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Abstract— Rapid deployment and operation are key require-
ments in time critical application, such as Search and Rescue
(SaR). Efficiently teleoperated ground robots can support first-
responders in such situations. However, first-person view teleop-
eration is sub-optimal in difficult terrains, while a third-person
perspective can drastically increase teleoperation performance.
Here, we propose a Micro Aerial Vehicle (MAV)-based system
that can autonomously provide third-person perspective to
ground robots. While our approach is based on local visual
servoing, it further leverages the global localization of several
ground robots to seamlessly transfer between these ground
robots in GPS-denied environments. Therewith one MAV can
support multiple ground robots on a demand basis. Further-
more, our system enables different visual detection regimes,
and enhanced operability, and return-home functionality. We
evaluate our system in real-world SaR scenarios.

I. INTRODUCTION

Effective teleoperation is a key requirement for many

contemporary Unmanned Ground Vehicle (UGV) systems.

Usually, these systems are teleoperated in a first-person

perspective, using on-board cameras and further sensors

of the robots. While this is sufficient in easy terrain, the

teleoperation task can become cumbersome in challenging

terrains, where narrow passages or obstacles need to be

traversed. In these situation not only the overall progress

of a mission can be compromised but also the integrity of

the vehicle in use.

MAVs on the other hand offer rapid speeds and a higher

point of view, giving them superior performance as flying

cameras. However, often it is not sufficient to use MAVs

alone in such scenarios as their operation times and payload

are typically more constrained than of UGVs. Here, UGVs

can complement the MAV capabilities with manipulators,

and further sensors for close interaction with the environ-

ment.

Therefore, the combination of the individual robots’

strengths in an integrated system can be a fruitful avenue [1–

4]. Recent works have shown that a third-person perspec-

tive can prove efficient to support robot operators in such

scenarios [1, 5], e.g., by using MAVs as flying cameras.

Unfortunately, these systems are limited to off-board com-

putations, structured and well illuminated scenarios, single-

UGV support, tag-based detection [6], and local-following

only. Here, we extend our prior work [4] and propose

an automatic system based on a MAV that can overcome

these limitations and support multiple UGVs in difficult

teleoperation tasks. In our system, the MAV serves as a
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Fig. 1: Illustration of our proposed system. MAV supporting multiple UGVs
in teleoperating difficult terrain by providing third-person view on request.

flying camera that can autonomously follow a UGV and

provide a third-person view, as illustrated in Fig. 1. Our

system is designed to operate in GPS-denied environments,

and therefore we assume no external localization system.

Therefore, the MAV localization is loosely coupled with

the UGV localization, and can therewith support multiple

UGVs. The MAV interfaces with the LiDAR-based global

localization of the UGVs allowing for traveling among them

on a demand basis. Visual-inertial sensing onboard the MAV

allows it to navigate between multiple UGVs and assist

teleoperation. Our system operates fully autonomous, freeing

operators from the need to separately control the flying

camera. The system has been tested in real-word experiments

in challenging indoor SaR scenarios. To the best of our

knowledge, this is the first system to integrate all these

functionalities.

This paper presents the following contributions:

• A system for relative localization, visual servoing, and

control of MAV for third-person view teleoperation.

• Feature-based detection of different UGV types.

• An integration with UGV localization that enables

global localization and transfer between different UGVs

in GPS-denied environments.

• Experimental evaluation in challenging real-world SaR

scenarios.

This paper is organized as follows; In Section II, we review

the state of the art on MAV-UGV collaboration, visual

servoing, and third-person view teleoperation. Section III de-



scribes our integrated system, and its evaluation is presented

in Section IV. Finally, we conclude our findings in Section V.

II. RELATED WORK

The topic of MAV-UGV cooperation has received increas-

ing attention in the last decade with the advent of afford-

able MAVs and increased onboard processing power [1–

3, 5, 7]. Many contemporary works focus on enhancing the

UGV’s perception using MAVs [1–3, 5, 8–12]. A related

functionality is to use MAVs for interaction, e.g., object

picking and transportation [4, 13, 14]. Typically, the UGV

and the MAV need to be co-localized and controlled in a

shared reference frame [15]. This is commonly solved using

visual servoing, i.e., visual detection between the robots and

applying a suitable control regime [16].

The detection in visual servoing systems, is often based

on special markers [1, 5, 7–9], simple visual color blob

detection [4, 11, 14], or visual feature-based detection [17].

Special markers, e.g., Apriltags [6], are a well established

technique for robust visual-marker detection, and have su-

perseded LED-based detection in recent years [8]. In more

general visual servoing cases, the UGV cannot be augmented

with specific markers. Hence, visual detection is still needed

in such cases.

Another option is to localize the robots in a common

map without direct detection [2, 3, 12]. Here, both robots

are equipped with additional LiDAR, or camera sensors

for precise localization and collaborative mapping. However,

Michael et al. [12] state that additional direct detection be-

tween the robots would be desirable for direct collaboration.

The control for visual servoing is mainly on trajectory

or waypoint tracking. In recent years, the control problem

for MAVs has been intensively investigated. A classic PID

controller performs better than an LQ controller due to the

model imperfections [18]. A nonlinear tracking controller

often used is shown to have desirable closed loop properties

with global stability [19]. To exert state and input constraints,

Model Predictive Controller (MPC) has been introduced and

employed to control the MAV, and it was further shown

that Nonlinear MPC performs better than linear MPC in

disturbance rejection and tracking performance [20].

Multiple works have shown that a third-person view can

prove useful in teleoperation tasks [1, 21, 22]. While [21] use

3D maps as they could be build from on-board sensing of the

UGV, [22] show the use of a MAV as an external camera for

assisted manipulation. However, [22] focus on a static target,

and [21] require additional 3D sensing on the UGV to render

a third-person view from the local sensing. The most similar

work to ours is [1]. Here, the authors focus on evaluating

the assisted teleoperation by a MAV-based system in SaR

scenarios. While the system integration and development has

been simplified and limited in order to perform the user-

studies. Some of those are off-board computing, single-UGV

support, and simplified environmental conditions.

Cooperation between multiple UGVs and Unmanned

Aerial Vehicle (UAV)s has been researched in the last

decades. An early work of [23] studies the cooperation of

Fig. 2: MAV detection and servoing strategy. The upper shows the object
detection using either the Apriltag detection or visual feature-based detection
given object image. The lower block receives the detection results and
performs the servoing strategy accordingly.

two UGVs and one aerial robot regarding localization of

the aerial robot by visually communicating and locating

with the ground robot. Hsieh et al. [24] demonstrated multi-

agent tasking and provided cooperative control strategies for

search, identification, and localization of targets. The survey

of [25] identifies several open problems on UGV/UAV coop-

eration including vehicle autonomy, and integrated control.

This paper focuses on lifting simplifications of the current

state of the art by extending our previous work on MAV

object detection and picking [4, 14], adding dedicated multi-

UGV support, and visual-feature based object detection for

MAV-assisted teleoperation. We use state of the art Nonlinear

MPC on the MAV. Furthermore, we demonstrate the system

in perceptually difficult indoor SaR scenarios and perform

computations on-board the MAV which ensures safe opera-

tion in case of network failures.

III. THIRD-PERSON VIEW TELEOPERATION

Here, we present our MAV assisted third-person view

system for UGV teleoperation. The system is based on object

detection, visual servoing, Visual Inertial Odometry (VIO),

and interfacing with the UGVs’ global localization to operate

in GPS-denied environments. A system overview is depicted

in Fig. 2. As illustrated in the upper part of Fig. 2, the

detector uses either tag-based detection [6], or visual feature-

based object detection, based on an initially captured image

of the UGV [26].The detections are then sent to the visual

servoing, which computes the MAV’s relative, and target

poses, and applies the necessary control to the MAV for



Fig. 3: Schematic overview of used frames, and transformation chain
between MAV, and UGV. For visualization purposes, the coordinate system
on the camera C was omitted.

hovering above the UGV. Finally, upon successful relative

localization of the MAV with respect to the UGV, the global

frames of UGV and VIO are aligned for global localization

of the MAV, and enabling transfer among multiple UGVs.

A. Visual Servoing

The servoing strategy is agnostic to the used detection

regime. Either the pose of the detected tag, or the pose of

the smallest quadrilateral box containing the target object

when using feature-based UGV detection are forwarded to

the visual servoing algorithm. We represent transformations

T in SE3, consisting of position p, and orientation in roll φ,

pitch θ, and, yaw Ψ in quaternion form. The algorithm first

estimates the relative pose between MAV and UGV MTC
U

in the camera frame C.

Here, we only consider rotations in yaw. Rotations in pitch

and roll are assumed negligible, since the MAV can only

remain stable when it is stationary hovering over the UGV,

and takes actions only in static hovering mode.

Besides relative localization, the MAV also localizes itself

in the world using VIO, as implemented in [27]. The

position controller receives commands in world coordinates.

We therefore need to apply a transformation chain to the

relative localization. The MAV’s pose TW
M is represented in

the world frame W . Thus, MTC
U is then transformed into the

world frame, using the VIO estimate TW
M , and the extrinsic

calibration between MAV IMU and camera TM
C , forming

the relative transformation MTW
U between MAV and UGV

in world coordinates, i.e.,

MTW
U = TW

M TM
C MTC

U (1)

Fig. 4: Cascade controller structure for multi-rotor system. Here, the
measured MAV state is denoted by y.

This is also illustrated in Fig. 3.

The localization result is then sent to an MPC [28] for

position control. Here, the MPC acts to keep the MAV within

a circle of radius r < rmax in a height h above the center

of the UGV, and identical yaw orientation, i.e., MΨU = 0.

Furthermore, a user-controllable offset translation toffset in

UGV body coordinates can be added. The controller structure

is shown in Fig. 4. The position command is handled by the

MPC nonlinear controller to generate desired motion control.

The optimization problem for the MPC is formulated as

min
u,x

∫ τ

t=t0

(x(t)− xref(t))
TQx(x(t)− xref(t))

+ (u(t)− uref(t))
TRu(u(t)− uref(t))dt

+ (x(T )− xref(T ))
TP (x(T )− xref(T ))

subject to

ẋ = f(x,u);

u(t) ∈ U;

x(0) = x(t0)

(2)

in the time interval t ∈ [t0, τ ]. Here, Qx ≥ 0 is the penalty

on the state error, Ru > 0 is the penalty on control input

error and P is the terminal state error. The state vector

x = [pT ,vT , φ, θ]T represents the position, velocity, roll and

pitch angle of the MAV and input vector u = [φd, θd, F ]T

consists of control input of roll, pitch angle and thrust force

F . The desired state and steady state input are denoted as

xref and uref. Finally, the result is sent to a low level attitude

controller to generate desired rotor speed control.

To yield more robust system performance, the control

action is sent only when the MAV is stable, i.e. hovering or

moving constantly. The advantage of using VIO are stable

position control even without visual servoing, and safety (and

recovery) measures in the case of visual tracking failures.

B. Multi-UGV support

In our system, the UGVs are performing LiDAR-based

3D SLAM [29], enabling them to globally localize in a

common frame. The SLAM system operates on a pose-

graph basis, registering ICP LiDAR scan alignments, and

odometry. Furthermore, open-loop drift is compensated upon

loop-closures using ICP and a low drift assumption.

Upon start, we initialize all robots, including MAV in the

origin of the world frame, yielding a shared reference frame.



This common frame is maintained via LiDAR-based SLAM

for the UGVs, i.e., estimating their pose TW
U and VIO for

the MAV TW
M . The knowledge of the poses of UGVs in

the world frame allow us to calculate the relative transform

U,iTU,j between two UGVs i and j. This enables robot-to-

robot third-person-view transfers. Passed to the controller of

the MAV, the MAV can transfer between multiple UGVs,

before switching back to visual servoing.

One important characteristic of this hybrid system is

different drift characteristics in the LiDAR-based localization

and the VIO for UGV and MAV, respectively. In our system,

we give higher confidence in the accuracy of LiDAR-based

localization and therefore reset TW
M on transition events

towards the UGV estimate, i.e.,

TW
M := TW

U (MTW
U )−1 (3)

The relative drift between VIO and LiDAR-based SLAM are

then compensated through the visual servoing.

The return-home functionality is realised with the same

detection regime. When the MAV concludes its mission, the

operator can request it to return from visual servoing above

a UGV to a home position in the world frame, e.g., the

starting point. The MAV will thus return to the home position

using VIO and descend to the ground. If high accuracy is

required upon landing, the home position can be equipped

with a visual tag, such that the visual servoing will correct

for odometry drift before landing.

IV. EXPERIMENTS

We evaluate our system in two different indoor experi-

ments and record its performance. Our evaluation focuses

on the visual servoing performance and the proposed multi-

UGV interface and transfer with the MAV. We furthermore

demonstrate the effectiveness of the third-person teleopera-

tion in a realistic industrial SaR scenario. The benefits of

third-person view teleoperation has been extensively evalu-

ated and concluded in [1, 21, 22], and further evaluations are

therefore outside the scope of this paper.

A. Experimental setup

The MAV used in our experiments is a custom build hexa-

copter based on the DJI Flamewheel F550, and illustrated in

Fig. 5c. It is equipped with a downward facing Chameleon 3

camera with a resolution of 3.2 Megapixels @ 20Hz which

is used both for the visual servoing and providing the third-

person view1. Furthermore, it is equipped with a variable set

of one or two stereo-vision pairs integrated with an IMU

for VIO. The stereo pairs are mounted 45◦ and 90◦ with

respect to the horizontal. All processing is done onboard

the MAV on an Intel Core i7-7567U CPU @ 3.50GHz.

The flight time of the MAV with an initially fully charged

battery is approximately 15 minutes. The UGV used for

the LiDAR-based mapping is a tracked vehicle, equipped

with encoders, IMU, and a sweeping LiDAR producing

1For the tag-based, and the feature-based detection, we use the
implementations from https://github.com/RIVeR-Lab/apriltags_ros and
https://github.com/introlab/find-object respectively.

full 3D scans @ 1/3Hz, as illustrated in Fig. 5d. The

first-person view video stream is produced by a Ladybug

360 Degree camera @ 5Hz, allowing the user to have an

omnidirectional view around the robot. The maximum speed

of the UGV is 0.6m/s, and is commonly operated at 0.3m/s.

All processing is done onboard using an Intel i7-4770T @

2.5GHz.

The Operator Control station is interfacing with the robots

via WiFi using ROS and displays the video streams from

the UGV. It also gives access to the MAV third-person view

requesting function, and displaying of its video stream.

Firstly, we perform structured experiments in a mock-up

environment with a ground-truth pose tracking system for all

robots, see Fig. 5b. We evaluate the effectiveness of the visual

detection system under varying perceptual conditions, i.e.,

different payloads on robot, than on detection template, and

inside / outside operation using the same detection template.

Also, we verify the minimum altitude of the MAV for stable

visual servoing.

Then, we map the room with our UGV, request the MAV

between different locations, based on the LiDAR-based map,

and evaluate the performance. Since, we presently have only

one UGV available, we simulate the multi-UGV scenario, by

building a first map with the UGV from the starting point,

and then placing a visual target at its location. Then, we use

the UGV to drive another way from the starting location and

build a second map. The locations of the UGVs were chosen

to maximize the distance between them in the experiment

room, i.e., 5m. Both maps are registered based on their initial

alignment. We then let the MAV travel between the visual

target that simulates the first UGV and the UGV’s location

of the second run. In this experiment, we evaluate the request

success, and the drift between the two pose estimations, i.e.,

VIO for the MAV, and LiDAR-based SLAM for the UGV.

Secondly, we test the full system in both the mock-up

scenario, and a realistic disaster scenario within the TRADR

project review in Mestre, Italy, see Fig. 5a. The site consisted

of a large decommissioned working hall, featuring various

industrial installations, and obstacles on the ground. Here,

we demonstrate the full functionality of requesting the MAV,

transferring to the UGV and supporting teleoperation with a

third-person view by automatic visual servoing.

B. Results

Given the hardware that we used in our experiments,

an altitude of 2m above the servoing target showed to

be sufficient to follow the UGV in the proposed servoing

mode. However, visual detection both using visual features

and Apriltags also performed well at greater heights up

to the greatest tested height of 5m. While the Apriltag

detection is very robust given visibility of the tag, also the

visual feature based detection shows to work reliably. Both

detection regimes run onboard in real-time. Given that the

MAV stays within the height range and maximum radius

rmax, both receive at least one correct detection per second

without false detections. Samples of the visual feature based



(a) Experimental site Mestre, Italy (b) Experimental site Zurich, Switzerland

(c) MAV

(d) UGV

Fig. 5: Experimental set-up: a Experiment in disaster scenario in Italy, the MAV autonomously servoes over a UGV and provides third-person view for
teleoperation. b experiment in motion capture room in Zurich. c The custom designed MAV we used is fitted with Visual-Inertial sensing for VIO, a
downward facing PointGrey Chameleon 3 camera @ 3.2MP for UGV detection, and an Intel Core i7-7567U CPU @ 3.50GHz. d The used UGV with
Omnidirectional camera, and rotating 2D LiDAR to produce 3D scans.

Fig. 6: Sample images from the visual feature based detection: (top) Images
of robot in database from different view-points. (bottom) Visual detection
of robot equipped with different payloads and in different scene contexts.
The green boxes indicate the estimated robot location.

detection are illustrated in Fig. 6. However, using feature-

based detection, the pose of the robot cannot always be

precisely estimated. Variations in the detected bounding box

lead to these deviations, as also illustrated in Fig. 6 (bottom

row: middle left, and middle right).

The experiment on repeated transfers between two targets

showed satisfying performance. In series of 10 transfers be-

tween the targets, the MAV was always able to detect the new

target and return to visual servoing above it. We measured

a 2cm displacement of the UGV locations with respect to

the ground truth locations, and an average displacement in

x, y-coordinates between the MAV’s position estimate and

the ground-truth of 17.6cm, with maximum displacements

of up to 28.6cm. Furthermore, we evaluate the acceptable

displacement from the target location. In our experimental

set-up, the MAV is able to compensate for displacements

of 1.2m, i.e., four times the maximal error, from the target

location through visual servoing, as illustrated in Fig. 8.

Despite equal goal positions, the flown trajectories differ due

to varying initializations of the VIO in the starting location,

and drift behaviour during the maneuver execution.

Also, we successfully perform the requesting of the MAV

to a UGV, and guiding it through difficult passages by

providing a third-person view. Exemplary views from MAV

and UGV perspective are illustrated in Fig. 7.

Finally, the system shows to be easily controllable as no

trained pilot is required to control the MAV. The system

was controlled by several UGV pilots that were not trained

in MAV piloting, and successfully completed the experiment

parcours with the MAV autonomously following the UGV.

(a) MAV view

(b) UGV view

Fig. 7: Third-person view from MAV (a) and panoramic stitched first-person
view from UGV (b).

C. Discussion

The experimental results show that an interfacing between

the localization systems of MAVs with UGVs, and integra-

tion with local systems, such as visual servoing can build

an efficient real-time collaborative team of robots in GPS-

denied environments. Several practical concerns have to be
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Fig. 8: Exemplary trajectories of the MAV recorded from the motion
capturing system. The MAV is started from hovering at the black circled
locations and send to various locations around the goal position (green
circles). The visual servoing is able to compensate for displacements of
up to 1.2m in our current set-up. Here, the trajectories traversed using VIO
are highlighted in blue, and the final visual servoing corrections in red.

taken into account in designing such systems. Our choice

for hovering the MAV in a fixed location within a large

margin rmax = 0.2m above the UGV is partly due to using

a fixed downward facing camera for both visual servoing

and providing the third-person view. Having a constant

following of the UGV results in a unsteady image, rendering

teleoperation cumbersome. Low tolerances on the location

above the UGV can furthermore be difficult to accomplish by

the MAV controller. Here, a camera equipped with a gimbal

could give a steady image of the target for teleoperation,

and enable lower margins in the hovering location, enabling

a more steady image stream of the UGV. Furthermore, tight

margins cannot be achieved when using visual feature-based

detection, causing jumps in the detection.

While the drift in the LiDAR-based localization of the

UGVs is negligible in the evaluated scales, the VIO is

showing larger drifts. This is partly due to tuning our flight

controller for aggressive flying maneuvers, leading to quick

transfer times between targets. While our experiments are

successful throughout for returning to visual servoing above

the new target, less aggressive maneuvers could decrease the

drift further. However, our present system can handle up to

four times the maximum drift measured in the experiments.

Furthermore, we demonstrated our MAV system for trans-

ferring between multiple UGVs, but it is not limited to this.

The visual feature based detection enables our system to be

allocated further targets within the map during the mission,

e.g., locations of interest for periodic inspection. Therefore,

the task of the MAV can be extended to periodic inspection

using the same building blocks. Another option, however

not covered by this work, is the possibility to add active

localization sensors such as RFID tags if the visual detection

is challenged by occlusions or other perceptually difficult

situations.

V. CONCLUSION

In this paper we presented a system for effective collabora-

tive sensing for MAVs and UGVs based on combining global

and local localization in GPS-denied SaR environments. We

show that we can effectively use an MAV as flying camera to

support multiple UGV operators in teleoperation, by provid-

ing third-person views. The proposed functionality of global

transferring between multiple targets shows to work reliably

throughout our experiments. Our integration and evaluation

reveals the constraints on each module and compromises to

obtain a working reliable system. For instance, the hovering

strategy to favor better detection and image quality for the

teleoperation task given the use of the same camera for both

objectives.

In future work, it would be interesting to add collision

avoidance to the MAV to lift the assumption of free space

above the UGV. Furthermore, exchanging the rigid attach-

ment of the downward facing camera with a gimbal could

be a beneficial addition to the system.

VI. ACKNOWLEDGEMENT

This work was supported by European Union’s Seventh

Framework Program for research, technological develop-

ment and demonstration under the TRADR project No.

FP7-ICT-609763, and by the National Center of Compe-

tence in Research (NCCR) Robotics through the Swiss

National Science Foundation. The authors would like to

thank Rik Bähnemann, Marius Grimm, Alexander Millane,

Helen Oleynikova, Dr. Zachary Taylor, and Renaud Dubé for

their valuable collaboration and support.

REFERENCES

[1] D. Saakes, V. Choudhary, D. Sakamoto, M. Inami,

and T. Lgarashi, “A teleoperating interface for ground

vehicles using autonomous flying cameras,” in Artificial

Reality and Telexistence (ICAT), 2013 23rd Interna-

tional Conference on. IEEE, 2013, pp. 13–19.

[2] A. Gawel, R. Dubé, H. Surmann, J. Nieto, R. Siegwart,

and C. Cadena, “3d registration of aerial and ground

robots for disaster response: An evaluation of features,

descriptors, and transformation estimation,” in Safety,

Security, and Rescue Robotics (SSRR), 2017 IEEE

International Symposium on, 2017.

[3] A. Gawel, T. Cieslewski, R. Dubé, M. Bosse, R. Sieg-

wart, and J. Nieto, “Structure-based vision-laser match-

ing,” in Intelligent Robots and Systems (IROS), 2016

IEEE/RSJ International Conference on. IEEE, 2016,

pp. 182–188.

[4] A. Gawel, M. Kamel, T. Novkovic, J. Widauer,

D. Schindler, B. P. von Altishofen, R. Siegwart, and

J. Nieto, “Aerial picking and delivery of magnetic ob-

jects with mavs,” in Robotics and Automation (ICRA),

2017 IEEE International Conference on. IEEE, 2017,

pp. 5746–5752.

[5] L. Cantelli, M. Mangiameli, C. D. Melita, and G. Mus-

cato, “Uav/ugv cooperation for surveying operations in

humanitarian demining,” in Safety, Security, and Rescue



Robotics (SSRR), 2013 IEEE International symposium

on. IEEE, 2013.

[6] E. Olson, “AprilTag: A robust and flexible visual

fiducial system,” in Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA).

IEEE, May 2011, pp. 3400–3407.

[7] P. Rudol, M. Wzorek, G. Conte, and P. Doherty, “Micro

unmanned aerial vehicle visual servoing for cooperative

indoor exploration,” in Aerospace Conference, 2008

IEEE. IEEE, 2008.

[8] L. Cantelli, P. Laudani, C. D. Melita, and G. Muscato,

“Uav/ugv cooperation to improve navigation capabili-

ties of a mobile robot in unstructured environments,” in

Advances in Cooperative Robotics, 2017, pp. 217–224.

[9] M. Saska, T. Krajnik, and L. Pfeucil, “Cooperative

µuav-ugv autonomous indoor surveillance,” in Systems,

Signals and Devices (SSD), 2012 9th International

Multi-Conference on. IEEE, 2012.

[10] J.-A. Claret, I. Zaplana, and L. Basañez, “Teleoperating

a mobile manipulator and a free-flying camera from a

single haptic device,” in Safety, Security, and Rescue

Robotics (SSRR), 2016 IEEE International Symposium

on. IEEE, 2016, pp. 291–296.

[11] C. Hui, C. Yousheng, L. Xiaokun, and W. W. Shing,

“Autonomous takeoff, tracking and landing of a uav

on a moving ugv using onboard monocular vision,” in

Control Conference (CCC), 2013 32nd Chinese. IEEE,

2013, pp. 5895–5901.

[12] N. Michael, S. Shen, K. Mohta, V. Kumar, K. Na-

gatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida,

K. Ohno et al., “Collaborative mapping of an earth-

quake damaged building via ground and aerial robots,”

in Field and Service Robotics. Springer, 2014, pp.

33–47.

[13] M. Bernard, K. Kondak, I. Maza, and A. Ollero,

“Autonomous transportation and deployment with aerial

robots for search and rescue missions,” Journal of Field

Robotics, vol. 28, no. 6, pp. 914–931, 2011.

[14] R. Bähnemann, D. Schindler, M. Kamel, R. Siegwart,

and J. Nieto, “A decentralized multi-agent unmanned

aerial system to search, pick up, and relocate objects,”

Safety, Security, and Rescue Robotics (SSRR), 2017

IEEE International Symposium on, 2017.

[15] F. Chaumette, “Visual servoing,” in Computer Vision.

Springer, 2014, pp. 869–874.

[16] D. Lee, T. Ryan, and H. J. Kim, “Autonomous landing

of a vtol uav on a moving platform using image-based

visual servoing,” in Robotics and Automation (ICRA),

2012 IEEE International Conference on. IEEE, 2012,

pp. 971–976.

[17] J. Pestana, J. L. Sanchez-Lopez, S. Saripalli, and

P. Campoy, “Computer vision based general object fol-

lowing for gps-denied multirotor unmanned vehicles,”

in American Control Conference (ACC), 2014. IEEE,

2014, pp. 1886–1891.

[18] S. Bouabdallah, A. Noth, and R. Siegwart, “Pid vs

lqcontrol techniques applied to an indoor micro quadro-

tor,” in Intelligent Robots and Systems, 2004 IEEE/RSJ

International Conference on. IEEE, 2004, pp. 2451–

2456.

[19] T. Lee, M. Leoky, and N. H. McClamroch, “Geometric

tracking control of a quadrotor uav on se(3),” in Deci-

sion and Control (CDC), 2010 49th IEEE Conference

on. IEEE, 2010, pp. 5420–5425.

[20] M. Kamel, M. Burri, and R. Siegwart, “Linear vs non-

linear mpc for trajectory tracking applied to rotary wing

micro aerial vehicles,” IFAC-PapersOnLine, vol. 50,

no. 1, pp. 3463–3469, 2017.

[21] S. Burigat, L. Chittaro, and R. Sioni, “Mobile three-

dimensional maps for wayfinding in large and com-

plex buildings: Empirical comparison of first-person

versus third-person perspective,” IEEE Transactions on

Human-Machine Systems, vol. 47, no. 6, pp. 1029–

1039, 2017.

[22] S. Minaeian, J. Liu, and Y.-J. Son, “Vision-based target

detection and localization via a team of cooperative uav

and ugvs,” IEEE Transactions on systems, man, and

cybernetics: systems, vol. 46, no. 7, pp. 1005–1016,

2016.

[23] G. S. Sukhatme, J. F. Montgomery, and R. T. Vaughan,

“Experiments with cooperative aerial-ground robots,”

Robot Teams: From Diversity to Polymorphism, pp.

345–368, 2001.

[24] M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz,

B. Grocholsky, V. Kumar, C. J. Taylor, Y. Endo, R. C.

Arkin, B. Jung, D. F. Wolf, G. S. Sukhatme, and D. C.

MacKenzie, “Adaptive teams of autonomous aerial and

ground robots for situational awareness,” Journal of

Field Robotics, vol. 24, no. 11–12, pp. 991–1014, 2001.

[25] S. L. Waslander, “Unmanned aerial and ground ve-

hicle teams: Recent work and open problems,” in

Autonomous control systems and vehicles. Springer,

2013, pp. 21–36.

[26] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Bi-

nary robust invariant scalable keypoints,” in Computer

Vision (ICCV), 2011 IEEE International Conference on.

IEEE, 2011, pp. 2548–2555.

[27] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart,

“Robust visual inertial odometry using a direct ekf-

based approach,” in Intelligent Robots and Systems

(IROS), 2015 IEEE/RSJ International Conference on.

IEEE, 2015, pp. 298–304.

[28] M. Kamel, T. Stastny, K. Alexis, and R. Siegwart,

“Model predictive control for trajectory tracking of un-

manned aerial vehicles using robot operating system,”

in Robot Operating System (ROS). Springer, 2017, pp.

3–39.

[29] R. Dubé, A. Gawel, C. Cadena, R. Siegwart, L. Freda,

and M. Gianni, “3d localization, mapping and path

planning for search and rescue operations,” in Safety,

Security, and Rescue Robotics (SSRR), 2016 IEEE

International Symposium on. IEEE, 2016, pp. 272–

273.


