar approach has been used
in Gawel et al. (2016). Apart from such Gestalt descriptors,
a number of alternative local feature descriptors exist,
which can be used in similar frameworks. This includes
features such as Fast Point Feature Histogram (FPFH) (Rusu
et al. (2009)) and SHOT (Salti et al. (2014)). Alternatively,
Zhuang et al. (2013) transform the local scans into bearing-
angle images and extract Speeded Up Robust Features
(SURFs) from these images. A strategy based on 3D spatial
information is employed to order the scenes before matching
the descriptors. A similar technique by Steder et al. (2010)
first transforms the local scans into a range image. Local
features are extracted and compared to the ones stored in
a database, employing the Euclidean distance for matching
keypoints. This work is extended in Steder et al. (2011) by
using Normal-Aligned Radial Features (NARF) descriptors
and a bag of words approach for matching.

Using global descriptors of the local point cloud for
place recognition is also proposed in (Röhling et al. (2015);
Granström et al. (2011); Magnusson et al. (2009); Cop et al.
(2018)). Röhling et al. (2015) propose to describe each local
point cloud with a 1D histogram of point heights, assuming
that the sensor keeps a constant height above the ground.
The histograms are then compared using the Wasserstein
metric for recognizing places. Granström et al. (2011)

describe point clouds with rotation invariant features such
as volume, nominal range, and range histogram. Distances
are computed for feature vectors and cross-correlation for
histogram features, and an AdaBoost classifier is trained
to match places. Finally, Iterative Closest Point (ICP) is
used for computing the relative pose between point clouds.
In another approach, Magnusson et al. (2009) split the
cloud into overlapping grids and compute shape properties
(spherical, linear, and several type of planar) of each
cell and combine them into a matrix of surface shape
histograms. Similar to other works, these descriptors are
compared for recognizing places. Recently, Cop et al.
(2018) proposed to leverage LiDAR intensity information
with a global point cloud descriptor. A two-stage approach
is adopted such that, after retrieving places based on
global descriptors retrieval, a local keypoint-based geometric
verification step estimates localization transformations. The
authors demonstrated that using intensity information can
reduce the computational timings. However, the complete
localization pipeline operates at a frequency one order of
magnitude lower than most LiDAR sensor frequencies.

While local keypoint features often lack descriptive power,
global descriptors can struggle with variations in view-
point. Therefore other works have also proposed to use 3D
shapes or objects for the place recognition task. Fernández-
Moral et al. (2013), for example, propose to perform place
recognition by detecting planes in 3D environments. The
planes are accumulated in a graph and an interpretation tree
is used to match sub-graphs. A final geometric consistency
test is conducted over the planes in the matched sub-graphs.
The work is extended in Fernández-Moral et al. (2016) to use
the covariance of the plane parameters instead of the number
of points in planes for matching. This strategy is only applied
to small, indoor environments and assumes a plane model
which is no longer valid in unstructured environments. A
somewhat analogous, seminal work on object-based loop-
closure detection in indoor environments using RGB-D
cameras is presented by Finman et al. (2015). Although
presenting interesting ideas, their work can only handle
a small number of well segmented objects in small scale
environments. Similarily, Bowman et al. (2017) proposed
a novel SLAM solution in which semantic information
and local geometric features are jointly incorporated into
a probabilistic framework. Such semantic-based approaches
have significant potential, for example robustness to stark
changes in point of view, but require the presence of human-
known objects in the scene.

We therefore aim for an approach which does not rely
on assumptions about the environment being composed of
simplistic geometric primitives such as planes, or a rich
library of objects. This allows for a more general, scalable
solution.

Learning with 3D point clouds In recent years,
Convolutional Neural Networks (CNNs) have become
the state-of-the-art-method for generating learning-based
descriptors, due to their ability to find complex patterns
in data (Krizhevsky et al. (2012)). For 3D point clouds,
methods based on CNNs achieve impressive performance in
applications such as object detection (Engelcke et al. (2017);
Maturana and Scherer (2015); Riegler et al. (2017); Li et al.
(2016); Wu et al. (2015); Wohlhart and Lepetit (2015); Qi
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et al. (2017); Fang et al. (2015)), semantic segmentation
(Riegler et al. (2017); Li et al. (2016); Qi et al. (2017);
Tchapmi et al. (2017); Graham et al. (2018); Wu et al.
(2018)), and 3D object generation (Wu et al. (2016)), and
LiDAR-based local motion estimation (Dewan et al. (2018);
Velas et al. (2018)).

Recently, a handful of works proposing the use of
CNNs for localization in 3D point clouds have been
published. First, Zeng et al. (2017) proposes extracting data-
driven 3D keypoint descriptors (3DMatch) which are robust
to changes in view-point. Although impressive retrieval
performance is demonstrated using an RGB-D sensor in
indoor environments, it is not clear whether this method is
applicable in real-time in large-scale outdoor environments.
A different approach based on 3D CNNs was proposed
in Ye et al. (2017) for performing localization in semi-
dense maps generated with visual data. Recently, Yin
et al. (2017) introduced a semi-handcrafted global descriptor
for performing place recognition and rely on an ICP
step for estimating the 6-DoF localization transformations.
This method will be used as a baseline solution in
Section 5.8 when evaluating the precision of our localization
transformations. Elbaz et al. (2017) propose describing local
subsets of points using a deep neural network autoencoder.
The authors state, however, that the implementation has
not been optimized for real-time operation and no timings
have been provided. In contrast, our work presents a data-
driven segment-based localization method that can operate in
real-time and that enables map reconstruction and semantic
extraction capabilities.

To achieve this reconstruction capability, the architecture
of our descriptor was inspired by autoencoders in which
an encoder network compresses the input to a small
dimensional representation, and a decoder network attempts
to decompress the representation back into the original input.
The compressed representation can be used as a descriptor
for performing 3D object classification (Brock et al. (2016)).
Brock et al. (2016) also present successful results using
variational autoencoders for reconstructing voxelized 3D
data. Different configurations of encoding and decoding
networks have also been proposed for achieving localization
and for reconstructing and completing 3D shapes and
environments (Guizilini and Ramos (2017); Dai et al. (2017);
Varley et al. (2017); Ricao Canelhas et al. (2017); Elbaz et al.
(2017); Schönberger et al. (2018)).

While autoencoders present the interesting opportunity
of simultaneously accomplishing both compression and
feature extraction tasks, optimal performance at both is not
guaranteed. As will be shown in Section 5.4, these two
tasks can have conflicting goals when robustness to changes
in point of view is desired. In this work, we combine
the advantages of the encoding-decoding architecture of
autoencoders with a technique proposed by Parkhi et al.
(2015). The authors address the face recognition problem
by first training a CNN to classify people in a training set
and afterwards use the second to last layer as a descriptor
for new faces. Other alternative training techniques include
for example the use of contrastive loss (Bromley et al.
(1994)) or triplet loss (Weinberger et al. (2006)), the latter
one being evaluated in Section 5.4. We use the resulting
segment descriptors in the context of SLAM to achieve better

performance, as well as significantly compressed maps that
can easily be stored, shared, and reconstructed.

3 The SegMap approach

This section presents our SegMap approach to localization
and mapping in 3D point clouds. It is composed of five core
modules: segment extraction, description, localization, map
reconstruction, and semantics extraction. These modules are
detailed in this section and together allow single and multi-
robot systems to create a powerful unified representation
which can conveniently be transferred.

Segmentation The stream of point clouds generated
by a 3D sensor is first accumulated in a dynamic voxel
grid†. Point cloud segments are then extracted in a section
of radius R around the robot. In this work we consider
two types of incremental segmentation algorithms (Dubé
et al. (2018b)). The first one starts by removing points
corresponding to the ground plane, which acts as a separator
for clustering together the remaining points based on their
Euclidean distances. The second algorithm computes local
normals and curvatures for each point and uses these to
extract flat or planar-like surfaces. Both methods are used
to incrementally grow segments by using only newly active
voxels as seeds which are either added to existing segments,
form new segments or merge existing segments together‡.
This results in a handful of local segments, which are
individually associated to a set of past observations i.e.
Si = {s1, s2, . . . , sn}. Each observation sj ∈ Si is a 3D
point cloud representing a snapshot of the segment as points
are added to it. Note that sn represents the latest observation
of a segment and is considered complete when no further
measurements are collected, e.g. when the robot has moved
away.

Description Compact features are then extracted from
these 3D segment point clouds using the data-driven
descriptor presented in Section 4. A global segment map is
created online by accumulating the segment centroids and
corresponding descriptors. In order for the global map to
most accurately represent the latest state of the world, we
only keep the descriptor associated with the last and most
complete observation.

Localization In the next step, candidate correspondences
are identified between global and local segments using k-
Nearest Neighbors (k-NN) in feature space. The approximate
k nearest descriptors are retrieved through an efficient
query in a kd-tree. Localization is finally performed by
verifying the largest subset of candidate correspondences
for geometrical consistency on the basis of the segment
centroids. Specifically, the centroids of the corresponding
local and global segments must have the same geometric
configuration up to a small jitter in their position, to
compensate for slight variations in segmentation. In the
experiments presented in Section 5.9, this is achieved using
an incremental recognition strategy which uses caching of

†In our experiments, we consider two techniques for estimating the local
motion by registering successive LiDAR scans: one which uses ICP and one
based on LOAM (Zhang and Singh (2014)).
‡For more information on these segmentation algorithms, the reader is
encouraged to consult our prior work (Dubé et al. (2018b)).
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Figure 3. The descriptor extractor is composed of three convolutional and two fully connected layers. The 3D segments are
compressed to a representation of dimension 64× 1 which can be used for localization, map reconstruction and semantic extraction.
Right of the descriptor we illustrate the classification and reconstruction layers which are used for training. In the diagram
the convolutional (Conv), deconvolutional (Deconv), fully connected (FC) and batch normalization (BN) layers are abbreviated
respectively. As parameters the Conv and Deconv layers have the number of filters and their sizes, FC layers have the number of
nodes, max pool layers have the size of the pooling operation, and dropout layers have the ratio of values to drop. Unless otherwise
specified, Rectified Linear Unit (ReLU) activation functions are used for all layers.

correspondences for faster geometric verifications (Dubé
et al. (2018b)).

When a large enough geometrically consistent set
of correspondence is identified, a 6-DoF transformation
between the local and global maps is estimated. This
transformation is fed to an incremental pose-graph SLAM
solver which in turn estimates, in real-time, the trajectories
of all robots (Dubé et al. (2017b)).

Reconstruction Thanks to our autoencoder-like descrip-
tor extractor architecture, the compressed representation can
at any time be used to reconstruct an approximate map
as illustrated in Figure 12. As the SegMap descriptor can
conveniently be transmitted over wireless networks with
limited bandwidth, any agent in the network can reconstruct
and leverage this 3D information. More details on these
reconstruction capabilities are given in Section 4.3.

Semantics The SegMap descriptor also contains seman-
tically relevant information without the training process
having enforced this property on the descriptor. This can,
for example, be used to discern between static and dynamic
objects in the environment to improve the robustness of the
localization task. In this work we present an experiment
where the network is able to distinguish between three
different semantic classes: vehicles, buildings, and others
(see Section 4.4).

4 The SegMap Descriptor
In this section we present our main contribution: a data-
driven descriptor for 3D segment point clouds which allows
for localization, map reconstruction and semantic extraction.
The descriptor extractor’s architecture and the processing
steps for inputting the point clouds to the network are
introduced. We then describe our technique for training this
descriptor to accomplish tasks of both segment retrieval and
map reconstruction. We finally show how the descriptor can
further be used to extract semantic information from the
point cloud.

4.1 Descriptor extractor architecture
The architecture of the descriptor extractor is presented
in Figure 3. Its input is a 3D binary voxel grid of fixed

dimension 32× 32× 16 which was determined empirically
to offer a good balance between descriptiveness and the
size of the network. The description part of the CNN is
composed of three 3D convolutional layers with max pool
layers placed in between and two fully connected layers.
Unless otherwise specified, ReLU activation functions are
used for all layers. The original scale of the input segment is
passed as an additional parameter to the first fully connected
layer to increase robustness to voxelization at different aspect
ratios. The descriptor is obtained by taking the activations of
the extractor’s last fully connected layer. This architecture
was selected by grid search over various configurations and
parameters.

4.2 Segment alignment and scaling
A pre-processing stage is required in order to input the 3D
segment point clouds for description. First, an alignment step
is applied such that segments extracted from the same objects
are similarly presented to the descriptor network. This is
performed by applying a 2D Principal Components Analysis
(PCA) of all points located within a segment. The segment
is then rotated so that the x-axis of its frame of reference,
from the robot’s perspective, aligns with the eigenvector
corresponding to the largest eigenvalue. We choose to solve
the ambiguity in direction by rotating the segment so that the
lower half section along the y-axis of its frame of reference
contains the highest number of points. From the multiple
alignment strategies we evaluated, the presented strategy
worked best.

The network’s input voxel grid is applied to the segment
so that its center corresponds to the centroid of the aligned
segment. By default the voxels have minimum side lengths
of 0.1 m. These can individually be increased to exactly
fit segments having one or more larger dimension than the
grid. Whereas maintaining the aspect ratio while scaling can
potentially offer better retrieval performance, this individual
scaling with a minimum side length better avoids large
errors caused by aliasing. We also found that this scaling
method offers the best reconstruction performance, with only
a minimal impact on the retrieval performance when the
original scale of the segments is passed as a parameter to
the network.
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4.3 Training the SegMap descriptor
In order to achieve both a high retrieval performance
and reconstruction capabilities, we propose a customized
learning technique. The two desired objectives are imposed
on the network by the softmax cross entropy loss Lc for
retrieval and the reconstruction loss Lr. We propose to
simultaneously apply both losses to the descriptor and to
this end define a combined loss function L which merges
the contributions of both objectives:

L = Lc + αLr (1)

where the parameter α weighs the relative importance of
the two losses. The value α = 200 was empirically found
to not significantly impact the performance of the combined
network, as opposed to training separately with either of the
losses. Weights are initialized based on Xavier’s initialization
method (Glorot and Bengio (2010)) and trained using the
Adaptive Moment Estimation (ADAM) optimizer (P. and
L. (2015)) with a learning rate of 10−4. In comparison
to Stochastic Gradient Descent (SGD), ADAM maintains
separate learning rates for each network parameter, which
facilitates training the network with two separate objectives
simultaneously. Regularization is achieved using dropout
(Srivastava et al. (2014)) and batch normalization (Ioffe and
Szegedy (2015)).

Classification loss Lc For training the descriptor to
achieve better retrieval performance, we use a learning
technique similar to the N-ways classification problem
proposed by Parkhi et al. (2015). Specifically, we organize
the training data into N classes where each class contains
all observations of a segment or of multiple segments that
belong to the same object or environment part. Note that
these classes are solely used for training the descriptor and
are not related to the semantics presented in Section 4.4. As
seen in Fig 3, we then append a classification layer to the
descriptor and teach the network to associate a score to each
of the N predictors for each segment sample. These scores
are compared to the true class labels using softmax cross
entropy loss:

Lc = −
N∑
i=1

yi log
eli∑N

k=1 e
lk

(2)

where y is the one hot encoded vector of the true class labels
and l is the layer output.

Given a large number of classes and a small descriptor
dimensionality, the network is forced to learn descriptors that
better generalize and prevent overfitting to specific segment
samples. Note that when deploying the system in a new
environment the classification layer is removed, as its output
is no longer relevant. The activations of the previous fully
connected layer are then used as a descriptor for segment
retrieval through k-NN.

Reconstruction loss Lr As depicted in Figure 3, map
reconstruction is achieved by appending a decoder network
and training it simultaneously with the descriptor extractor
and classification layer. This decoder is composed of one
fully connected and three deconvolutional layers with a final
sigmoid output. Note that no weights are shared between
the descriptor and the decoder networks. Furthermore, only
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Figure 4. A simple fully connected network that can be
appended to the SegMap descriptor (depicted in Figure 3) in
order to extract semantic information. In our experiments, we
train this network to distinguish between vehicles, buildings, and
other objects.

the descriptor extraction needs to be run in real-time on the
robotic platforms, whereas the decoding part can be executed
any time a reconstruction is desired.

As proposed by Brock et al. (2016), we use a specialized
form of the binary cross entropy loss, which we denote by
Lr:

Lr = −
∑
x,y,z

(γ txyz log(oxyz)

+ (1− γ)(1− txyz) log(1− oxyz))
(3)

where t and o respectively represent the target segment and
the network’s output and γ is a hyperparameter which weighs
the relative importance of false positives and false negatives.
This parameter addresses the fact that only a minority of
voxels are activated in the voxel grid. In our experiments,
the voxel grids used for training were on average only 3%
occupied and we found γ = 0.9 to yield good results.

4.4 Knowledge transfer for semantic extraction
As can be observed from Figure 1, segments extracted by the
SegMap approach for localization and map reconstruction
often represent objects or parts of objects. It is therefore
possible to assign semantic labels to these segments and
use this information to improve the performance of the
localization process. As depicted in Figure 4, we transfer the
knowledge embedded in our compact descriptor by training
a semantic extraction network on top of it. This last network
is trained with labeled data using the softmax cross entropy
loss and by freezing the weights of the descriptor network.

In this work, we choose to train this network to distinguish
between three different semantic classes: vehicles, buildings,
and others. Section 5.9 shows that this information can be
used to increase the robustness of the localization algorithm
to changes in the environment and to yield smaller map
sizes. This is achieved by rejecting segments associated with
potentially dynamic objects, such as vehicles, from the list of
segment candidates.

4.5 SegMini
Finally we propose a lightweight version of the SegMap
descriptor which is specifically tailored for resource-limited
platforms. SegMini has the same architecture as SegMap (see
Figure 3), with the exception that the number of filter in
the convolutional layers and the size of the dense layers
is halved. Without compromising much on the descriptor
retrieval performance this model leads to a computational
speedup of 2x for GPU and 6x for CPU (Section 5.3).
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Figure 5. An illustration of the SegMap reconstruction capabilities. The segments are extracted from sequence 00 of the KITTI
dataset and represent, from top to bottom respectively, vehicles, buildings, and other objects. For each segment pair, the
reconstruction is shown to the right of the original. The network manages to accurately reconstruct the segments despite the high
compression to only 64 values. Note that the voxelization effect is more visible on buildings as larger segments necessitate larger
voxels to keep the input dimension fixed.

5 EXPERIMENTS
This section presents the experimental validation of our
approach. We first present a procedure for generating training
data and detail the performance of the SegMap descriptor
for localization, reconstruction and semantics extraction. We
finally evaluate the complete SegMap solution in multiple
real-world experiments.

5.1 Experiment setup and implementation
All experiments were performed on a system equipped
with an Intel i7-6700K processor, and an NVIDIA GeForce
GTX 980 Ti GPU. The CNN models were developed and
executed in real-time using the TensorFlow library. The
libnabo library is used for descriptor retrieval with fast k-NN
search in low dimensional space (Elseberg et al. (2012)). The
incremental optimization back-end is based on the iSAM2
implementation from Kaess et al. (2012).

5.2 Training data
The SegMap descriptor is trained using real-world data
from the KITTI odometry dataset (Geiger et al. (2012)).
Sequences 05 and 06 are used for generating training
and testing data, whereas sequence 00 is solely used for
validation of the descriptor performance. In addition, end-to-
end experiments are done using sequences 00 and 08, as they
feature long tracks with multiple overlapping areas in the
trajectories. For each sequence, segments are extracted using
an incremental Euclidean distance-based region growing
technique (Dubé et al. (2018b)). This algorithm extracts
point clouds representing parts of objects or buildings which
are separated after removing the ground plane (see Figure 5).
The training data is filtered by removing segments with
too few observations, or training classes (as described in
Section 4.3) with too few samples. In this manner, 3300,
1750, 810 and 2400 segments are respectively generated
from sequences 00, 05, 06 and 08, with an average of 12
observations per segment over the whole dataset.

5.2.1 Data augmentation To further increase robustness
by reducing sensitivity to rotation and view-point changes in
the descriptor extraction process, the dataset is augmented
through various transformations at the beginning of each

training epoch. Each segment is rotated at different angles to
the alignment described in Section 4.2 to simulate different
view-points. In order to simulate the effect of occlusion for
each segment we remove all points which fall on one side of a
randomly generated slicing plane that does not remove more
than 50% of the points. Finally, random noise is simulated by
randomly removing up to 10% of the points in the segment.
Note that these two data augmentation steps are performed
prior to voxelization.

5.2.2 Ground-truth generation In the following step,
we use GPS readings in order to identify ground truth
correspondences between segments extracted in areas where
the vehicle performed multiple visits. Only segment pairs
with a maximum distance between their centroids of 3.0 m
are considered. We compute the 3D convex hull of each
segment observation s1 and s2 and create a correspondence
when the following condition, inspired from the Jaccard
index, holds:

Volume(Conv(s1) ∩ Conv(s2))
Volume(Conv(s1) ∪ Conv(s2))

≥p (4)

In our experiments we found p = 0.3 to generate a
sufficient number of correspondences while preventing false
labelling. The procedure is performed on sequences 00,
05, and 06, generating 150, 260, and 320 ground truth
correspondences respectively. We use two-thirds of the
correspondences for augmenting the training data and one-
third for creating validation samples. Finally, the ground-
truth correspondences extracted from sequence 00 are used
in Section 5.4 for evaluating the retrieval performance.

5.3 Training the models
The descriptor extractor and the decoding part of the
reconstruction network are trained using all segments
extracted from drive 05 and 06. Training lasts three to four
hours on the GPU and produces the classification and scaled
reconstruction losses depicted in Figure 6. The total loss
of the model is the sum of the two losses as describe in
Section 4.3. We note that for classification the validation
loss follows the training loss before converging towards a
corresponding accuracy of 41% and 43% respectively. In
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Figure 6. The classification loss Lc (left) and the reconstruction
loss Lr (right) components of the total loss L, when training
the descriptor extractor along with the reconstruction and
classification networks. The depicted reconstruction loss has
already been scaled by α.

other words, 41% of the validation samples were correctly
assigned to one of the N = 2500 classes. This accuracy
is expected given the large quantity of classes and the
challenging task of discerning between multiple training
samples with similar semantic meaning, but few distinctive
features, e.g. flat walls. Note that we achieve a very similar
classification loss Lc, when training with and without the
Lr component of the combines loss L. On a GPU the
SegMap descriptor takes on average 0.8 ms to compute,
while the SegMini descriptor takes 0.3 ms. On the CPU the
performance gain is more significant, as it takes 245 ms for
a SegMap descriptor as opposed to only 41 ms for SegMini,
which is a 6x improvement in efficiency.

5.4 Descriptor retrieval performance
We evaluate the retrieval performance of the SegMap
descriptor against state-of-the-art methods as well as other
networks trained with different secondary goals. First, our
descriptor is compared with eigenvalue-based point cloud
features (Weinmann et al. (2014)). We also evaluate the effect
of training only for the classification task (Classification) or
of training only for the reconstruction one (Autoencoder).
Additionally, we compare classification-based learning with
a triplet loss solution (Schroff et al. (2015)), where during
training, we enforce segments from the same sequence to
have a minimal Euclidean distance. We use a per batch hard
mining strategy and the best performing variant of triplet loss
as proposed by Hermans et al. (2017). We finally evaluate the
SegMini model introduced in Section 4.5.

The retrieval performance of the aforementioned descrip-
tors is depicted in Fig 7. The Receiver Operating Char-
acteristic (ROC) curves are obtained by generating 45M
labeled pairs of segment descriptors from sequence 00 of
the KITTI odometry dataset (Geiger et al. (2012)). Using
ground-truth correspondences, a positive sample is created
for each possible segment observation pair. For each positive
sample a thousand negative samples are generated by ran-
domly sampling segment pairs whose centroids are further
than 20 m apart. The positive to negative sample ratio is
representative of our localization problem given that a map
created from KITTI sequence 00 contains around a thousand
segments. The ROC curves are finally obtained by varying
the threshold applied on the L2 norm between the two
segment descriptors. We note that training with triplet loss
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Figure 7. ROC curves for the descriptors considered in
this work. This evaluation is performed using ground-truth
correspondences extracted from sequence 00 of the KITTI
odometry dataset (Geiger et al. (2012)). Note that the ROC is not
an optimal measure of the quality of the retrieval performance,
since it only considers a single threshold for all segment pairs
and does not look at the relative ordering of matches on a per
query basis.

offers the best ROC performance on these datasets, as it
imposes the most consistent separation margin across all
segments.

The ROC is not the best evaluation metric for this retrieval
task, because it evaluates the quality of classification for
a single threshold across all segments. As introduced in
Section 3, correspondences are made between segments
from the local and global maps by using k-NN retrieval
in feature space. The varying parameter is the number of
neighbours that is retrieved and not a threshold on the feature
distances, which only matter in a relative fashion on a per
query basis. In order to avoid false localizations, the aim
is to reduce the number k of neighbours that need to be
considered. Therefore, as a segment grows with time, it is
critical that its descriptor converges as quickly as possible
towards the descriptor of the corresponding segment in
the target map, which in our case is extracted from the
last and most complete observation (see Section 3). This
behaviour is evaluated in Figure 8a which relates the number
of neighbours which need to be considered to find the correct
association, as a function of segment completeness. We
note that the SegMap descriptor offers competitive retrieval
performance at every stage of the growing process. In
practice this is important since it allows closing challenging
loops such as the one presented in Figure 1.

Interestingly, the autoencoder has the worst performance
at the early growing stages whereas good performance is
observed at later stages. This is in accordance with the
capacity of autoencoders to precisely describe the geometry
of a segment, without explicitly aiming at gaining a robust
representation in the presence of occlusions or changes
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(a) Median k-nearest neighbours needed for all methods as a
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(b) More detailed plot of the k-nearest neighbours needed for the
proposed methods as a function of segment completeness.

Figure 8. This figure presents how quickly descriptors extracted
from incrementally grown segments contain relevant information
that can be used for localization. The x-axis represents the
completeness of a segment until all its measurements have
been accumulated (here termed complete, see Section 3). In
(a) the log-scaled y-axis represents the median of how many
neighbours in the target map need to be considered in order
to retrieve the correct target segment (the lower the better).
Similarly (b) presents the same results in more detail for
the proposed models. The SegMap descriptor offers over the
majority of the growing process one order of magnitude better
retrieval performance than the hand-crafted baseline descriptor.

in view-point. Although the triplet loss training method
offers the best ROC performance, Figure 8a suggests that
training with the secondry goal of classification yields
considerably better results at the later stages of growing.
The poor performance of the triplet loss method especially
for very similar segments could be caused by the hard
mining amplifying the noise in the dataset. After a certain
point the ordering of matches becomes irrelevant, because

Descriptor size
16 32 64 128

Autoencoder 0.87 0.91 0.93 0.94

SegMap 0.86 0.89 0.91 0.92

Table 1. Average ratio of corresponding points within one
voxel distance between original and reconstructed segments.
Statistics for SegMap and the autoencoder baseline using
different descriptor sizes.

the goal is to minimize the number of retrieved neighbours
and retrieving too many is computationally unfeasible for
later stages of the process. Therefore although the purely
classification-based model performs slightly better for very
early observations of a segment, this gain in performance
does not matter. The proposed SegMap descriptor achieves
the best performance for very complete segments, where
matches are most likely to happen, and maintains a
comparable performance across very partial observations.
A more detailed plot for the retrieval performance of the
SegMap and SegMini is presented in Figure 8b, where also
the variance in the retrieval accuracy is shown.

5.5 Reconstruction performance

In addition to offering high retrieval performance, the
SegMap descriptor allows us to reconstruct 3D maps using
the decoding CNN described in Section 4.3. Some examples
of the resulting reconstructions are illustrated in Figure 5, for
various objects captured during sequence 00 of the KITTI
odometry dataset. Experiments done at a larger scale are
presented in Figure 14, where buildings of a powerplant and
a foundry are reconstructed by fusing data from multiple
sensors.

Since most segments only sparsely model real-world
surfaces, they occupy on average only 3% of the voxel
grid. To obtain a visually relevant comparison metric, we
calculate for both the original segment and its reconstruction
the ratio of points having a corresponding point in the other
segment, within a distance of one voxel. The tolerance of
one voxel means that the shape of the original segment
must be preserved while not focusing on reconstructing each
individual point. Results calculated for different descriptor
sizes are presented in Table 1, in comparison with the purely
reconstruction focused baseline. The SegMap descriptor with
a size of 64 has on average 91% correspondences between
the points in the original and reconstructed segments, and
is only slightly outperformed by the autoencoder baseline.
Contrastingly, the significantly higher retrieval performance
of the SegMap descriptor makes it a clear all-rounder choice
for achieving both localization and map reconstruction.

Overall, the reconstructions are well recognizable despite
the high compression ratio. In Figure 12, we note that
the quantization error resulting from the voxelization step
mostly affects larger segments that have been downscaled
to fit into the voxel grid. To mitigate this problem, one can
adopt a natural approach to representing this information
in 3D space, which is to calculate the isosurface for a
given probability threshold. This can be computed using the
“marching cubes” algorithm, as presented by Lorensen and
Cline (1987). The result is a triangle-mesh surface, which can
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Figure 9. A visual comparison between (left) the original point
cloud, (middle) the reconstruction point cloud, and (right) the
reconstruction mesh, for 3 segments.

be used for intuitive visualization, as illustrated in Figure 9
and Figure 12.

5.6 Semantic extraction performance
For training the semantic extractor network (Figure 4), we
manually labeled the last observation of all 1750 segments
extracted from KITTI sequence 05. The labels are then
propagated to each observation of a segment for a total of 20k
labeled segment observations. We use 70% of the samples
for training the network and 30% for validation. Given the
low complexity of the semantic extraction network and the
small amount of labeled samples, training takes only a few
minutes. We achieve an accuracy of 89% and 85% on the
training and validation data respectively. Note that our goal
is not to improve over other semantic extraction methods
(Li et al. (2016); Qi et al. (2017)), but rather to illustrate
that our compressed representation can additionally be used
for discarding dynamic elements of the environment and for
reducing the map size (Section 5.9.1).

5.7 6-DoF pose retrieval performance
In this section, we demonstrate how the advantageous
properties of SegMap, particularly the descriptor retrieval
performance, translate to state-of-the-art global localization
results. We therefore compare our approach to a global
localization method, LocNet (Yin et al. (2017, 2018)). It
uses rotation-invariant, data-driven descriptors that yield
reliable matching of 3D LiDAR scans. LocNet retrieves
a nearest neighbor database scan and returns its pose, its
output is thus limited to the poses already present in the
target map. Therefore, it works reliably in environments
with well defined trajectories (e.g. roads), but fails to return
a precise location within large traversable areas such as
squares or hallways. In contrast, SegMap uses segment
correspondences to estimate an accurate 6-DoF pose that
includes orientation, which cannot be retrieved directly using
the rotation-invariant LocNet descriptors.
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Figure 10. Cumulative distribution of position errors on KITTI 00
odometry sequence that compares SegMap with state-of-the-
art data-driven LocNet approach presented in Yin et al. (2017,
2018). Our proposed method retrieves a full 6-DoF pose while
LocNet uses global scan descriptors to obtain the nearest pose
of the target map. SegMap retrieves poses for a larger number of
scans and the returned estimates are more accurate. The results
saturate at about 52% as not all query positions overlap with the
target map, with only 65% of them being within a radius of 50 m
from the map.

Figure 10 presents the evaluation of both methods on
the KITTI 00 odometry sequence (4541 scans). We use
the first 3000 LiDAR scans and their ground-truth poses
to create a map, against which we then localize using
the last 1350 scans. SegMap demonstrates a superior
performance both by successfully localizing about 6% more
scans and by returning more accurate localized poses. To
note is that from the query positions only 65% of them
were taken within a distance of 50 m of the target map,
therefore limiting the maximum possible saturation. We
believe that robust matching of segments, a principle of our
method, helps to establish reliable correspondences with the
target map, particularly for queries further away from the
mapped areas. This state-of-the-art localization performance
is further complemented by a compact map representation,
with reconstruction and semantic labeling capabilities.

5.8 A complete mapping and localization
system

So far, we have only evaluated SegMap as a stand-alone
global localization system, demonstrating the performance
of segment descriptors and the 6-DoF pose retrieval. Such
global localization systems, however, are commonly used
in conjunction with odometry and mapping algorithms. To
prove the qualities of SegMap in such a scenario, we have
combined it with a state-of-the-art LiDAR odometry and
mapping system, LOAM (Zhang and Singh (2014)). Our
implementation is based on a publicly available version of
LOAM and achieves similar odometry performance results
on KITTI, as the ones reported by other works, such as
Velas et al. (2018). We use a loosely coupled approach,
where LOAM is used to undistort the scans and provide an
odometry estimate between frames, in real-time. The scans
from LOAM are used to build a local map from which
segments are extracted and attached to a pose-graph, together
with the odometry measurements. Loop closures can then be
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(a) KITTI odometry sequence 00.
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(b) KITTI odometry sequence 08.

Figure 11. The trajectories for KITTI odometry sequences a) 00 and b) 08 for LOAM and the combination of LOAM and SegMap.
In addition we show translation and rotation errors for the two approaches, using the standard KITTI evaluation method Geiger et al.
(2012).

added in real-time as constraints in the graph, to correct the
drifting odometry. This results in a real-time LiDAR-only
end-to-end pipeline that produces segment-based maps of the
environment, with loop-closures.

In all experiments, we use a local map with a radius
of 50 m around the robot. When performing segment
retrieval we consider 64 neighbours and require a minimum
of 7 correspondences, which are altogether geometrically
consistent, to output a localization. These parameters were
chosen empirically using the information presented in
Figure 7 and 8 as a reference.

Our evaluations on KITTI sequences 00 and 08
(Figure 11) demonstrate that global localization results from
SegMap help correct for the drift of the odometry estimates.
The trajectories outputted by the system combining SegMap
and LOAM, follow more precisely the ground-truth poses
provided by the benchmark, compared to the open-loop
solution. We also show how global localizations reduce
both translational and rotational errors. Particularly over
longer paths SegMap is able to reduce the drift in the
trajectory estimate by up to 2 times, considering both
translation and rotation errors. For shorter paths, the drift
only improves marginally or remains the same, as local
errors are more dependent on the quality of the odometry
estimate. We believe that our evaluation showcases not only
the performance of SegMap, but also the general benefits
stemming from global localization algorithms.

5.9 Multi-robot experiments

We evaluate the SegMap approach on three large-scale multi-
robot experiments: one in an urban-driving environment
and two in search and rescue scenarios. In both indoor
and outdoor scenarios we use the same model which was
trained on the KITTI sequences 05 and 06 as described in
Section 5.3.

The experiments are run on a single machine, with
a multi-thread approach to simulating a centralized
system. One thread per robot accumulates the 3D
measurements, extracting segments, and performing the
descriptor extraction. The descriptors are transmitted to a
separate thread which localizes the robots through descriptor
retrieval and geometric verification, and runs the pose-
graph optimization. In all experiments, sufficient global
associations need to be made, in real-time, for co-registration
of the trajectories and merging of the maps. Moreover
in a centralized setup it might be crucial to limit the
transmitted data over a wireless network with potentially
limited bandwidth.

5.9.1 Multi-robot SLAM in urban scenario In order to
simulate a multi-robot setup, we split sequence 00 of the
KITTI odometry dataset into five sequences, which are
simultaneously played back on a single computer for a
duration of 114 seconds. In this experiment, the semantic
information extracted from the SegMap descriptors is used
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Figure 12. Visualization of segment reconstructions, as point clouds (left), and as surface meshes (right), generated from sequence
00 of the KITTI dataset. The quantization of point cloud reconstructions is most notable in the large wall segments (blue) visible in
the background. Equivalent surface mesh representations do not suffer from this issue.

to reject segments classified as vehicles from the retrieval
process.

With this setup, 113 global associations were discovered,
allowing to link all the robot trajectories and create
a common representation. We note that performing
ICP between the associated point clouds would refine
the localization transformation by, on average, only
0.13± 0.06 m which is in the order of our voxelization
resolution. However, this would require the original point
cloud data to be kept in memory and transmitted to the
central computer. Future work could consider refining the
transformations by performing ICP on the reconstructions.

Localization and map reconstruction was performed at an
average frequency of 10.5 Hz and segment description was
responsible for 30% of the total runtime with an average
duration of 28.4 ms per local cloud. A section of the target
map which has been reconstructed from the descriptors is
depicted in Figure 1.

Table 2 presents the results of this experiment. The
required bandwidth is estimated by considering that each
point is defined by three 32-bit floats and that 288 additional
bits are required to link each descriptor to the trajectories.
We only consider the useful data and ignore any transfer
overhead. The final map of the KITTI sequence 00 contains
1341 segments out of which 284 were classified as vehicles.
A map composed of all the raw segment point clouds would
be 16.8 MB whereas using our descriptor it is reduced to only
386.2 kB. This compression ratio of 43.5x can be increased
to 55.2x if one decides to remove vehicles from the map.
This shows that our approach can be used for mapping much
larger environments.

5.9.2 Multi-robot SLAM in disaster environments For
the two following experiments, we use data collected by
Unmanned Ground Vehicles (UGVs) equipped with multiple
motor encoders, an Xsens MTI-G Inertial Measurement Unit
(IMU) and a rotating 2D SICK LMS-151 LiDAR. First,
three UGVs were deployed at the decommissioned Gustav
Knepper powerplant: a large two-floors utility building

Table 2. Statistics resulting from the three experiments.
Statistic KITTI Powerplant Foundry

Duration (s) 114 850 1086

Number of robots 5 3 2

Number of segmented local cloud 557 758 672

Average number of segments per cloud 42.9 37.0 45.4

Bandwidth for transmitting local clouds (kB/s) 4814.7 1269.2 738.1

Bandwidth for transmitting segments (kB/s) 2626.6 219.4 172.2

Bandwidth for transmitting descriptors (kB/s) 60.4 9.5 8.1

Final map size with the SegMap descriptor (kB) 386.2 181.3 121.2

Number of successful localizations 113 27 85

measuring 100 m long by 25 m wide. The second mission
took place at the Phoenix-West foundry in a semi-open
building made of steel. A section measuring 100 m by 40 m
was mapped using two UGVs. The buildings are shown in
Fig 13.

For these two experiments, we used an incremental
smoothness-based region growing algorithm which extracts
plane-like segments (Dubé et al. (2018b)). The resulting
SegMap reconstructions are shown in Figure 14 and detailed
statistics are presented in Table 2. Although these planar
segments have a very different nature than the ones used
for training the descriptor extractor, multiple localizations
have been made in real-time so that consistent maps could
be reconstructed in both experiments. Note that these search
and rescue experiments were performed with sensors without
full 360◦ field of view. Nevertheless, SegMap allowed robots
to localize in areas visited in opposite directions.

6 DISCUSSION AND FUTURE WORK
While our proposed method works well in the demonstrated
experiments it is limited by the ability to only observe the
geometry of the surrounding structure. This can be problem-
atic in some man-made environments, which are repetitive
and can lead to perceptual aliasing, influencing both the
descriptor and the geometric consistency verification. This
could be addressed by detecting such aliasing instances and
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dealing with them explicitly, through for example an increase
in the constraints of the geometric verification. On the other
hand, featureless environments, such as for example flat
fields or straight corridors, are equally challenging. As even
LIDAR-based odometry methods struggle to maintain an
accurate estimate of pose, these environments do not allow
for reliable segment extraction. In these cases the map will
drift until a more distinct section is reached that can be loop-
closed, thus allowing for partial correction of the previously
built pose-graph. In different environments the two seg-
mentation algorithms will have varying performances, with
the Euclidean distance based one working better in outdoor
scenarios, while the curvature-based one is more suited for
indoor scenarios. A future approach would be to run the
two segmentation strategies in parallel, thus allowing them
to compensate for each others short-comings and enabling
robots to navigate in multiple types of environments during
the same mission.

In order to address some of the aforementioned
drawbacks, in future work we would like to extend
the SegMap approach to different sensor modalities and
different point cloud segmentation algorithms. For example,
integrating information from camera images, such as color,
into the descriptor learning could mitigate the lack of
descriptiveness of features extracted from segments with
little distinct geometric structure. In addition, color and
semantic information from camera images could not only
be used to improve the descriptor but also to enhance
the robustness of the underlying segmentation process.
Considering the real-time constraints of the system, to note
with respect to future work are the additional computational
expenses introduced by processing and combining more data
modalities.

Furthermore, whereas the present work performs segment
description in a discrete manner, it would be interesting to
investigate incremental updates of learning-based descriptors
that could make the description process more efficient, such
as the voting scheme proposed by Engelcke et al. (2017).
Instead of using a feed-forward network, one could also
consider a structure that leverages temporal information in
the form of recurrence in order to better describe segments
based on their evolution in time. Moreover, it could be of
interest to learn the usefulness of segments as a precursory
step to localization, based on their distinctiveness and
semantic attributes.

7 CONCLUSION
This paper presented SegMap: a segment-based approach
for map representation in localization and mapping with
3D sensors. In essence, the robots’ surroundings are
decomposed into a set of segments, and each segment
is represented by a distinctive, low dimensional learning-
based descriptor. Data associations are identified by segment
descriptor retrieval and matching, made possible by the
repeatable and descriptive nature of segment-based features.

We have shown that the descriptive power of SegMap
outperforms hand-crafted features as well as the evaluated
data-driven baseline solutions. Our experiments indicate
that SegMap offers competitive localization performance,
in comparison to the state-of-the-art LocNet method.

Figure 13. Buildings of the Gustav Knepper powerplant (left)
and the Phoenix-West foundry (right).

Figure 14. This figure illustrates a reconstruction of the
buildings of the Gustav Knepper powerplant (top) and the
Phoenix-West foundry (bottom). The point clouds are colored
by height and the estimated robot trajectories are depicted with
colored lines.

Additionally, we have combined our localization approach
with LOAM, a LiDAR-based local motion estimator, and
have demonstrated that the output of SegMap helps correct
the drift of the open-loop odometry estimate. Finally, we
have introduced SegMini: a light-weight version of our
SegMap descriptor which can more easily be deployed on
platforms with limited computational power.

In addition to enabling global localization, the SegMap
descriptor allows us to reconstruct a map of the environment
and to extract semantic information. The ability to
reconstruct the environment while achieving a high
compression rate is one of the main features of SegMap.
This allows us to perform both SLAM and 3D reconstruction
with LiDARs at large scale and with low communication
bandwidth between the robots and a central computer.
These capabilities have been demonstrated through multiple
experiments with real-world data in urban driving and
search and rescue scenarios. The reconstructed maps could
allow performing navigation tasks such as, for instance,
multi-robot global path planning or increasing situational
awareness.
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