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Abstract—In this paper, we present a semantic mapping
approach with multiple hypothesis tracking for data association.
As semantic information has the potential to overcome ambiguity
in measurements and place recognition, it forms an eminent
modality for autonomous systems. This is particularly evident
in urban scenarios with several similar looking surroundings.
Nevertheless, it requires the handling of a non-Gaussian and
discrete random variable coming from object detectors. Previous
methods facilitate semantic information for global localization
and data association to reduce the instance ambiguity between the
landmarks. However, many of these approaches do not deal with
the creation of complete globally consistent representations of the
environment and typically do not scale well. We utilize multiple
hypothesis trees to derive a probabilistic data association for
semantic measurements by means of position, instance and class
to create a semantic representation. We propose an optimized
mapping method and make use of a pose graph to derive a novel
semantic SLAM solution. Furthermore, we show that semantic
covisibility graphs allow for a precise place recognition in urban
environments. We verify our approach using real-world outdoor
dataset and demonstrate an average drift reduction of 33 % w.r.t.
the raw odometry source. Moreover, our approach produces 55 %
less hypotheses on average than a regular multiple hypotheses
approach.

Index Terms—SLAM, Semantic Scene Understanding, Proba-
bility and Statistical Methods

I. INTRODUCTION

SEMANTIC data is a reliable and ubiquitous flow of in-
formation in structured and non-structured environments.

Especially for perception systems, semantically annotated data
and higher reasoning about the underlying scene on top of
purely geometric approaches have the potential to increase
the robustness of the estimation [1], [2]. A reliable mapping
is eminently important especially for autonomous, as well
as, augmented reality systems since the recognition of the
surrounding objects and the localization in a globally unknown
environment are crucial factors there.
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Fig. 1: We propose a semantic SLAM system that maintains
multiple hypotheses of the landmark locations structured in
a hypothesis tree (bottom right image). Data association is
done in a semantic framework to create new branches in the
hypothesis tree. Furthermore, we perform a semantic place
recognition method utilizing the object class distribution of a
submap (top left image).

Traditional approaches for localization often rely on specific
low-level visual features such as points and lines which are
inherently ambiguous preventing the approach to scale well to
large environments. In contrast, semantic information features
a promising approach for many robotic applications by allow-
ing more unique local and global descriptors for landmarks
as well as potential viewpoint-invariance. Therefore, this con-
stitutes a crucial factor for the measurement association to
mapped landmarks and thus influences the quality of the
localization. Moreover, semantics are very efficient at dealing
with place recognition as they are less affected by seasonal or
appearance changes as well as large drifts.

In a conventional SLAM setting, the measurement noise is
commonly relaxed to the continuous Gaussian case [1] which
however, does not apply to semantic variables. Uncertainties
in the object detection such as class labels and object instances
typically involve the handling of non-Gaussian discrete vari-
ables. How to properly handle such variables is still quite
challenging and remains an open research question [3].

Many existing semantic mapping approaches are primarily
concerned with the creation of an indoor semantic represen-
tation with minor illumination and viewpoint changes [4].
In contrast, realistic outdoor applications often come with
severe changes of illumination and viewpoint. This can hamper
loop closure detection since drastic view-point changes might
render scenes completely different when revisiting.

Additionally, local descriptors for place recognition often
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Fig. 2: System overview of our proposed approach. We make use of our previous work X-View [5] by means of the semantic
object extraction. Hereby the semantic objects are converted to measurements and used as input for our system. Afterwards we
start simultaneously with the creation of the factor graph as well as with the multiple hypothesis mapping of the environment.
Loop closures are detected and placed into the factor graph when submaps are completed.

rely on the bag-of-words paradigm [6], [7] which can fail often
in environments with repetitive features which commonly
occur in urban environments leading to false loop closures.

Other semantic SLAM systems do not directly incorporate
the semantic information into the estimation but rather use it
to filter out bad classes such as cars or pedestrians before-
hand [8].

In this work, we aim to build a globally consistent semantic
mapping formulation by improving the incorporation of dis-
crete random variables in the map building and localization
processes.

Throughout this paper, observations comprise the semantic
class and position from static landmarks as well as the
spatial relationship to other static landmarks. We approach
the measurement association problem by utilizing the semantic
class of an object and deferring the decision on associations
until the ambiguity is resolved. In other words, the decision on
the association is done at a time when more observations are
available or a place is revisited allowing to correctly identify
the instance label with a certain assurance. This is motivated
by the fact that in many cases the most likely association given
only a few measurements does not necessarily need to be the
correct one.

Furthermore, we derive a loop closure detection and veri-
fication algorithm operating directly on the level of semantic
objects. Utilizing the class labels and the spatial relationships
between the objects enables a robust recognition of places in
urban environments. An overview of our proposed system is
given in figure 2.

The main contributions of this work are

� Consistent multiple hypothesis mapping using an opti-
mized Multiple Hypothesis Tracking (MHT) approach.

� A Dirichlet Process (DP)-based relaxed probabilistic
Hungarian algorithm for viewpoint-invariance.

� Semantic selection strategy to identify potential submaps
for loop closures.

� Place recognition based on the semantic classes and the
covisibility graphs.

� Incorporation of the proposed approach into a graph-
based semantic SLAM pipeline and evaluation of the
resulting system.

A. Related Work

In recent years, the advances to deep learning systems led to
more reliable as well as practically usable object detectors [9].
Consequently, this allowed SLAM systems to additionally
include semantically rich information in order to improve their
estimation [10]–[12].

Recently, some research specifically addresses the problem
of correctly assigning measurements to already known objects
utilizing additional semantic information [13], [14]. These
systems, however, do not deal with the estimation of the
camera’s position, i.e. their application implies a static position
of the camera and is often placed indoors. Thus, they are not
optimized for viewpoint-invariance, but rather emphasize on
the probabilistic data association and the tracking of objects
across multiple scenes.

Nevertheless, we make use of the close relationship to
robotic mapping since target tracking is a special case of
mapping. Elfring et al. [13] presented a semantic anchoring
framework using MHTs [15] which defers the data associ-
ation until the ambiguity between the instances is resolved.
Generally, the MHT enables accurate results but is inher-
ently intractable with a large amount of objects and requires
frequent optimizations [16]. The work of Wong et al. [14]
presents an approach using the DPs which yields estimation
results comparable to the MHT but with substantially less
computational effort. Nevertheless, their proposed approach is
not incremental and therefore, not directly applicable for the
mapping of a robot’s environment. Similar, in their previous
work [17] the authors propose a world modeling approach
using dependent DPs to accommodate for dynamic objects. In
their proposed framework, the optimal measurement assign-
ment is computed using the Hungarian method operating on
negative log-likelihoods for the individual cases. Furthermore,
Atanasov et al. [18] emphasizes on a novel derivation of
the likelihood of Random Finite Set (RFS) models using the
matrix permanent for localizing in a prior semantic map. Their
system utilizes a probabilistic approach for data association
which considers false positives in the measurements.

There is a vast literature on indoor semantic mapping
available which however, does often not directly incorporate
semantic information in a SLAM pipeline but rather uses the
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information for mapping and scene interpretation [19] [20].
The work that is most similar to ours is the work of Bowman
et al. [21] which proposed a semantic system which enables
to directly facilitate semantic factors in their optimization
framework. Despite using probabilistic formulation for the
data association, their approach inherently neglects false pos-
itives and false negatives, and lacks including a prior on the
assignments. Moreover, they limited the possible classes in
their mapping so that only cars were enabled in their outdoor
experiments. This greatly reduces the complexity in outdoor
scenarios with semantically rich information and further, is not
a reliable source for place recognition.

Another direction of research is to represent landmarks as
quadrics to capture additional information such as size and
orientation [12], [22]. However, they either assume that the
measurement association is given [22] or utilize the seman-
tic labels for a hard association using a nearest neighbor
search [12]. Thus, their work does not include any probabilistic
inference for the association and does not consider false
positives.

Our previous work by Gawel et al. [5] represents the
environment using semantic graphs and performs global lo-
calization by matching query graphs of the current location
with a global graph. The query graphs however, are not used
in a data association framework and thus, landmarks could
potentially be duplicated. This system does neither deal with
map management and optimization nor with drift reduction
for globally consistent mapping. Our semantic SLAM system
does not require any prior of the object shapes and comprises a
soft probabilistic data association for semantic measurements.
To the best of our knowledge, a complete semantic SLAM
system comprising the aforementioned approaches has not
been reported in literature before.

In the remaining part of this paper we will start deriving
a semantic mapping approach (section II) and a concrete
algorithm for localization (section III). The presented work
is evaluated in chapter IV. Finally, chapter V concludes this
work and gives further research directions.

II. SEMANTIC MULTIPLE-HYPOTHESES MAPPING

When performing SLAM, measurement noise typically
leads to drift and inconsistent maps – in particular when mea-
surements get wrongly associated to landmarks. We approach
this problem by introducing locally optimized submaps. Each
submap maintains an individual Multiple Hypothesis Tree
(MHt) and propagates a first-moment estimate to proximate
submaps. Specifically, for each submap we want to maximize
the posterior distribution, f(ΘtjZt), of the associations Θt

of all measurements Zt received till the time step t which is
proportional to1

f(ztjΘt,Zt�1)f(θtjΘt�1,Zt�1)f(Θt�1jZt�1). (1)

Here, the set of N measurement associations at time step t is
represented by θt = [θ1

t ...θ
N
t ]. The first factor, f(ztjΘt,Zt�1),

in (1) represents the distribution of all measurements at time

1Vectors are underlined and matrices are written with bold capital letters.

Fig. 3: Likelihood of assigning a measurement to a specific
scenario. Each measurement zit, at time t, could be assigned
to any of the existing landmarks mf1..6g, represent a new
landmark (new) or a false positive (fp). The thickness and
opacity denotes how likely the association is given a certain
example of measurements and landmarks.

t for which we assume conditional independence of the
individual measurements such that it equals to

n∏
i=1

f(zitjθit = l,Zt�1) = ps(c
i
t)

n∏
i=1

p(citjγlt�1)f(p
i
t
jπlt�1),

(2)

where zit denotes the attributes of the ith semantic mea-
surement at time t, θit is the index of the landmark, l, this
measurement is associated with, and πlt�1, γlt�1 the assigned
landmark’s position and class estimated at time t�1. Further-
more, a semantic measurement, zit, is split into its position,
pi
t
, and class, cit, component, whose Probability Mass Function

(PMF), ps, is a prior assumption based on how well the classes
fit into the current environment. For the ith class measurement,
cit, we assume p(citjθit = l, γlt�1) := δcit,γl

t−1
, where δ denotes

the Kronecker delta. For pi
t
, we assume the following form

of a stochastic measurement model

f(pi
t
jθit = l, πlt�1)=fν(p

i
t
� πlt�1),

where fν denotes the Probability Density Function (PDF)
of the additive position measurement noise, νit, which we
model as a zero-mean Gaussian distribution with covariance
Σz . For practical stability, we use an Unscented Kalman
Filter (UKF) [23] for the estimation of πlt. The second fac-
tor, f(θtjΘt�1,Zt�1), in (1) is the assignment prior and is
calculated using the well-known equation [13], [16]

f(θtjΘt�1,Zt�1) =
Nn
t !N

f
t !

Nm
t !

pn(N
n
t )pf (N

f
t ), (3)

where Nn
t denotes the number of new measurements, Nf

t the
number of false positives identified by the Hungarian method
and Nm

t the total number of measurements at time step t. The
functions pn and pf are prior PMFs over the number of new
measurements and false positives, respectively. Typically both
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are chosen as Poisson PMFs with a specific spatial density λ
and a volume V [24], e.g.

pn(N) = exp (λnV )
(λnVn)

N

N !
.

Each branch in the MHt comprises a different set of associ-
ations Θt. Utilizing (2) and (3) together with the previous
posterior distribution f(Θt�1jZt�1) we can evaluate these
branches using (1).

A. Probabilistic Measurement Association

Finding the correspondence θt between measurements and
mapped object can be challenging since the current set of mea-
surements often does not allow deriving a correct assignment.
Fortunately, this problem can be considered as a weighted
combinatorial assignment problem for which the Hungarian
algorithm [17], [25] is well known. Figure 3 illustrates the
probabilistic combinatorial assignment problem. To find the
most likely assignment we utilize a stochastic association al-
gorithm based on the DP. DPs are a good choice for modeling
the probability of seeing new and re-observing already mapped
landmarks [26].

The likelihood of the associations of new measure-
ments zt at time t with landmarks, θt, is expressed by
f(θtjzt,Θt�1,Zt�1). We assume that at each time step a
landmark in the scene can at most generate one observation.
Inspired by the dependent DP formulation in [17], we differ-
entiate four cases: (i) landmarks that have already been seen in
the current submap, (ii) landmarks seen in previous submaps,
(iii) new landmarks and (iv) false positives. The likelihood for
the association of a measurement zit with an existing landmark
k of the same class in the current submap is modeled as

f(θit = kjzit,Θt�1,Zt�1) = exp(Nk
t )fν(p

i
t
� πkt ). (4)

Here, the scalar Nk
t denotes the number of assignments to

the landmark k. Despite the fact that we only deal with static
objects, a landmark, l, which was seen in a previous submap
at time, τ , is modeled using a transitional density, T , i.e.

f(θit = ljzit,Θt�1,Zt�1) =

∫
fν(p

i
t
� x)T (x, πlτ ) dx . (5)

The transitional density, T , depends on the semantic class
of the object and is used to accommodate for the unknown
shape of the landmarks. Since we take the centroid of the
segmented objects as input, we employ two approaches for
the choice of T to compensate for large measurement noise.
Objects such as poles and trees are modeled using a Dirac-δ
distribution: T (xjπlτ ) = δ(x � πlτ ), reducing the right hand
side of (5) to fν(pit�π

l
τ ), the measurement distribution of zit

given the last seen position of l. The transition of objects like
buildings and fences is modeled using a Gaussian distribution
with covariance Σα resulting in∫

fν(x� pit)N (x;πlτ ,Σ
α) dx

= F�1fFfN (0,Σz)g � FfN (πlτ ,Σ
α)gg(pi

t
)

= N (pi
t
;πlτ ,Σ

z + Σα),
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Fig. 4: Illustration of the Gaussian mixture landmarks created
by the fusion of the weighted hypotheses.

where F is the Fourier transform and Σα is a transitional
covariance depending on the object’s class c. The likelihood
of assigning a new landmark, l, to the ith observation at time
t, is approximated by the uniform distribution in zit over the
volume of the map [17], M, i.e.

f(θit = ljzit,Θt�1,Zt�1) = α

∫
fν(p

i
t
� x)HDP(x) dx

� αUjMj ,

where HDP is the base distribution of the DP. Generally, false
positives occur due to clutter in the images and are essentially
detected objects which do not physically exist in the environ-
ment. Having such cases in the map may result in improper
assignments of future measurements. False positives have the
likelihood f(θit = 0jzit,Θt�1,Zk�1), i.e. the likelihood of the
measurement i being an observation of the false landmark, 0.
False positives, are assumed to occur at a fixed rate ρ, i.e.

f(θit = 0jzit,Θt�1,Zt�1)

/
(∏

j

f(zitjθit = j, γjt�1, π
j
t�1)

)�1

�

{
ρN0

t N0
t > 0

ρα N0
t = 0

,

where N0
t denotes the number of occurred false positives until

time step t, and α is the concentration parameter of the DP.
The aforementioned four cases will be used as an input to
the Hungarian algorithm yielding an optimal assignment for
each measurement as well as landmark. Based on this initial
assignment, the optimal branch of the MHt will be formed. In
case the assignment is not distinct enough, new branches in
the MHt are generated by re-running the Hungarian algorithm
without the previous optimal assignment. Since small MHts
are generally better for computational performance, we only
create branches for associations that are reasonable.

B. Optimized Resampling of Hypotheses

Each hypothesis is weighted using their measurement likeli-
hood (2) and assignment prior term (3). At each time step, the
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Fig. 5: Illustration of the trajectories of the KITTI sequence 05, sequence 00, sequence 07 together with a laser map. Regions
in blue denote the estimated trajectory, orange regions are submaps which were checked for loop closures and green areas
show performed loop closures. We gain additional efficiency by only checking a subset of the submaps for loop closure.

existing hypotheses are reweighted and eventually resampled
by a systematic resampling technique [27]. In general, this
fuses the current knowledge in the hypothesis set and elimi-
nates the hypotheses which have a low weight and preserves
hypotheses with a good weight.

A crucial factor is when to decide that resampling should be
performed on the hypothesis tree. In this case, it is common
to use selective resampling [28] based on the calculation of
the effective sample size which essentially captures the diver-
sity of the hypothesis set. Consequently, resampling is only
performed when the effective sample size exceeds a certain
threshold. Furthermore, many particle filter implementations
only consider a fixed particle size. However, it is desired that
the number of particles is high for a high state uncertainty, and
low when the uncertainty is low. Fox [29] introduced a variable
sampling algorithm based on the KLD distance for particle
filters. During each iteration of the resampling procedure, the
number of hypotheses is dynamically bounded by n using

n =
k � 1

2ε

(
1� 2

9(k � 1)
+

√
2

9(k � 1)
z1�δ

)
, (6)

where k is the current number of resampled hypotheses and
z1�δ is the upper 1�δ quantile of a normal distribution which
models how probable the approximation of the true sample
size is [29]. The value n is dynamically calculated at each step
of the resampling until the number of resampled hypotheses is
greater than n. Nevertheless, we bound the maximum number
of resampled hypotheses to avoid drastic changes.

III. SEMANTIC LOCALIZATION

Every time a submap is completed, the resulting map as
well as the odometry measurements are used to compute
a trajectory estimate. The weighted hypotheses allow for
the creation of weighted mixtures of probability distributions
resulting in a weighted fusion which considers the uncertainty
of each hypothesis (cf. figure 4). The result of the fusion
is formulated as a relative constraint and incorporated into
a nonlinear factor graph as semantic landmarks.

A. Semantic Evaluation of Submaps
Loop closures are identified by first evaluating the quality

of the submap in terms of the occurred landmarks. This is

motivated by the fact that in many cases (e.g. highways) it
is not necessary to check for loop closures. The examination
whether a submap is good enough for loop closure detection is
based on a decision tree. We train a decision tree by comparing
the trace of the state covariance before and after incorporating
a specific region in the factor graph. The trained decision tree
is specific to an urban environment and furthermore, to the
length of the submap. Thus for other environments, a retraining
of the decision tree or online learning approaches are required.
A submap is considered as good either when it lowers the size
of the bounding box or by having loop closures in it.

Evaluating a submap requires extracting descriptive at-
tributes from it and we argue that semantic information is
a crucial factor for this. In more detail, we first approximate
the Shannon entropy H of the mixture distribution using an
approximate single multivariate Gaussian distribution over the
submap, with covariance Σ, i.e.

H =
1

2
log
(
(2πe)3 det(Σ)

)
.

On a level of semantic classes we then calculate a term
frequency-inverse document frequency (tf-idf) score, i.e.

Sitf -idf =
∑
c

nic
ni

log

(
N

nc

)
,

where nic denotes the number of occurrences of class c in
submap i, ni the total number of classes in i. Furthermore,
N denotes the total number of submaps processed so far and
nc represents the number of scenes within the submaps which
included an object of type c. This is efficiently compared and
updated with the previous submaps. As a final score, we make
use of the number of landmarks within the submap.

As shown in figure 5, the loop closure detection is triggered
once the decision tree predicts that a submap is potentially
good in terms of its mapped objects.

B. Semantic Loop Closure Detection

Loop closures are found in multiple steps. First, we find
similar submaps using an incremental kd-tree [30] of the
submap’s normalized class histograms while employing the
Jensen-Shannon divergence (JSD) [31] as the distance mea-
sure. For each similar submap the individual scene candidates
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Fig. 6: Comparison of several KITTI sequences by means of the RMSE plotted as a function of the frames. The two methods,
UKF and MHM, show several jumps in the error due to wrong data associations. Each wrong association pulls the factor graph
towards a wrong direction which results in the jumps of the RMSE. Our method performs a more correct data association and
keeps therefore the least error and does not include any sudden changes.

are identified with another kd-tree of the scene’s normalized
class histograms using the L2-norm for faster retrieval. Ad-
ditional efficiency can be achieved with a tuning parameter
that restricts the search space of the kd-tree in terms of the
distance.

Good loop closure candidates found by the second kd-tree
are verified and further filtered with a discrete Bayes filter. We
define a Markov chain between the events for loop closure and
no loop closure. The transitional probabilities are chosen to be
similar to [7].

The verification process calculates two scores for how
similar the candidate scene and the current scene are. First,
the topology of a scene is represented by the Laplacian matrix
which is calculated based on the spatial relationship between
the semantic classes as well as their degrees in the scene. We
compare the topologies of two scenes based on a normalized
cross correlation (NCC) [32] score, SNCC . Second, another
score, Sscene, expresses the overall similarity of the landmarks
in the two scenes. For this the landmarks get associated with
the Hungarian algorithm on the estimated landmark positions
of each scene and their Euclidean distances. A pair of matched
landmarks i and j contribute to Sscene through

si,jmatch := 1� Hi,j

2
, si,jclass := (1� δci,cj ) � p,

where H is the Hungarian cost matrix (output of the Hungarian
algorithm), p denoting a penalty factor, ci, cj being the label
of the landmarks i, j, and δ denoting the Kronecker delta. The
two scores smatch and sclass are combined using all matched

landmark pairs, as follows

Sscene :=
∑
i,j

1� si,jmatchs
i,j
class.

The sum of both scores, SNCC as well as Sscene has to be
larger than a threshold (tuning parameter) to verify the match
of the two scenes. This binary decision serves as input to the
discrete Bayes filter which finally gets to decide whether to use
the scene pair as a loop closure candidate for the next step. As
the last step, the set of all loop closures candidates undergoes
a final geometric consistency check based on RANSAC before
the actual loop closure constraints are inserted into the factor
graph. Both, the Hungarian algorithm and RANSAC can be
computationally expensive. Therefore, we filter most invalid
candidates beforehand using the kd-trees which can be per-
formed in logarithmic time. For additional robustness, we use
m-estimators with Cauchy functions [33] in the optimization
of the factor graph.

IV. EVALUATION

We evaluate our system on the KITTI dataset sequences
00, 05, 06 and 07 [34] where we use SegNet [35] to derive
the semantic classes of the individual scenes. For each image,
the semantic objects are extracted and projected into the world
frame [5] using the Velodyne scans. In general, our approach is
not limited to the use outdoors but rather depends on the object
detector. Additionally, one might need to adapt the decision
tree and ps in equation (2).

Since, to our knowledge, no appropriate approach for
comparison is publicly available, we could not compare
our proposed approach to another semantic SLAM system.
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Therefore, we evaluate our proposed system to two other
semantic solutions as well as two non-semantic approaches.
As a baseline we compare to LeGo-LOAM [36] and ORB-
SLAM2 stereo [37]. For a semantic baseline, we utilize a
single UKF estimator with a Hungarian algorithm based on
the L2 norm for data association. This essentially performs
a nearest neighbor data association with a single hypothesis.
We also added a multiple hypothesis mapping (MHM) using
a maximum likelihood approach and a MHt. Similar to our
main approach, frequent optimizations of the MHt are needed.
Hence, we threshold the likelihood if the MHt reaches a certain
size (see equation (2)) and keep only the best third of all.

Our proposed system is agnostic to the source of odometry
which we show by making use of two different ones for
all sequences. More specifically, we utilized the tracking of
ORB features [37] as well as LiDAR surface and corner
features [36] to get an odometry estimate. We have used the
provided camera calibration parameters from Geiger et al. [34]
for both, Visual Odometry (VO) and ORB-SLAM2. Thus, the
results of ORB-SLAM2 are different than the results reported
in the work of Mur-Artal et al. [37] where they used different
parameters per sequence.

A. Results
We demonstrate the performance of our proposed approach

by means of calculating the RMSE of the estimated trajectory
location to the GPS ground truth provided by the KITTI
dataset using the VO and Laser Odometry (LO) sources. Both,
VO and LO, accumulate an error and hence, are subject to drift
over time. Using our DP-based multiple hypothesis mapping
approach together with our place recognition (cf. figure 5) we
can reduce the drift up to 50 % for several sequences.

The simple UKF and MHM estimation approaches are
strongly affected by wrong measurement associations resulting
in bad constraints in the pose graph. These wrong assignments
can be observed in figure 6 as sudden jumps in the RMSE.
Consequently, the RMSE will have an increased total error
which is even worse than the raw odometry source for a
few sequences. Our approach is less perturbed with wrong
associations and thus, maintains a more robust RMSE over
time.

Table I show the mean and standard deviation of the
RMSE for each sequence and estimator. Our approach does
particularly well on on the longer sequences (00, 05) which
results from the correct data association together with the
semantic place recognition. Regardless of the odometry source,
our proposed system yields results comparable to the state-of-
the-art SLAM approaches in VO and LO and compared to
the MHM, maintains less hypotheses about the environment
as shown in figure 7. Due to the fact that the total number
of hypotheses of the environment is only increased when the
state uncertainty is high, we gain additional efficiency for our
proposed system.

Figure 8 evaluates the performance of our algorithm when
the semantic classes are removed as well as for the restriction
to a single hypothesis. The single hypothesis, no semantic
solution then still performs a probabilistic Hungarian method
and achieves a mean RMSE of 5.45m�2.94m.

Sequence 00 05 06 07

VO 8.41±2.51 6.42±3.9 3.8±1.4 6.23±2.4
UKF 11.14±2.9 8.9±4.2 5.96±2.4 14.55±5.1

MHM 6.84±1.3 5.6±2.94 3.17±1.07 6.93±2.02
DPMHM 4.54±1.58 4.4±2.3 2.3±0.74 2.9±4.5

ORB-SLAM2 5.7±1.0 4.51±1.3 2.1±0.6 2.71±0.9

LO 7.33±2.5 2.96±1.3 3.3±1.2 6.65±2.85
UKF 6.96±1.7 6.96±1.5 5.47±0.75 10.4±2.8

MHM 5.3±2.2 3.8±1.4 2.67±0.35 11.3±3.9
DPMHM 3.94±1.17 2.42±0.66 2.66±0.35 5.5±2.4

LeGo-LOAM 5.8±2.2 2.54±0.72 2.15±0.52 1.0±0.16

TABLE I: Comparison of the mean RMSE and standard de-
viation in meters achieved with VO and LO as the underlying
odometry source.
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Fig. 7: Evaluation of the two multiple hypotheses-based imple-
mentations. The naive likelihood thresholding approach has an
average of 12 (sequence 00) and 18 (sequence 05) hypotheses,
respectively, whereas our proposed resampling approach has
an average of 7 (sequence 00) and 6 (sequence 05) hypotheses.
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Fig. 8: Reduction of the RMSE for a single hypothesis, non-
semantic DPMHM. Including both modalities, we achieve an
average reduction of 34 %, with only multiple hypotheses 27 %
and 13 % with a pure semantic DPMHM.

V. CONCLUSION AND FUTURE WORK

In this work, we presented a novel semantic SLAM system
based on factor graphs and a MHt mapping approach aiming
to deal with ambiguities in data association in semantic-
based SLAM. We showed that our resampling method for
optimizing the hypothesis tree yields a more robust estimation



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

and requires substantially less hypotheses. Moreover, we gain
additional efficiency by preselecting submaps for loop closure
detection.

As further research, we intend to remove the assumption
that each object can generate at most one measurement per
time-step since a bad detector or viewpoint angle might
easily violate this assumption. Additionally, this work could
potentially also be extended towards utilizing an instance-
based detection. Instance information could possibly give a
prior on how to associate the measurements at the cost of an
additional non-Gaussian discrete random variable.
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