
Robust Graph SLAM Back-ends: A Comparative Analysis

Yasir Latif, César Cadena and José Neira

Abstract— In this work, we provide an in-depth analysis of
several recent robust Simultaneous Localization And Mapping
(SLAM) back-end techniques that aim to recover the correct
graph estimate in the presence of outliers in loop closure
constraints. We present a benchmark dataset for evaluation
of such methods by augmenting the KITTI Vision Benchmark
with ground truth as well as generated loop closure hypotheses
and present a detailed analysis of recently proposed robust
SLAM methods using this benchmark. We also look into how
these methods achieve the desired robustness and what are
the implications for the SLAM problem. We discuss the issues
involved in using the output of these robust back-ends for tasks
such as path planning and how they can be addressed. The
problem of robustness needs to be addressed adequately in
order to have a complete and reliable solution to the SLAM
problem.

I. INTRODUCTION

The graph based formulation of the SLAM problem poses
it as a non-linear least squares optimization problem and
iteratively finds the Maximum A Posteriori (MAP) estimate
that explains all the observations. While this formulation
itself was proposed a while back [9], efficient solutions
have emerged only recently. In a pose graph, robot poses
are modeled as nodes in the graph and edges represent
constraints between the poses. Sequential constraints are
introduced by an odometry system that estimates the incre-
mental change in the robot pose, while a place recognition
system introduces non-sequential constraints. Given these
constraints, an optimization back-end finds the most likely
position of the nodes.Majority of pose graph optimizers
assume Gaussian noise in the constraints and several works
have been proposed to cater for non-Gaussian noise, e.g.
using robust cost functions (Huber function) [6], robust op-
timization methods [13], or explicitly handling non-Gaussian
distributions [14]. While these approaches are excellent for
handling unmodeled errors in the constraints, such as wheel
slippage, in the presence of false positives in the place recog-
nition system these approaches cannot prevent the estimate
from getting corrupted, especially when there are multiple
persistent spurious constraints.

There is a fundamental difference between edges gener-
ated by odometry and those generated by place recognition:
odometry constraints, by definition, are topologically correct
(even though they might be metrically inaccurate) while

This research has been partially funded by the Dirección General
de Investigación of Spain under project DPI2012-36070 and by DGA-
FSE (group T04), and supported by Australian Research Council grant
DP130104413

Yasir Latif and José Neira are with the Instituto de Investigación
en Ingenierı́a de Aragón (I3A), Universidad de Zaragoza, Spain. {ylatif,
jneira}@unizar.es. César Cadena is with the Department of Computer
Science, University of Adelaide, Australia. cesar.cadena@adelaide.edu.au

the same is not true for loop closure constraints, since
perceptual aliasing may cause the place recognition system
to incorrectly associate two topologically unrelated places,
severely corrupting the map estimate as a result. Recently,
many proposals have been made to deal with the problem
of inconsistent constraints. A more traditional way is to ro-
bustify the front-end place recognition system, in an effort to
reduce the number of inconsistent constraints that corrupt the
back-end. In this regard, Olson [10] proposed a hypothesis
verification method for loop closure constraints using graph
partitioning based on spectral clustering, though this method
fails to distinguish between topologically inconsistent loop
and loops that have large drift. At the moment front-end
algorithms alone cannot guarantee 100% accuracy. On the
other hand, the back-end has more information about the
problem and can contribute to a more informed decision
about the validity of loop closures. In recent literature,
several methods have been proposed to “robustify” the back-
end against possible false positive loop closures [16], [11],
[1], [8]. A comparison of these techniques on various real
and synthetic datasets can be found in [17]. This work is
more focused on real world scenarios in which there are a
lot of false positives and very few (or no) true positives.

II. POSE GRAPH FORMULATION

In the graph based formulation for SLAM, the so-called
“Graph-SLAM”, robot poses are modeled as nodes in the
graph nodes and constraints as edges between the nodes.
Under the Gaussian assumption, the sensor noise is mod-
eled using the covariance (or equivalently, the information)
matrix. Let x = (x1 . . .xn)

T be a vector of parameters that
describe the configuration of the nodes and ωi j and Ωi j be the
mean and the information matrix of the observation of node
j from node i. Given the state x, let fi j(x) be a function that
calculates the perfect observation according to the current
state. The residual ri j can then be calculated as:

ri j(x) = ωi j− fi j(x) (1)

Constraints can either be introduced by odometry which are
sequential constraints ( j = i+1), or from a place recognition
system, which are non-sequential. The amount of error
introduced by each constraint, weighed by its information,
can be calculated as:

di j(x)2 = ri j(x)T
Ωi jri j(x) (2)

and therefore the overall error, assuming all the constraints
to be independent, is given by:

D2(x) = ∑
(i, j)∈G

di j(x)2 = ∑
(i, j)∈G

ri j(x)T
Ωi jri j(x) (3)



where di j(x)2 is residual on the edge connecting nodes i and
j in the graph G . The solution to graph-SLAM problem is
to find a state x∗ that minimizes the overall error.

x∗ = argmin
x

∑
(i, j)∈G

ri j(x)T
Ωi jri j(x) (4)

The above can more compactly be written as

x∗ = argmin
x

∑
(i, j)∈G

‖ri j(x)‖2
Σi j

(5)

where Σi j = Ω
−1
i j is the corresponding covariance matrix for

the given information matrix.

III. OVERVIEW OF ROBUST BACK-END METHODS

In this section we present a short overview of recent
methods proposed for solving the robust SLAM problem.

A. Switchable Constraints
Switchable Constraints (SC) [16], [18] poses the robust

back-end problem as a regularization problem. For every
loop closure that is introduced in the graph, an additional
variable, termed a “switch”, is attached to the loop closure.
This switch controls the contributed residual error of the cor-
responding loop closures towards the non-linear optimization
problem. In this formulation, the optimizer has to find the
optimal configuration of poses (x∗) as well as the switch
variables (s∗). This can be written as:

x∗,s∗ = argmin
x,s

∑
j=i+1

‖ri j(x)‖2
Σi j

+ ∑
j 6=i+1

‖si jri j(x)‖2
Σi j

+ ∑
j 6=i+1

‖γi j− si j‖2
Γi j

(6)

where γi j is the switch prior (set to 1) and Γi j is the
corresponding covariance for the switch prior, sequential
constraints are represented by j = i+1 and loop closures as
j 6= i+1. The switch variable si j is allowed to vary between
0 and 1. Initially, γi j is set equal to si j representing the belief
that all loop closures are correct. The optimizer can move
the switch values (si j) to increase the error in the third term,
if it decreases the error in the second. This implements the
regularizer, which penalizes loop closures with large errors.
The effect of switch variables can be interpreted in two ways,
as a robust function that scales the residual by the switch
variable (si j) or alternately, scales the information matrix
with the square of the switch variable (s2

i j). For a small
switch value (≈ 0) the residual becomes zero and therefore
it does not contribute towards the estimation problem. At
the same time, from an information matrix point of view,
the information matrix becomes too uninformative (close to
zero) and the corresponding constraint is not considered in
the estimation problem.

For this method, the optimizer has to find an optimal state
that depends on the poses in the graph as well as the switch
variable. SC therefore solves a problem that is larger than the
original problem in the number of unknowns. The difference
in size depends on the number of loop closures. The only
tunable parameter is Γi j, representing the covariance of the
switch priors.

0 50 100 150 200 250 300 350 400 450

−250

−200

−150

−100

−50

0

50

100

150

200

250

meters

m
e

te
rs

(a) Sequence 00

−80 −60 −40 −20 0 20 40 60 80 100 120

0

20

40

60

80

100

120

140

160

180

meters

m
e

te
r
s

(b) Sequence 07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

400

500

Confidence (α)

C
o

u
n

t

 

 
True Positives

False Positives

(c) Sequence 00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

Confidence (α)

C
o

u
n

t

 

 
True Positives

False Positives

(d) Sequence 07

Fig. 1. Example of sequences in the dataset: (a-b): Ground truth (dashed),
visual odometry (blue), optimized trajectory with all correct loop closure
(green). (c-d): Number of true positives and false positives as the confidence
parameter (α) is varied from zero to one.

B. Dynamic Covariance Scaling

Dynamic Covariance Scaling (DCS) [1] proposes a closed
form solution to the regularized robust back-end problem by
extending SC. Rather than introducing a new switch variable
and letting the solver find the optimal values for it, DCS
calculates the switch values using:

si j = min

(
1,

2Φi j

Φi j +χ2
i j

)
(7)

where Φi j = Γ
−1
i j and χ2

i j is the current normalized residual
as given in (2).

DCS implements a robust cost function (m-estimator) that
can be applied to any term in the graph SLAM formulation.
Furthermore, unlike SC, the problem size does not change.
The only parameter that needs to be defined is Φi j which is
inverse of the parameter Γi j used in SC.

C. Max Mixtures

Max Mixtures (MM) [11] takes a similar approach to the
problem of robust back-ends as SC and DCS, but rather
than dynamically scaling the information matrix like SC
and DCS, MM attaches to each loop closing constraint a
predefined large covariance matrix. This represents a uniform



distribution over space representing the null hypotheses; an
incorrect loop closure. The distribution (original or uniform)
which best explains the loop closure is then selected and used
in the optimization process. The simplicity of the algorithm
comes from the observation that rather than using mixtures
of Gaussians, which do not fit well into the framework
of non-linear least square optimization, the problem can
be represented by a max-mixture of Gaussian distribution,
in which the most likely Gaussian distribution is selected
from the mixture. In case of loop closure verification, a
second Gaussian distribution with the same mean and a very
large variance is associated to loop closure. This second
distribution is specified by two parameters; a weight (w) and
a scale (s) which turns the original distribution N(µ,Σ) into
a weighted and scaled version wN(µ,sΣ).

D. Realizing, Reversing, Recovering

Realizing, Reversing, Recovering (RRR) [8] is a consensus
based algorithm which checks for loops that lead to success-
ful convergence of the graph-SLAM problem. RRR divides
loop closures into clusters based on topological similarity
and then tries to find the largest subset of clusters than are
consistent among themselves as well as with the underlying
odometry. Consistency is considered in the chi-squared (χ2)
sense. The algorithm first carries out consistency checks for
each cluster in order to weed out incorrect links within
it, followed by an intra-cluster consistency check. RRR is
different from the previous algorithms as it explicitly requires
convergence of the graph in order to verify the validity of
loop closures. In contrast with SC and DCS, in RRR and
MM loop closure decisions are not modeled as continuous
variables but as discrete yes/no decisions that need to be
made.

IV. COMPARATIVE ANALYSIS OF ROBUST SLAM
BACK-ENDS

In this section, we first present an enhanced benchmark
dataset and use it to investigate the performance of the
aforementioned methods. We present comparative results for
trajectory error, precision and recall. We also look at how a
particular formulation affects the SLAM back-end and what
are the implications of using the decisions made by these
methods for higher level tasks such as path planning.

A. Benchmark Dataset

The data used in this work comes from the KITTI vision
benchmark suite [4] which has been acquired using vari-
ous sensors mounted on top of a moving vehicle. Visual
odometry is calculated using grayscale stereo image pairs
working at 10Hz using the open-source library libviso2 [5].
The benchmark provides 21 sequences for visual odometry
evaluations but ground truth is provided for only the first
10, among which only 6 close at least one loop. We have
selected these 6 along with one sequence without any loops
to calculation of stereo visual odometry. Potential loop
closures are identified from the right image of each stereo
pairs using DLoopDetector library [3] at 2Hz. The library

uses a minimum confidence parameter (α) as a threshold
for accepting place recognition decision. This parameter is
varied from 0.00 (accept on little evidence) to 1.00 (accept
only when there is great evidence) with increments of 0.05,
generating 21 sets of loop closures hypotheses for every vi-
sual odometry sequence. This allows us to evaluate the effect
of varying number of outliers in loop closure hypotheses.
Ground truth loop closures were manually annotated using
visual inspection of images in conjunction with the provided
ground truth trajectory. Transformations between the loop
closure nodes have also been calculated using libviso2. All
the 7×21 datasets, generated as a results of these processing
steps, have been made public on the authors’ website1.

The KITTI Vision Benchmark also provides per-pose
ground truth for all the sequences used in this work. Relative
Pose Error (RPE) is used to obtain an estimate of the
noise statistics. RPE is defined as ti j,GT 	 ti j,Odom for each
corresponding transformation ti j in the Ground Truth (GT)
and odometry (odom). The covariance matrix obtained from
RPE for all transformations was used as the noise estimate
for each transformation in the pose graph, including the loop
closures. Two of seven datasets, along with number of true
and false positive loop closures, are shown in Fig. 1. Due
to space limitations, results are presented here for the two
sequences shown in Fig. 1. Complete results for all the seven
sequences can be found on the authors’ website2.

B. ATE, Precision and Recall

In the first set of experiments, we compare the afore-
mentioned methods on the two sequences, namely sequence
00 and sequence 07 from the KITTI vision benchmark.
Since the datasets come from a moving vehicle in an urban
environment, loop closure algorithms suffer greatly from
perceptual aliasing as many of the buildings and roads look
similar. In the first sequence the vehicle revisits its path at
several different locations and is able to close many loops
correctly. In the second sequence, the vehicle moves along a
circuit that just closes the loop at the end of the trajectory.
The number of false positives in this case greatly exceeds
the number of true positives.

Each of the robust back-end methods was executed with
default parameters and then with a set of varying parameters
to assess the effect of these parameters on the performance
of the algorithm. The performance metric used for evalu-
ation are Precision, Recall, and Absolute Trajectory Error
(ATE) [12], which is the mean of squared differences in
location of the estimated and ground truth poses, after they
have been aligned to a common frame of reference.

In order to visualize the accuracy of the final trajectory,
each ATE plot contains the ATE of odometry, which is the
error of the visual odometry against the ground truth, and the
ATE of trajectory optimized with all correct loop closures,
which is the lowest achievable error. If an algorithm rejects
all the loop closures, the ATE ends up being the same as that

1http://webdiis.unizar.es/˜ylatif
2http://webdiis.unizar.es/˜ylatif/IROS.html



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

(α)

AT
E(

m
)

 

 

0.001

0.01

0.1

1

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(α)

AT
E(

m)

 

 

0.001

0.01

0.1

1

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

0.001 0.01 0.1 1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

0.001 0.01 0.1 1

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

0.001

0.01

0.1

1

(a) Sequence 00

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

0.001

0.01

0.1

1

(b) Sequence 07

Fig. 2. Results for SC on Sequence 00 and 07: Each line represents the value of the switch covariance used for the experiment. (Top): ATE (Middle):
Precision (Bottom): Recall

of the odometry. If it accepts false positives, which deforms
the final estimate, ATE is greater than the odometry. Correct
loop closures lower the ATE and if all loop closures are
accepted, the lower limit of ATE will be achieved. Next we
present the performance evaluation of each method.

1) Switchable Constraints (SC): SC has a single tuning
parameter (s) representing the covariance of the switch prior.
The authors suggest that in most cases the default value of
s = 1 should be used. We conduct four experiments, decreas-
ing the value of the parameter by an order of magnitude for
each successive experiment. The results are given in Fig.
2. For calculating precision and recall, loop closures are
considered accepted if the switch value is greater that 0.5
and rejected otherwise.

For Sequence 00, the default parameter (1.0) rejects all
the proposed loop closures resulting in zero recall in most
of the experiments. For the next values of switch covariance
(0.1,0.01,0.001) the algorithm works with full precision
and recall, leading to a trajectory with the lowest possible
trajectory error.

For Sequence 07, where there are a very few loop closures,
the default parameter still rejects all the loop closures. In
should be noted that for alpha > 0.8, there are no true
positive loop closures suggested by the front-end place
recognition system. Similar behavior is observed for s = 0.1.
For values of switch covariance (0.01, 0.001), some false
positives loop closures are accepted, leading to a higher

trajectory error. This can be seen in Fig. 2(b) where the recall
as well as precision falls to zero.

There are two things that need to be noted. Firstly, to a
very large extent parameters need to be tuned in order to
make the algorithm work for different trajectories. Secondly,
for the same value of the parameter, the output is dependent
on the distribution of loop closures i.e. the same parameters
would not work for a given trajectory in the presence of
different incorrect loop closures.

2) Max-Mixtures (MM): Max-mixtures has two tunable
parameters, the weight (w) and scale (s), that are used
to create the weighted and scaled version of the original
distribution. Unlike DCS, MM and RRR, this requires a
parameter search on a 2D space. For this experiment, pa-
rameters were searched in the range 10−5 < s < 10−1 and
10−15 < w < 10−1 and the parameters providing the least
ATE for each sequence were selected. These are the base
values for the experiment. In order to evaluate the sensitivity
of MM to tuning parameters, three further experiment with
neighboring parameters (s,w/10), (s,10w) and (s/10,w) we
also carried out. The results are given in Fig. 3.

For Sequence 00, the base parameters are w = 10−1 and
s = 10−7. We could not find any parameters that would
allow MM to differentiate between correct and incorrect loop
closures. The results presented here are the smallest scale
(10−15) and the largest weight (10−1).

Our experiments show that MM is more sensitive to



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

(α)

AT
E(

m
)

 

 

(−1,−7)

(−1,−8)

(−1,−6)

(−2,−7)

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(α)

AT
E(

m
)

 

 

(−1,−15)

(−1,−16)

(−1,−14)

(−2,−15)

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

(−1,−7) (−1,−8) (−1,−6) (−2,−7)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

(−1,−15) (−1,−16) (−1,−14) (−2,−15)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

(−1,−7)

(−1,−8)

(−1,−6)

(−2,−7)

(a) Sequence 00

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

(−1,−15)

(−1,−16)

(−1,−14)

(−2,−15)

(b) Sequence 07

Fig. 3. Result for MM on Sequence 00 and Sequence 07: Each line represents the log10 of weight (w) and scale(s) parameters used for the experiment.
(Top): ATE (Middle): Precision (Bottom): Recall

change in scaling parameter but less sensitive to change in
weighting parameter, as can be seen in Fig. 3(a). The two
experiments with different weights but same scale result in
same ATE while moving the scale parameter leads to greater
ATE.

One thing to note is that while the ATE is different from
the trajectory error of just odometry, the recall is still zero.
For MM, a loop closure is counted as being accepted when
it becomes more likely compared to the null hypothesis. In
the experiments shown, initially some of the correct loop
closures are more likely but as the optimization goes on, all
null hypothesis are accepted instead. Initially the trajectory
error decreases but stops short of the minimum achievable
ATE when the null hypotheses become more likely and result
in the rejection of all loop closures.

3) Dynamic Covariance Scaling (DCS): DCS is formu-
lated as a robust kernel and therefore the only tunable
parameter is the kernel width (w). We conduct experiments
with DCS using parameters equivalent to SC. The default
value for w is 1. We use three other values w = (10,100,1000)
for each sequence to carry out additional experiments. The
results are given in Fig. 4.

For Sequence 00, the default parameters lead to everything
being rejected. For the next value of the parameter (10),
DCS performs better than SC. This can be attributed to
the better convergence properties of DCS. For higher values
(100,1000) DCS correctly identifies all the correct loop

closures, exhibiting full precision and recall.
For Sequence 07, the behaviour of DCS is very similar to

SC. Default parameter again leads to rejection of everything.
Loop closures are accepted only when w=1000 (the highest
parameter) and in that case DCS accepts false positives.

While DCS exhibits better convergence properties than
SC, it suffers from the same problem of parameter tuning.
In Fig. 4(b) the value that allows us to make some correct
decision, is orders of magnitudes greater than the default
parameter suggested.

4) RRR: RRR has a single parameter, that controls how
clusters are formed, the clustering threshold (tg). We suggest
using a threshold of 10 seconds. In order to investigate
sensitivity to tuning parameters, we use tg = (1,5,20) in
addition to the default value of 10. The results are presented
in Fig. 5.

For Sequence 00, RRR works with full precision and
considerable recall, resulting in a map estimate that is better
than all the previous methods. For different values of tg,
the method works with full precision except when the value
is the highest (20). In that case some false positives are
accepted because clusters arising from different locations
become a single cluster.

For Sequence 07, RRR successfully detects the very few
correct loop closures. In comparison, all other algorithms
either rejected all loop closures or accepted all correct ones,
RRR selects a portion of the loop closures about which it



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

(α)

AT
E(

m
)

 

 

1

10

100

1000

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(α)

AT
E(

m
)

 

 

1

10

100

1000

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

1 10 100 1000

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

1 10 100 1000

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

1

10

100

1000

(a) Sequence 00

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

1

10

100

1000

(b) Sequence 07

Fig. 4. Result for DCS on Sequence 00 and Sequence 07: Each line represents the kernel width (w) used for the experiment.(Top): ATE (Middle):
Precision (Bottom): Recall

is most certain. This results in a lower recall at times but
compared to previous methods, it detects the correct loop
closures over a varying range values of the tuning parameter.

C. Problem Representation and Sparsity

As mentioned before, the robust methods considered can
be divided into two categories: 1) methods that make binary
decision: MM and RRR and 2) methods that provide a
continuous value ∈ (0,1) : SC and DCS. While in principle
the validity of a loop closure is a binary decision, the
implication of making a non-binary decision are deeper,
especially considering an incremental pose-graph SLAM
problem since efficient solvers take advantage of the spar-
sity of the problem. MM while making a binary decision,
represents the rejected loop closures with small information
matrices, in effect making the corresponding blocks in the
information matrix non-zero. In an incremental setting, such
as Bayes Trees in iSAM2, this leads to solving for a greater
number of variables than are actually needed to be solved.
SC has the additional overhead of solving for all the switch
variables as well, as they are a part of state being optimized.
In order to illustrate this, we use the city10000 dataset
available with g2o. It consists of 10,000 poses, 10688 loop
closures to which an additional 900 false loop closures are
added. The difference between how the algorithms maintain
information matrices becomes highly noticeable for such a
large dataset. The information matrix along with the upper
triangular decomposition using COLAMD for the output of

each algorithm is shown in Fig. 6. In general, the greater
the fill-in, the less sparse the problem and hence the more
difficult to solve.

As discussed earlier, SC causes the most fill-in as the
switch variable are a part of the state being estimated. DCS
relieves this problem by converting the switch variables into
a robust-kernel, but near zero non-zero blocks representing
rejected loop closures are still maintained in the information
matrix. The same is true for MM as information regarding
rejected hypotheses is still maintained. RRR makes a binary
decision and removes the information belonging to incorrect
loop closure from the pose graph, resulting in the least fill-in.

D. Navigation

The aim of solving a SLAM problem is to create a
map that can then be used to carry out some higher level
tasks such as navigation and planning. In this context, loop
closures provide information about the graph topology and
traversibility. Methods that do not make a binary decision
about the validity of loop closures do not get completely rid
of topologically inconsistent paths in the graph. When used
for path planning, some algorithms may select these non-
existent paths and try to navigate using them, which may
lead to failures in the navigation task.

In order to illustrate this, we use the open source FaMuS
algorithm [2] that plans minimum uncertainty paths given
a pose graph. We use the output of Sequence 00 with
alpha = 1.00 for DCS with w = 1000 and try to plan a



0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

(α)

AT
E(

m
)

 

 

1

5

10

20

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

(α)

AT
E(

m
)

 

 

1

5

10

20

Odometry

All correct loops

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

1 5 10 20

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

P
re

c
is

io
n

 

 

1 5 10 20

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

1

5

10

20

(a) Sequence 00

0 0.2 0.4 0.6 0.8 1

0

0.5

1

(α)

R
e

c
a

ll

 

 

1

5

10

20

(b) Sequence 07

Fig. 5. Result for RRR on Sequence 00 and Sequence 07: Each line represents clustering threshold in seconds used for the experiment.(First Row): ATE
(Second Row): Precision (Bottom Row): Recall

(a) DCS/MM (b) RRR (c) SC

Fig. 6. City10,000 dataset Top: Information matrix maintained by each algorithm. Bottom: The corresponding fill in using COLAMD for upper triangular
matrix R
path between two random nodes. The map output by DCS
correctly identifies and optimizes with all the correct loop
closures. For this experiment, the square of scaling parameter
in (7) is used to scale the covariance matrix for each loop
closure. The result of the planned path from one part of the
trajectory to another is shown in Fig. 7.

The planning algorithm assumes that all the links provided

are navigable. It chooses a path which has been rejected
by DCS (it has very small information) and tries to plan a
path using this non-existent link in the graph. A planning
algorithm will face the same problem when it tries to use
the output of SC.

One way to address this problem is to threshold the loop
closures based on the scaling parameter before using the



0 100 200 300 400

−200

−100

0

100

200

meters

m
e
te
r
s

(a) DCS

0 100 200 300 400

−200

−100

0

100

200

meters

m
e
te
r
s

(b) DCS - Thresholded / RRR

Fig. 7. Path Planning on the Output of DCS: Sequence 00, alpha=1.00,
w=1000. (a): Using output of DCS directly leads to inclusion of rejected
links in the path (b): Tresholding and only using accepted links gives correct
path.

graph for path planning. Although this will resolve the above
issue by removing links from the graph which have been
rejected, such a decision might cause two problems: firstly,
false positive loops accepted at the moment of decision
will become a permanent part of the graph; secondly, in
an incremental setting, decisions may need to be reversed
in light of new evidence. Fixing decisions by thresholding
takes this ability away from the algorithm to reconsider past
decisions in light of new evidence.

V. CONCLUSIONS

In this work we have reviewed the current state of the
art robust SLAM back-end methods. We have introduced an
enhancement to an existing dataset, which has been extended
with loop closure verification in mind, based on real data. We
compare the performance of SC, MM, DCS and RRR under
varying conditions for different trajectories and assess their
sensitivity to tunable parameters. We have also shown that
it is not a good idea for such methods to make non-binary
decisions about the validity of loop closures as it may cause
problems for applications trying to use the pose graph to
execute a higher level task.

SC and DCS formulate the problem as a robust m-
estimator which has a breaking-point of zero, that is, even a
single outlier can cause unbounded error in the estimate [15].
MM makes the assumption that the we already know what
the contaminating distribution is, which is a very strong
(and often impractical) assumption because outliers in loop
closings do no necessarily follow a known distribution. RRR,
on the other hand, is robust but a false positive accepted
can lead to a great error in the estimated map, as it has
the complete effect on optimization as no robust functions
are used. In terms of execution time, all methods take a
negligible amount of time compared to the time of the full
experiment. They can be arranged in increasing order (from
fastest to slowest) of execution speed as: DCS, MM, SC and
RRR.

This work also highlights the need for parameter tuning
that some of the algorithms need and how much their
performance is affected by them. DCS, MM and SC belong
to the same family of algorithms that try to either scale the
covariance matrix or provide a fixed “guess” for its value.
RRR on the other hand carries out a series of statistical tests

which works even when we have to find the metaphorical
needle in the haystack.

The ideal solution to the robust SLAM problem is to
design an algorithm that can reason along time, and be able
to reverse decisions in light of new evidence. If methods
such as DCS and SC accept some false positives, this would
lead them to reject any conflicting evidence that might arrive
in future because the optimizer has already reached a local
minima even though it is an incorrect one due to the accepted
false positive. On the other hand, consensus based methods,
such as iRRR [7], have been shown to have the ability to
reconsider past decisions in an incremental setting. While
these methods do not lessen the need for finding better
front-end place recognition algorithms, they can certainly
complement place recognition methods in achieving better
map estimates.

REFERENCES

[1] P. Agarwal, G. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard.
Robust map optimization using dynamic covariance scaling. In Proc.
IEEE Int. Conf. Robotics and Automation, Karlsruhe, Germany, 2013.

[2] H. Carrillo, Y. Latif, J. Neira, and J.A. Castellanos. Fast minimum
uncertainty search on a graph map representation. In Intelligent Robots
and Systems (IROS), IEEE/RSJ International Conference on, 2012.

[3] D. Galvez-Lopez and J. D. Tardos. Bags of binary words for fast
place recognition in image sequences. IEEE Transactions on Robotics,
28(5):1188–1197, October 2012.

[4] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets Robotics:
The KITTI Dataset. International Journal of Robotics Research
(IJRR), 32(11):1231–1237, 2013.

[5] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d reconstruc-
tion in real-time. In Intelligent Vehicles Symposium (IV), 2011.

[6] P.J. Huber. Robust regression: asymptotics, conjectures and monte
carlo. The Annals of Statistics, 1(5):799–821, 1973.

[7] Y. Latif, C. Cadena, and J. Neira. Realizing, Reversing, Recovering:
Incremental Robust Loop Closing over time using the iRRR algorithm.
In Proc. IEEE/RJS Int. Conference on Intelligent Robots and Systems,
Vilamoura, Portugal, October 2012.

[8] Y. Latif, C. Cadena, and J. Neira. Robust loop closing over time for
pose graph SLAM. The International Journal of Robotics Research,
32(14):1611–1626, 2013.

[9] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

[10] E. Olson. Recognizing places using spectrally clustered local matches.
Robotics and Autonomous Systems, 57(12):1157–1172, December
2009.

[11] E. Olson and P. Agarwal. Inference on networks of mixtures for robust
robot mapping. In Proceedings of Robotics: Science and Systems,
Sydney, Australia, July 2012.

[12] RAWSEEDS. Robotics advancement through Webpublishing of sen-
sorial and elaborated extensive data sets (project FP6-IST-045144),
2009. http://www.rawseeds.org/rs/datasets.

[13] D.M. Rosen, M. Kaess, and J.J. Leonard. An incremental trust-region
method for robust online sparse least-squares estimation. In IEEE Intl.
Conf. on Robotics and Automation, ICRA, St. Paul, MN, May 2012.

[14] D.M. Rosen, M. Kaess, and J.J. Leonard. Robust incremental online
inference over sparse factor graphs: Beyond the Gaussian case. In
IEEE Intl. Conf. on Robotics and Automation, ICRA, Karlsruhe,
Germany, May 2013.

[15] P. Rousseeuw. Least median of squares regression. Journal of the
American Statistical Association, 79(388):pp. 871–880, 1984.

[16] N. Sünderhauf and P. Protzel. Switchable Constraints for Robust
Pose Graph SLAM. In Proc. IEEE/RJS Int. Conference on Intelligent
Robots and Systems, Vilamoura, Portugal, 2012.

[17] N. Sünderhauf and P. Protzel. Switchable Constraints vs. Max-Mixture
models vs. RRR–a comparison of three approaches to robust pose
graph SLAM. In Proc. IEEE Int. Conf. Robotics and Automation,
Karlsruhe, Germany, 2012.

[18] N. Sünderhauf and P. Protzel. Towards a robust back-end for pose
graph slam. In Proc. IEEE Int. Conf. Robotics and Automation, 2012.


