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1 Learning from Data
We are in the abstract situation
where we have a system with many
input variables (predictors) and an
output (response). We want to find
cause-effect relationships, mean-
ing that when we actively change
one of the inputs (intervention),
this will cause the output to change.
This is what we do in experimental
studies. If we can just observe a sys-
tem under different settings (obser-
vational studies), it is much harder
to make a statement about causal ef-
fects. With observational data, we
can typically just make a statement

about an association between two variables. One potential danger is
the existence of confounders (a common cause for two variables).

1.1 Experimental Studies

Before designing an experimental study, we must have a precise re-
search question that is actually testable, i.e., that we can do the ap-
propriate interventions and that we can measure the right response.

An experimental study consists of:

• Treatments / Predictors: the different interventions on the
system

• Experimental units: the actual objects on which we apply
the treatments

• A method that assigns experimental units to treatments, typi-
cally randomization

• Response(s): the output that we measure

1.1.1 Treatments or Predictors

We distinguish between the following types of predictors:

• Predictors that are of primary interest and that can (ideally)
be varied according to our wishes

• Predictors that are systematically recorded such that potential
effects can later be eliminated in our calculations (covariates)

• Predictors that can be kept constant and whose effects are there-
fore eliminated

• Predictors that we can neither record nor keep constant

1.1.2 Randomization

Randomization ensures that the only systematic difference between
the groups is the treatment. This protects us from confounders and is
the reason why a properly randomized experiment allows us to make a
statement about a cause-effect relationship between treatment and re-
sponse. Typically, we do a randomization within homogeneous blocks.
This restricted version of randomization is called blocking. A block
is a subset of experimental units that is more homogeneous than the
entire set.

1.1.3 Experimental and Measurement Units

An experimental unit is defined as the object on which we apply the
treatments by randomization. On the other hand, a measurement
unit is the object on which the response is being measured. They do
not have to be the same.

1.1.4 Experimental Error

Different experimental units will give different responses to the same
treatment (experimental error). Therefore we need multiple repli-
cates receiving the same treatment. If the difference between the treat-
ments is much larger than the experimental error, we can conclude that
there is a treatment effect.

1.1.5 Blinding

Blinding means that those who measure the response do not know
which treatment is given. With humans it is common to use double-
blinding where in addition the patients do not know the assignment
either. Blinding protects us from (unintentional) bias due to expecta-
tions.

A control treatment is typically a standard treatment with which
we want to compare. It can also be no treatment at all.

2 Completely Randomized Design
We assume for the moment that the experimental units are homoge-
neous. We know how to compare two independent groups using the
two-sample t-test. If we have more than two groups, this is not appli-
cable anymore.

2.1 One-Way Analysis of Variance

On an abstract level we want to compare g ≥ 2 treatments, having N
experimental units, that we assign randomly to the different treatment
groups having ni observations each. This is what we call completely
randomized design, it is the most elementary experimental design.
If all the treatment groups have the same number of experimental
units, we call the design balanced.

sample(treat.ord) ## Random Permutation of treat.ord

2.1.1 Cell Means Model

Let yij be the observed response from the j-th experimental unit in
treatment group i. In the cells mean model we allow each treatment
group (cell) to have its own expected value. This means that yij is the
realised value of the random variable:

Yij ∼ N (µi,σ
2), or Yij = µi + 󰂃ij , 󰂃ij ∼ N (0,σ2)

As for the standard two-sample t-test, the variance is assumed to be
equal for all groups. We say that Y is the response and the treat-
ment allocation is a categorical predictor. A categorical predictor is
also called a factor. We sometimes distinguish between unordered (or
nominal) and ordered (or ordinal) factors. We can rewrite the equation
as:

µi = µ+ αi

Where αi is called the treatment effect. This will later help us to
untangle the influence of multiple treatment factors on the response.
Through this rewrite we have introduced an additional parameter, to
remove it again we need a side constraint. Possible constraints could
be:

• weighted sum-to-zero:
󰁓g

i=1 niαi = 0

• sum-to-zero:
󰁓g

i=0 αi = 0

• reference group: α1 = 0

For all of the choices it holds that µ determines some sort of ”global
level” of the data and αi contains information about differences be-
tween the group means µi from that ”global level”. If we know g − 1
of the αi, we automatically know the remaining αi, we also say that
the treatment effect has g − 1 degrees of freedom (df).

## Options takes two args, the first for unordered
## and the second for ordered factors.
## contr.poly (weighted sum-to-zero) DEFAULT
## contr.sum (sum-to-zero)
## contr.treatment (reference group)
options(contrasts = c("contr.sum", "contr.poly"))

2.1.2 Parameter Estimation

We estimate the parameters using the least squares criterion:

µ̂, α̂i = argmin
µ,αi

g󰁛

i=1

ni󰁛

j=1

(yij − µ− αi)
2

Some notation:

yi. =

ni󰁛

j=1

yij ȳi. =
1

ni
yi.

y.. =

g󰁛

i=1

ni󰁛

j=1

yij ȳi. =
1

N
y..

As we can independently estimate the values of µi, one can show that
µ̂i = ȳi.. From α̂i = µ̂i− µ̂ we can get all the other parameters needed
(depending on the side constraint).

The estimate of the error variance is called mean squared error
MSE :

σ̂2 = MSE =
1

N − g
SSE

Where SSE is the error or residual sum of square:

SSE =

g󰁛

i=1

ni󰁛

j=1

(yij − µ̂i)
2

Alternatively we can write this as:

MSE =
1

N − g

g󰁛

i=1

(ni − 1)s2i , s2i =
1

ni − 1

ni󰁛

j=1

(yij − µ̂i)
2

Where s2i is the empirical variance in treatment group i. The de-

moninator N − g ensures that σ2 is an unbiased estimator (the error
estimate has N − g degrees of freedom).

fit <- aov(y ~ x, data = d)
## Get the estimated coefficients
coef(fit) ## or dummy.coef(fit)
## (Intercept) grouptrt1 grouptrt2
## 5.032 -0.371 0.494
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2.1.3 Tests

With the two-sample t-test, we could test whether two samples share
the same mean. We will now extend this for g > 2. Saying that all
groups share the same mean is equivalent to saying:

Yij = µ+ 󰂃ij , 󰂃ij ∼ N (0,σ2)

This is the single mean model, a special case of the cell means
model. We have the following global H0 and HA:

H0 : µ1 = ... = µg

HA : µk ∕= µl for at least one pair k ∕= l

The idea is to check whether the variation between the different treat-
ment groups (”signal”) is larger than the variation within the groups
(”noise”). We can decompose the total variation as follows:

g󰁛

i=1

ni󰁛

j=1

(ȳij − ȳ..)
2

󰁿 󰁾󰁽 󰂀
SST

=

g󰁛

i=1

ni󰁛

j=1

(ȳi. − ȳ..)
2

󰁿 󰁾󰁽 󰂀
SSTrt

+

g󰁛

i=1

ni󰁛

j=1

(yij − µ̂i)
2

󰁿 󰁾󰁽 󰂀
SSE

Where SST is the total sum of squares, SSTrt the treatment sum of
squares (between groups) and SSE the error sum of squares (within
groups).

This information can be summarized in a ANOVA table.

This is a so-called one-way ANOVA, because there is only one factor
involved. If all groups share the same expected value, the treatment
sum of squares is typically small. We introduce the so called F -ratio.

F -ratio =
MSTrt

MSE
∼ Fg−1,N−g

If the variation between groups is substantially larger than the varia-
tion within groups (higher F -ratio), we have evidence against H0. The
F -distribution looks as follows:

We reject H0 if the observed value of the F -ratio, our test statistics,
lies in an ”extreme” region of the corresponding F -distribution:

F -ratio > Fg−1,N−g,1−α

Where α is often chosen as 0.05. Since this test is based on the F -ratio
we call it an F -test.

summary(fit)
## Df Sum Sq Mean Sq F value Pr(>F)
## group 2 3.77 1.883 4.85 0.016
## Residuals 27 10.49 0.389

To perform statistical inference on the individual αi’s we use:

summary.lm(fit) ## for the tests
confint(fit) ## for the confidence intervals

2.2 Checking Model Assumptions

Statistical inference is only valid if all model assumptions are fulfilled:

• The errors are independent

• The errors are normally distributed

• The error variance is constant

• The errors have mean zero

The errors 󰂃ij cannot be observed, but the redisuduals rij = yij − µ̂i

can be used as an estimate.

2.2.1 QQ-Plot

In a QQ-plot we plot the empirical quantiles of the residuals vs. the
theoretical quantiles. The plot should show a more or less straight
line if the normality assumption is correct.

plot(fit, which = 2)

2.2.2 Tukey-Anscombe Plot

The Tukey-Anscombe plot (TA-plot) plots the residuals rij vs. the
fitted values µ̂i (estimated cell means). It allows us to check that the
residuals have constant variance and zero mean.

plot(fit, which = 1)

2.2.3 Index Plot

If the data has some serial structure, i.e. a time order, we typically
want to check whether residuals close in time are more similar than
residuals far apart. For this we use the index plot. For positively
dependent residuals, we would see time periods where most residuals
have the same sign, while for negatively dependent residuals, the
residuals would jump too often from positive to negative compared to
independent residuals.

2.2.4 Transformations Affect Interpretation

Whenever we transform the response we implicitly also change the
interpretation of the model parameters. Therefore, while it is con-
ceptually attractive to model the problem on an appropriate scale of
the response, this typically has the side effect of making interpretation
more difficult. For example, if we use the logarithm:

log(Yij) = µ+ αi + 󰂃ij

All the αi have to be interpreted on the log-scale. For example, if we
us contr.treatment and we have α̂2 = 1.5. This means: on the log-scale
we estimate that the average value of group 2 is 1.5 larger than the
average value of group 1. What about the original scale? We know
that E[log(Yij)] = µ+αi, but the expected value on the original scale
does not directly follow the transformation. However, we can make a
statement about the median. On the log-scale the median is equal to
the mean, hence:

media(log(Yij)) = µ+ αi

In contrast to the mean, any quantile directly transforms with a strictly
monotone increasing function. As the median is nothing else than the
50% quantile, we have:

media(Yij) = eµ+αi

Similarly, for the ratio:

media(Y2j)

media(Y1j)
=

eµ+α2

eµ
= eα2

Hence, we can make a statement that on the original scale the median
of group 2 is eα2 = 4.48 as large as the median of group 1. This
means that additive effects on the log-scale become multiplicative ef-
fects on the original scale. Unfortunately, the statement is only about
the median and not the mean on the original scale.

If we also consider a confidence intervals for α2, e.g. [1.2, 1.8], the
transformed version [e1.2, e1.8] is a confidence interval for eα2 which is
the ratio of medians on the original scale.
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2.3 Power / What Sample Size Do I Need?

By construction, a statistical test controls the type I error rate with
the significance level α. This means that the probability that we falsely
reject H0 is less than or equal to α. There is also a type II error, oc-
curing if we fail to reject H0 even though HA holds. The probability
of a type II error is denoted by β.

The power of a statistical test is defined as

P(reject H0 | a certain setting under HA holds) = 1− β.

Intuitively, it seems clear that the ”further away” we choose the pa-
rameter setting from H0 the larger will be the power, or the smaller
will be the probability of a type II error.

2.3.1 Calculating Power for a Certain Design

Power can be thought of as the probability of success, i.e. getting
a significant result. The question of ”what sample size do I need?”
depends on the question of ”what power do I want”. This depends on:

• design of the experiment

• sample size

• significance level

• parameter setting under the alternative

We mainly the first two to maximize the power. Instead of doing the
exact calculations, we choose an alternative way. We can simulate a
lot of data sets under HA that we believe in and check how often we
are rejecting the corresponding H0. The empirical rejection rate is
then an estimate of the power. A nice side effect of doing a power
analysis is that you do the whole data analysis on simulated data and
you immediately see whether it works as planed. From a conceptual
point of view, we can do this for any design. However, the number of
parameters grows quickly with increasing model complexity.

In that sense, the results of a power analysis are typically not very
precise. However, they should still give us an idea about the required
sample size in the sense of whether we need 6 or 60 observations.

mu <- c(57, 63, rep(60, 3))
sigma2 <- 7

## This will give us the estimated power
power.anova.test(groups = length(mu), n = 4, between.var =

var(mu), within.var = sigma2)

## We can replace the argument n with power to get
## and estimate for the needed sample size per group
power.anova.test(groups = length(mu), between.var =

var(mu), within.var = sigma2, power = 0.8)

3 Contrast and Multiple Testing

3.1 Contrast

The F -test is rather unspecific, giving a yes/no answer. It does not tell
us what treatment (or combination of treatments) is significant. Such
questions can be formulated as so-called contrasts. As hypothesis we
choose:

H0 :

g󰁛

i=1

ciµi = 0 and HA :

g󰁛

i=1

ciµi ∕= 0

Typically we have the side constraint that
󰁓g

i=1 ci = 0. The contrast
is about the differences between treatments and not about the overall
response. We estimate the value of

󰁓g
i=1 ciµi with:

g󰁛

i=1

ciµ̂i =

g󰁛

i=1

ciȳi.

In addition, we could derive its accuracy (standard error), construct
confidence intervals and do tests.

library(multcomp)
## linfct is our contrast
fit.glht <- glht(fit, linfct = mcp(group = c(1, -1/2,

-1/2)))
summary(fit.glht)

Every contrast has an associated sum of squares:

SSC =
(
󰁓g

i=1 ciȳi.)
2

󰁓g
i=1

c2i
ni

It has one degree of freedom and therefore MSC = SSC . We have:

MSC

MSE
∼ F1,N−g

Two contrasts c, c∗ are orthogonal (estimates are independent) if:

g󰁛

i=1

cic
∗
i

ni
= 0

If we have g treatments, we can find g−1 different orthogonal
contrasts (one dimension is already used by the global mean). A set
of orthogonal contrasts partitions the treatment SS meaning that if
c1, ..., cg−1 are orthogonal it holds that:

SSc1 + ...+ SScg−1 = SSTrt

Multiple contrasts are all orthogonal if and only if for the matrix C
that represents them, C⊤C is diagonal.

3.2 Multiple Testing

The problem with all statistical tests is the fact that the overall type I
error rate increases with increasing number of tests. This means that if
we perform many tests, we expect to find some significant results, even
if all H0 are true. Somehow we have to take into account the number
of tests that we perform to control the overall type I error rate.

If all H0 hold, the probability of at least one false rejection is
1− (1− α)m.

We list the potential outcomes of a total of m tests, among which m0

H0 are true:

For example, V is the number of wrongly rejected H0 (type I errors,
also known as FP). Using this notation, the overall or family-wise error
rate (FWER) is defined as the probability of rejecting at least one of
the true H0’s:

FWER = P (V ≥ 1)

The family-wise error rate is very strict in the sense that we are just
interested in whether there is at least one wrong rejection. We say that
a procedure controls the family-wise error rate in the strong sense at
level α if FWER ≤ α for any configuration of true and non-true H0’s.

Another error rate is the FDR which is the expected fraction of false
discoveries:

FDR = E

󰀗
V

R

󰀘

Controlling FDR at level 0.2 means that on average in our list of sig-
nificant findings only 20% are false positives. If a procedure controls
FWER at level α, FDR is automatically controlled at level α too. This
does not hold the other way around.

We can also control the error rates for confidence intervals. We call
a set of confidence intervals simultaneous confidence intervals at level
(1 − α) if the probability that all intervals cover the corresponding
true parameter value is (1 − α). This means that we can look at all
confidence intervals at the same time and get the correct ”big picture”
with probability (1− α).

In the following, we typically start with individual p-values (the ordi-
nary p-values corresponding to the H0,j ’s) and modify them such that
the appropriate overall error rate (like FWER) is being controlled.
The modified p-values should be interpreted as the smallest overall
error rate such that we can reject the corresponding null hypothesis.

What about the F -test? Should we only do pairwise comparison if
the F -test is significant? No, the F -test is too conservative (already
built-in multiple testing correction) and conditional error rates can be
very bad.

3.2.1 Bonferroni

The Bonferroni correction is a very generic but conservative approach.
The idea is to use a more restrictive (individual) significance level of
α∗ = α/m. This procedure controls the FWER in the strong sense for
any dependency structure of the different tests. Especially for large
m, the Bonferroni correction is very conservative leading to low power.
This can also be performed by multiplying the individual p-values by
m and using the original α.

library(multcomp)
## K is a matrix with each row being a contrast
fit.glht = glht(fit, linfct = mcp(group = K))
summary(fit.glht, test = adjusted("bonferroni"))

3.2.2 Bonferroni-Holm

The Bonferroni-Holm procedure also controls the FWER in the strong
sense. It is less conservative and uniformly more powerful, which means
always better, than Bonferroni. It works in the following sequential
way:

1. Sort p-values from small to large

2. For j = 1, ...: Reject null hypothesis if pj ≤ α
m−j+1

3. Stop when reaching the first non-significant p-value and do not
reject the remaining null hypotheses.
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Note that this procedure only works with p-values but cannot be used
to construct confidence intervals.

summary(fit.glht, test = adjusted("holm"))

3.2.3 Scheffe

The Scheffe procedure controls for the search over any possible con-
trast. This means we can try out as many contrasts as we like and still
get honest p-values! This is even true for contrasts that are suggested
by the data, which were not planned beforehand, but only after seeing
some special structure in the data. The price for this is low power.

The Scheffe procedure works as follows: We start with the sum of
squares of the contrast SSC . Then we build the F -ratio:

SSC/(g − 1)

MSE

3.2.4 Tukey Honest Significant Differences

A special case of a multiple testing problem is the comparison between
all possible pairs of treatments. The output is a matrix of p-values
of the corresponding comparisons. We could now use the Bonferroni
correction method. However, there exists a better, more powerful al-
ternative which is called Tukey Honest Significant Differences (HSD).

Think of a procedure that is custom tailored for the situation where
we want to do a comparison between all possible pairs of treatments.
We get both p-values (which are adjusted such that the family-wise
error rate is being controlled) and simultaneous confidence intervals.

TukeyHSD(fit)

3.2.5 Multiple Comparisons with a Control

If we want to compare all treatment groups with a control group, we
have a so-called multiple comparisons with a control (MCC) problem.
The corresponding custom-tailored procedure is called Dunnett pro-
cedure. It controls the family-wise error rate in the strong sense and
produces simultaneous confidence intervals.

fit.glht <- glht(fit, linfct = mcp(group = "Dunnett"))
summary(plant.glht)

We get smaller p-values than with the Tukey HSD procedure because
we have to correct for less tests; there are more comparisons between
pairs than there are comparisons to the control treatment.

4 Factorial Treatment Structure
Often treatments are combinations of the levels of two or more fac-
tors, this is called factorial treatment structure. If we observe all
possible combinations, we call them crossed.

xtabs(~ factor1 + factor2, data = d)

This typically leads to questions about the interaction of the different
factors (or if the interact at all).

4.1 Two-Way ANOVA Model

We assume a setup with a factor A with a levels, a factor B with
b levels and n replicates for every combination (a balanced design).
We denote by yijk the kth observation of the response of the treat-
ment formed by the ith level of factor A and the jth level of factor

B. Instead of setting up a model for each combination, we incorporate
the factorial treatment structure directly into the two-way ANOVA
model with interaction:

Yijk = µ+ αi + βj + (αβ)ij + 󰂃ijk

Hereby α,β are the main effect of factor A,B and (αβ) is the inter-
action effect. A model without interaction term is additive, meaning
that the effect of A does not depend on the effect of B.

As usual, we’ll have to use side constraints for the parameters (we will
use the sum-to-zero constraint). For the main effects:

a󰁛

i=1

αi = 0
b󰁛

j=1

βj = 0

Hence they both have a− 1 / b− 1 degrees of freedom. For the inter-
action effect we need to make sure that it contains nothing which is
specific to one factor:

a󰁛

i=1

(αβ)ij = 0
b󰁛

j=1

(αβ)ij = 0

Therefore the interaction term has a degree of freedom of (a−1)(b−1).

4.1.1 Parameter Estimation

We estimate parameters using least squares and the sum-to-zero side
constraints. We get the following parameter estimates:

µ̂ = ȳ...

α̂i = ȳi.. − ȳ...

β̂j = ȳ.j. − ȳ...

󰁥(αβ)ij = ȳij. − µ̂− α̂i − β̂j

We end up with the mean of the observations in the corresponding cell
as the expected value of the response Yijk.

fit <- aov(y ~ a * b, data = d)
## alternatively: aov(y ~ a + b + a:b, data = d)

4.1.2 Tests

The total sum of squares SST can be partitioned into different sources.

SST = SSA + SSB + SSAB + SSE

We can again construct an ANOVA table:

In general, the degree of freedom of the error term is given by
N − (DF A)− (DF B)− (DF AB)− 1.

We now want to construct global tests for the main effects and the
interaction effect:

Interaction Effect: The null hypothesis that there is no interaction
effect can be seen as: ”The effect of factor A does not depend on the
level of factor B or the other way around”. H0 : ∀ij. (αβ)ij = 0.
Under H0 it holds that:

MSAB

MSE
∼ F(a−1)(b−1),ab(n−1)

Main Effect of A: H0 : ∀i. αi = 0. Under H0 it holds that:

MSA

MSE
∼ F(a−1),ab(n−1)

Main Effect of B: H0 : ∀j. βj = 0. Under H0 it holds that:

MSB

MSE
∼ F(b−1),ab(n−1)

In R, we get the ANOVA table and the corresponding p-values again
with the summary function. We first check whether we need the inter-
action term or not. If there is no evidence of interaction, we continue
with the inspection of the main effects. The degree of freedom of the
interaction form is the product of factors involved, e.g. (a− 1)(b− 1).

4.1.3 Individual Analysis

If we have two factors A,B then instead of a full model, we might want
to choose one model per individual level of A (e.g. due to some inter-
action). This can be improved by reusing the MSE with the degree
of freedom of the full model. This leads to a better power because the
quantiles of the F -distribution will be smaller. Similar for contrasts
we can use σ2 estimates given by the MSE of the full model. This
is especially useful if the degree of freedom of the error term is small
(< 10).

The trade off in power between these two tests is that, given the same
degrees of freedom, the test with the larger F -value returns a smaller
p-value and given the same F -values the test with the larger degrees
of freedom in the denominator will return a smaller p-value. Often,
the gain in degrees of freedom in the denominator outweighs the loss
in the F -value.

4.1.4 Single Observations per Cell

If we only have a single observation in each ”cell”, we cannot do sta-
tistical inference anymore with a model including the interaction. The
reason is that we have no idea of the experimental error. However, we
can still fit a main effects only model. If the data generating mech-
anism actually contains an interaction, we are fitting a wrong model.
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The consequence is that the estimate of the error variance will be bi-
ased (upward). Hence, the corresponding tests will be too conservative,
meaning p-values will be too large and confidence intervals too wide.
This is not a problem as the type I error rate is still controlled; we just
lose power.

Quite often, we can get rid of interactions if we look at the problem
on a different scale, i.e. if we transform the response appropriately.
A famous example is the logarithm. Effects that are multiplicative on
the original scale become additive on the log-scale, i.e. no interaction
is needed on the log-scale.

If we have no replicates and more than two factors we often remove
higher-order interaction terms (goes into error term).

4.1.5 Tukey One DF Interaction

The idea is to use only one additional term for the interaction. For a
two-factor model this looks like the following:

Yij = µ+ αi + βj + λαiβj + 󰂃ij

λ is the new term and αiβj is the product of the main effects.

4.1.6 Checking Model Assumptions

As before, we use the QQ-plot and the Tukey-Anscombe plot to check
the model assumptions.

4.1.7 Unbalanced Data

We started with the very strong assumption that our data is balanced,
i.e., we have the same number of replicates. This assumption made our
life ”easy” in the sense that we could uniquely decompose total vari-
ability into different sources and we could estimate the parameters of
the coefficients of a factor by ignoring the other factors. In practice,
data is typically not balanced and we cannot decompose the
variability. This problem can be solved by using a model comparison
approach.

We use the following notation: SS(B|1, A) denotes the reduction in
residual sum of squares when comparing the model (1, A,B) = y ∼
A+B with (1, A) = y ∼ A. The 1 denotes the overall mean µ. Inter-
pretation of the corresponding test is as follows: ”Do we need factor
B in the model if we already have factor A, or after having controlled
for factor A?”.

There are three different ways of model comparison approaches:

• Type 1 (sequential): SS(A|1) → SS(B|1, A) → SS(AB|1, A,B)

• Type 2 (hierarchical): SS(A|1, B) → SS(B|1, A) →
SS(AB|1, A,B)

• Type 3 (fully adjusted): SS(A|1, B,AB) → SS(B|1, A,AB) →
SS(AB|1, A,B)

The tests are the same for the interaction term. For the B factor type
1 and type 2 are the same.

Type 1 is what we will typically get with summary in R. Hence we get
different results whether we write y ∼ A ∗B or y ∼ B ∗A. For type 2
we can either use the function Anova in the package car or we could
compare the appropriate models with the function anova ourselves.
For type 3 we can use the command drop1 ; we have to be careful that
we set the contrast option to contr.sum in this special situation for
technical reasons, see also the warning in the help file of the function
Anova of package car.

## Type II sum of squares (Type III is similar)
library(car)
Anova(fit, type = "II", data = d)

Typically, we take MSE from the full model (including all terms) as
the estimate for the error variance to construct the corresponding F -
tests.

5 Complete Block Designs
In many situations we know that our experimental units are not ho-
mogeneous. Making explicit use of the special structure of the experi-
mental units typically helps reduce variance. We apply the treatments
to the same object / subject. This makes the subject-to-subject vari-
ability completely disappear. We also say that we block on subjects
or that an individual subject is a block.

5.1 Randomized Complete Block Designs

Assume that we can divide our experimental units into r groups, also
known as blocks, containing g experimental units each. The random-
ized complete block design (RCBD) uses a restricted randomiza-
tion scheme: Within every block, the g treatments are randomized to
the g experimental units. The design is called complete because we
observe the complete set of treatments within every block. Note that
blocking is a special way to design an experiment, or a special ”fla-
vor” of randomization. It is not something that you use only when
analyzing the data.

The experimental units should be as similar as possible within the
same block, but can be very different between different blocks. This
design allows us to fully remove the between-block variability from the
response because it can be explained by the block factor. In that sense,
blocking is a so-called variance reduction technique. The randomiza-
tion step within each block makes sure that we are protected from
unknown confounding variables. Typcial block factors are location,
day, machine operator, subjects, etc.

In the most basic form, we assume that we do not have replicates
within a block. This means that we only observe every treatment once
in each block. The analysis of a randomized complete block design is
straightforward. We treat the block factor as ”just another” factor in
our model. As we have no replicates within blocks, we can only fit a
main effects model of the form:

Yij = µ+ αi + βj + 󰂃ij

We implicitly assume that blocks only cause additive shifts. Or in
other words, the treatment effects are always the same, no matter
what block we consider.

Typically, we are not inspecting the p-value of the block factor, mainly
because of the fact that we did not randomize blocks to experimental
units and we already knew that blocks are different. We would like the
block factor to explain a lot of variation, hence if the mean square of
the block factor is larger than the error mean square MSE we conclude
that blocking was efficient.

Instead of a single treatment factor we can also have a factorial treat-
ment structure within every block, e.g. a two-factor factorial which we
would model as Y ∼ Block + A ∗ B. Here, we could actually test the
interaction between A and B even if every level combination appears
only once in every block. As we have multiple blocks, we have multi-
ple observations for every level combination of A and B! However, a
randomized complete block design can only be used with one blocking
factor.

We can test for interactions even if we only have one replicate per
combination and block.

5.2 Multiple Block Factors

We can also block on more than one factor. A special case is the so-
called Latin Square design where we have two block factors and one
treatment factor having g levels each. Hence, this is a very restrictive
assumption.

In a Latin Square design, each treatment appears exactly once in each
row and once in each column. A Latin Square design blocks on both
rows and columns simultaneously. We also say it is a row-column
design.

C1 C2 C3 C4

R1 A B C D
R2 B A D C
R3 C D A B
R4 D C B A

To analyze data from such a design, we use the main effects model:

Yijk = µ+ αi + βj + γk + 󰂃ijk

The design is balanced having the effect that our usual estimators and
sums of squares are ”working”. In R, we would use the model for-
mula y ∼ Block1 + Block2 + Treat. We cannot fit a more complex
model, including interaction effects, here because we do not have the
corresponding replicates.
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5.2.1 Graeco-Latin Squares

If we have another blocking criterion with g levels (denoted by Greek
letters, e.g. with levels α,β, γ, δ), we can use a Graeco-Latin Squares
design. The conditions are that the Latin letters (treatments) occur
once in each row and column and the Greek letters (third block factor)
occur once in each row and column, i.e. we have two superimposed
Latin Squares. In addition, each Latin letter occurs exactly once with
each Greek letter. We use the main effects model to analyze the data:

Yijkl = µ+ αi + βj + γk + δl + 󰂃ijkl

Where αi is the treatment, βj the block factor 1, γk the block factor
2 and δl the block factor 3.

C1 C2 C3 C4

R1 Aα Bγ Cδ Dβ
R2 Bβ Aδ Dγ Cα
R3 Cγ Dα Aβ Bδ
R4 Dδ Cβ Bα Aγ

5.3 Precision

In a RCB design, the squared standard errors are σ2
RCB/r, where r is

the number of blocks, and in a completely randomized design σ2
CRD/n.

If we want to have the same precision, we need to ensure that:

σ2
RCB

r
=

σ2
CRD

n

Therefore, if we knew both squared standard errors, we would have to
use a ratio of:

n

r
=

σ2
CRD

σ2
RCB

σ2
RCB is estimated by the MSE of our RCB and σ2

CRD can be esti-
mated using a weighted average of MSE and MSBlock. The relative
efficiency is then defined as:

RE =
σ̂2
CRD

σ̂2
RCB

And gives us the ratio n/r, which can be interpreted as how many
experimental units would be needed by a CRD to achieve the same
efficiency / precision. Easier for a quick check is to look at the ratio
MSBlock/MSE , because:

MSBlock

MSE
> 1 ⇔ RE > 1

6 Random & Mixed Effects Models
Up to now, treatment effects (αi) where fixed, unknown quantities that
we tried to estimate. This means we are making a statement about
a specific, fixed set of treatments. Such models are also called fixed
effects models.

6.1 Random Effects Model

6.1.1 One-Way ANOVA

We now consider situations where treatments are random samples from
a large population of treatments. We are interested in making a
statement about some properties of the whole population and
not of the observed individuals. We can model such data with the
model

Yij = µ+ αi + 󰂃ij , αi i.i.d. ∼ N (0,σ2
α)

where αi is the effect of the i samples, it is also called a random
effect. There are no longer any sideconstraints on αi. Sometimes,
such models are also called variance components models. Let us
inspect some properties of the model.

E[Yij ] = µ Var(Yij) = σ2
α + σ2

Cor(Yij , Ykl) =

󰀻
󰁁󰀿

󰁁󰀽

0 i ∕= k

σ2
α/(σ

2
α + σ2) i = k, j ∕= l

1 i = k, j = l

Observations from different samples are uncorrelated while observa-
tions from the same sample are correlated. The correlation within
the same sample is also called the intraclass correlation (ICC). When
large (σ2

α >> σ2), it means that observations from the same sample
are much more similar than observations from different samples.

The same holds for multiple random effects. For them, the correlation
is the sum of shared variance components divided by the sum of all
variance components. Parameter estimation for the variance compo-
nents σ2

α, σ
2 is done with the so-called restricted maximum likelihood

technique. The total variance of Yij is estimated as σ̂2
α + σ̂2 and the

intraclass correlation as σ̂2
α/(σ̂

2
α + σ̂2).

library(lme4) ## lmerTest would be an alternative
fit <- lmer(y ~ (1 | x), data = d)
## As usual we can use summary and confint
## Linear mixed model fit by REML [’lmerMod’]
## ...
## Random effects:
## Groups Name Variance Std.Dev.
## x (Intercept) 117 10.8
## Residual 464 21.5
## Number of obs: 40, groups: sire, 5
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 82.55 5.91 14

Confidence intervals are often larger than with fixed effect models, as
we now try to make a statement about a larger population and not
only about the measured samples. In general, variances are ”difficult”

to estimate in the sense that we need a lot of observations to have
some reasonable accuracy. To verify our model assumptions we can
again use QQ-plots, but we have to also plot σ2

α:

## QQ-plots of random effects
qqnorm(ranef(fit)$x[,1], main = "x")
## QQ-plots of residuals
qqnorm(resid(fit), main = "residuals")

If we would fit a normal one-way ANOVA model, we could estimate

σ2
α by MSA−MSE

N
.

6.1.2 More Than One Factor

So far this was a one-way ANOVA model with a random effect. We
can extend this to the two-way ANOVA situation and beyond. For the
two-way ANOVA situation we have the following model:

Yijk = µ+ αi + βj + (αβ)ij + 󰂃ijk

Hereby αi and βj are the random (main) effects. From here we can
apply the same techniques as before.

fit <- lmer(y ~ (1 | a) + (1 | b) + (1 | a:b), data = d)

6.1.3 Nesting

We introduce a new data structure, where the level of factor B has a
different meaning for every level of factor A. The two factors are not
crossed, we say B is nested in A. We can use the following model:

Yijk = µ+ αi + βj(i) + 󰂃ijk

Here αi is the random effect of A and βj(i) is the random effect of B
within A. We make the usual assumptions for the random effects:

αi i.i.d. ∼ N (0,σ2
α), βj(i) i.i.d. ∼ N (0,σ2

β)

fit <- lmer(y ~ (1 | a/b), data = d)
## Alternatively
fit <- lmer(y ~ (1 | a) + (1 | a:b), data = d)

6.2 Mixed Effects Models

In practice, we often encounter models which contain both random
and fixed effects. We call them mixed models or mixed effects
models. Let assume we have a fixed effect A and a random effect B.
We can model our data as follows:

Yijk = µ+ αi + βj + (αβ)ij + 󰂃ijk

Here αi is the fixed effect, βj the random effect and (αβ)ij the random
interaction effect. An interaction effect between a random and a fixed
effect is treated as a random effect. We assume that all random effects
are normally distributed, this means:

βj i.i.d. ∼ N (0,σ2
β), (αβ)ji i.i.d. ∼ N (0,σ2

αβ)

Now the same techniques can be used again to analyse the fixed effects
and the random effects.

options(contrasts = c("contr.treatment", "contr.poly"))
library(lmerTest)
fit <- lmer(y ~ a + (1 | b) + (1 | b:a), data = d)
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7 Split-Plot Designs
In this section we are going to focus on experimental designs that
contain experimental units of different sizes, with different randomiza-
tions. These are called split-plot designs.

A split-plot design has a whole-plot factor, treatment scheme was
applied to plots, and a split-plot factor where the treatment gets
applies to subplots. In the following example the whole-plot factor is
ctrl, new and the split-plot factor is A, B, C, D.

As we now have two different sizes of experimental units, we also need
two error terms to model the corresponding experimental errors. One
error term acting on the plot level and another one on the subplot
level. We end up with the following model:

Yijk = µ+ αi + ηk(i) + βj + (αβ)ij + 󰂃ijk

where αi is the fixed effect of the whole-plot factor and βj is the fixed
effect of the split-plot factor. Further (αβ)ij is the interaction term
and ηk(i), 󰂃ijk are the errors on the plot and subplot level. Note the
due to the whole-plot error, observations from the same plot are mod-
elled as correlated data.

library(lmerTest)
fit <- lmer(mass ~ a * b + (1 | plot), data = d)

7.1 Properties of Split-Plot Designs

Typically, split-plot designs are suitable for situations where one of
the factors can only be varied on a large scale. For example, fertilizer
or irrigation on large plots of land. The price that we pay for this
laziness on the whole-plot level is less precision, or less power, for the
corresponding main effect because we have much fewer observations
on this level. Note that the main effect of the split-plot factor and the
interaction between the split-plot and the whole-plot factor are not
affected by this loss of efficiency.

Typical signs for split-plot designs are:

• Some treatment factor is constant across multiple time-points,
while another changes at each time-point.

• Some treatment factor is constant across multiple locations,
while another changes at each location.

• When planning an experiment: Thoughts like, ”It is easier if we
do not change these settings too often”.

If we are not taking into account the special split-plot structure, the
results on the whole-plot level will typically be overly optimistic.

7.2 Split-Split Plot Design

If we have more than two factors, a split-split plot design can be per-
formed. For example, consider the following experiment design: The
yield of oats from a split-plot field trial using 3 varieties and 4 levels
of manurial treatment. The experiment was laid out in 6 blocks of 3
main plots, each split into 4 sub-plots. The varieties were applied to
the main plots and the nitrogen treatments to the sub-plots.

A whole plot is given by a plot of land in a block (B), the whole-plot
factor is variety (V). A block design (RCB) was used at the whole-plot
level. A split plot is given by a subplot of land, the split-plot factor is
given by nitrogen treatment (N). The mathematical model is:

Yijk = µ+ αi + γk + ηik + βj + (αβ)ij + 󰂃ijk

fit <- lmer(Y ~ B + V*N + (1 | B:V), data = d)

8 Incomplete Block Designs
The block designs in a previous section were complete, meaning that
every block contained all treatments. This is not always possible, this
leads to incomplete block designs (IBD). We have to decide what
subset of treatments we use in an individual block. Bad decision, can
lead to flawed designs, in the sense that certain quantities are not
estimable anymore.

We cannot fit our standard main effects model to such a design, as it
will lead to some linear functions not being estimable. This can be due
to so-called disconnected design, meaning part of the treatment /
block set do not overlap, they are disjoint. If we would fit a main effect
model to a disconnected design, multiple treatment coefficients can be
set to zero (not only one). Intuitively, we should have a good ”mix”
of treatments in each block.

8.1 Balanced Incomplete Block Designs

To achieve this good ”mix”, we can try to fulfill some optimality cri-
terion. One criterion could be, that we can estimate all treatment
differences with the same precision, i.e. all confidence intervalls for
αi − αj have the same width (for any pair i, j).

A balanced incomplete block design is an incomplete block design
where all pairs of treatments occur together in the same block equally
often, we denote this number by λ. How can we construct a BIBD?
Let’s define g as the number of treatments and k as the size of a block.
For every setting k < g we can find a BIBD by taking all possible
subsets, where we have

󰀃g
k

󰀄
. This is an unreduced balanced incom-

plete block design. In practice this might not be possible. Wether a
BIBD exists is a combinatorial problem. A necessary, but not sufficient
condition is that

r ∗ (k − 1)

g − 1
= λ

where r is the number of replicates per treatment and λ is the number
of times two treatments occur together in the same block (hence, an
integer). By definition we have N = b ∗ k = g ∗ r.

library(ibd)
des.bibd <- bibd(v = 6, b = 10, r = 5, k = 3, lambda = 2)
## arguments of function bibd are:
## - v: number of treatments
## - b: number of blocks

## - r: number of replicates (across all blocks)
## - k: number of experimental units per block
## - lambda: lambda
des.bibd$design ## here, blocks are given by rows
des.bibd$NNP ## gives the concurrency matrix

In a partially balanced incomplete block design, some treatment pairs
occure together more often than other pairs.

Row-Column IBD - In these designs, we have two block factors
(rows and columns) and one or both of them are incomplete blocks.

Youden Squares - A Youden Square is rectangular such that the
columns form a BIBD and for the rows each treatment appears equally
often in each row. The columns therefore form a BIBD and the rows
an RCD.

8.2 Analysis of Incomplete Block Designs

The analysis of an incomplete block design is as usual. We use a fixed
block factor and a treatment factor leading to:

Yij = µ+ αi + βj + 󰂃ij

Because we do not observe all the block and treatment combinations
equally often (some are simply missing), we are faced with an unbal-
anced design. We typically use sum of squares for treatment effects
that are adjusted for block effects.

tab <- xtabs(~ a + b, data = d)
## We have to transform the design information to
## the desired form
library(crossdes)
m <- t(apply(tab, 2, function(x) (1:4)[x != 0]))
## isGYD now tells us if the IBD is balanced
isGYD(m)

We fit the model: y ∼ block + treatment (instead of fitting y ∼
treatment + block). Since want to check whether the treatment has
any influence on the response after having controlled for the variation
between blocks (only important with summary). As it is an unbalanced
data set, we use drop1 to analyse the data, such that we get the sum
of squares.

fit <- aov(y ~ a + b, data = d)
drop1(fit, test = "F")

8.2.1 Intra- and Inter-Block Analysis

Up until now, we estimated treatment effects by adjusting for block
effects. This means that whatever is special to a block is fully allocated
to the block effect and does not affect the treatment effect. Basically,
the estimate of the treatment effect is based on the ”leftovers.” This
is also known as an intra-block analysis.

On the other hand, if we treat the block factor as a random effect, the
mean of the values of a block implicitly also contain information about
the treatment effects. An analysis which is based on this information
is known as an inter-block analysis. This leads to another estimate
of the treatment effects. Both approaches can be combined.

library(lmerTest)
fit.ibd <- lmer(y ~ treat + (1 | block), data = dat)
summary(glht(fit.ibd, linfct = mcp(treat = c(1, 0, 0, 0, 0,

-1))))
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9 Various

Standard Deviation =
√
Variance, Standard Deviation = σ,

Variance = σ2

9.1 Two-Sampled t-Test

9.1.1 Unpaired Data

We have Xi i.i.d. ∼ N (µX ,σ2) and Yj i.i.d. ∼ N (µY ,σ2) with Xi, Yj

independent. For the t-test, H0 : µX = µY and HA : µX ∕= µY . Then:

T =
X̄n − Ȳm󰁴

s2

n
+ s2

m

∼ tn+m−2 under H0

9.1.2 Paired Data

We have independent Di = Xi − Yi and:

D̄ =
1

n

n󰁛

i=1

Di ∼ N (µD,σD/
√
n)

H0 and HA as before and:

T =
√
n

D̄

SD
∼ tn−1 under H0

t.Per1 <- d$AGGREG[d$PERIODE == 1]
t.Per2 <- d$AGGREG[d$PERIODE == 2]
t.test(t.Per1, t.Per2, paired = TRUE)
##
## Paired t-test
##
## data: t.Per1 and t.Per2
## t = -4.27, df = 10, p-value = 0.0016
## alternative hypothesis: true difference in means is not

equal to 0
## 95 percent confidence interval:
## -15.6311 -4.9143
## sample estimates:
## mean of the differences
## -10.273

The two-way ANOVA with single replicates and the t-test give exactly
the same results.

9.2 Charts

stripchart(y ~ x, vertical = T, pch = 1, data = d)
boxplot(y ~ x, data = d)
with(d, interaction.plot(x.factor = a, trace.factor = b,

response = y))

If the lines of an interaction plot are NOT parallel, there is
possibly an interaction effect we have to consider.

9.3 Data Generation / Calculations

## Generate 10 A’s followed by 10 B’s
rep(c("A", "B"), each = 10)

## Alternate A, B 10 times
rep(c("A", "B"), times = 10)

## Toss a coin 20 times (1/2 prob. for A, B)
sample(c("A", "B"), 20, replace = T)

## Choose 10 A’s at random, the rest B’s
sample(rep(c("A", "B"), times = 10), 20, replace = F)

## Overall mean of column A
mean(d$A) ##or aggreagte(A ~ 1, data = d, mean)

## Group mean per B
aggregate(A ~ B, data = d, mean)

9.4 Examples

9.4.1 Split-Plot Design, ANOVA Skeleton

Three new types of pizzas in six different packings are investigated by
90 consumers on a 0-10 scale. Each person rates the six packings of
just one type of pizza, that is pizzas are randomized to persons and
each person tastes the different packings in random order.

This is a split-plot design with persons as whole plots and rating or-
ders (or time slots) as split plots. Pizza type is the whole-plot factor,
packing the split-plot factor. We have:

Yijk = µ+ βi + ηk(i) + αj + (αβ)ij + 󰂃k(ij)

Where ηk(i) is the whole-plot error. The ANOVA skeleton is given by:

9.4.2 Split-Plot Design with Blocking

A soil scientist wanted to investigate the effects of nitrogen supplied
in four different forms and later evaluate those effects combined with
those of thatch accumulation (two, five or eight years of accumulation)
on the quality of an established turf. A golf green had been constructed
and seeded with grass on the experimental plots. The nitrogen treat-
ment plots were arranged on the golf green in a randomized complete
block design with two block levels. Each of the eight experimental
plots was split into three subplots to which the levels of the second
treatment factor were randomly assigned.

This is a split-plot design with whole-plot factor nitrogen, split-plot
factor thatch and a block factor block.

Yijkl = µ+ γi + αj + βk + (αβ)jk + ηl(ij) + 󰂃l(ijk)

Where l = 1, γi fixed effect of the block, αj fixed main effect of nitro-
gen, βk fixed main effect of thatch, (αβ)jk interaction, ηl(ij) error on
the whole-plot level and 󰂃l(ijk) the error on the split-plot level.

Ex. We fitted the RCB experiment and plot plot(TukeyHSD(x =
"fit", "treatment", conf.level = 0.95)).

Which treatment differences are signifi-
cant?

□ 2− 1, 3− 1, 4− 1

□ 3− 2

□ 4− 2, 4− 3

□ 2− 1

⊠ 2− 1, 3− 1, 4− 1, 3− 2

Since a treatment difference is significant
if the corresponding confidence interval does not cover 0.

Ex. Given a two-way ANOVA model with a significant factor A, an in-
significant factor B and a significant interaction term. Can we remove
any terms from the model?

No, we should not remove a significant term and since the interaction
is significant we cannot remove the main effect B.

Ex. When fitting two ANOVA models with fit1 <- aov(y age
* educ, data = survey) and fit2 <- aov(y educ * age, data =
survey), we might encounter different p-values for both age and educ,
what might be the reason?

If there is a difference, the design must be unbalanced. In that case,
the type I sum of squares used in aov() is dependent on the order of
how the variables appear in the model. The interaction has the same
p-value because it is adjusted for age and educ in both cases.

Ex. The mixed effect model Ratingij = µ+Typei +Subjectj + 󰂃ij is

used. Type is a fixed effect and Subject a random (block) factor. For
fixed j, are the Ratingij uncorrelated?

No, they are not as subjects have an effect since Var(Subjecti)) ∕= 0.

Ex. Which statement about RCB is true:

□ A RCB tries to ensure heterogeneity within blocks

⊠ The error with r blocks hard r − 1 less DF than the error of a
completely randomized design with the same number of exper-
imental units.

□ The number of experimental units in a block can be less than
the number of treatments

□ Can be constructed from a completely randomized design by
imposing blocking after randomization

Ex. Given three levels of a treatment, which design should be pre-
ferred if interested in difference of treatments (assuming the variance
of the units is the same for both designs)?

D1: 2 pieces of land with 3 sub-fields each and form 2 complete blocks

D2: 3 pieces of land with 2 sub-fields each and form 3 blocks

⊠ D1 should be preferred
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□ D2 should be preferred

□ There is no important difference between D1 and D2

The incomplete block design D2 has more variance in the estimates of
treatment differences than the complete block design D1. Therefore
D1 should be preferred.

Ex. Consider a balanced one-way ANOVA model. What happens to
the 95%-quantile of the F -distribution of the global test if we increase
the number of observations?

□ The quantile gets larger

⊠ The quantile gets smaller

□ The quantile stays the same

Ex. Consider a test with 4 types of toothpaste and 3 types of pack-
aging. 60 participants have been selected and each participant is sup-
posed to test and rate every packaging of exactly one toothpaste type.
Which type of design is this?

⊠ Split-plot design with participants as whole-plots

□ Split-plot design with toothpaste as whole-plots

□ Split-plot design with packagings as whole-plots

Ex. Consider the following experimental design with a treatment fac-
tor having levels A,B,C,D,E, F . Which of the statements is true?

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
A A B D D B
B C C E F F

□ It is not possible to estimate all treatment differences

□ The design is balanced

□ This is an unreduced BIBD

⊠ If estimating each of the treatment differences A−B,F−B, and
D−F has variance 2σ2, then estimating the treatment difference
A−D via the decomposition A−D = (A−B)−(F−B)−(D−F )
has variance 6σ2.

Ex. Which of the statements is wrong?

□ Blocking is used to reduce variance by choosing blocks such that
each has homogeneous experimental units.

⊠ In an RCB, we can never test interactions between block and
treatment.

□ In an RCB with a factorial treatment structure, we can test
interactions between treatment factors even if we only observe
every treatment combination once in each block.

□ Blocking can increase precision, even if the p-value correspond-
ing to the block factor is not significant.

Ex. Which of the statements about multiple testing is true?

□ The more different tests we perform (each at a fixed level α),
the less likely we are committing a type I error.

□ Tukey Honest Significant Difference is less powerful than the
Bonferroni correction.

⊠ The family-wise error rate (the probability of committing a type
I error) can always be controlled by using the Bonferroni pro-
cedure.

Ex. Given 3 p-values (0.12, 0.48, 0.09), applying Bonferroni correction
to the p-values. What is the 2nd largest p value?

□ 0.03 □ 0.12 ⊠ 0.27 □ 0.36

The corrected p-values are (0.36, 1.44, 0.27).

Ex. Assuming a fixed effect model with crossed factors A,B. Factor
A has a fixed effect on the response and factor B has a random effect
on the response. There is also a random effect specifically for the in-
teraction between A and B. The fixed effect and confidence intervals
of A are interpreted as...

⊠ the population average of the effect of A (across all levels of B).

□ the average effect of A for the observed levels of factor B.

Ex. Select the correct statement about Latin Squares.

□ In a Latin Square design, the treatments are randomly assigned
to the combination of levels of the block factors (without any
restriction).

□ In a Latin Square design, every treatment appears exactly once
for each combination of the levels of the block factors.

⊠ In a Latin Square design, every treatment appears exactly once
for each level of any of the two block factors.

□ A Youden square design is an extension of a Latin Square design
to three block factors.

Ex. Conduct an experiment by recording the exam scores of stu-
dents and whether they attend the exercise courses or not. A student
is randomly assigned to go to the exercise session or not. There is
a significant, positive effect of attendance on exam scores. Is this a
well-designed and valid experiment?

□ Yes ⊠ No

There is only one experimental unit since there is only one exercise
session and not multiple.

Ex. Andrew and George want to fit a One-Way Anova model. For
the encoding scheme of factors, Andrew uses the contr.sum constraint,
whereas George uses the contr.treatment constraint.

□ The estimated coefficients and predicted values will be the same.

□ The estimated coefficients will be the same, but the predicted
values per treatment group will be different.

⊠ The estimated coefficients will be different, but the predicted
values per treatment group will be the same.

□ The models will be different and might even yield to different
statistical inference.

Ex. You perform a test of 10 hypotheses and get the following 10
p-values: 0.001, 0.004, 0.012, 0.024, 0.043, 0.048, 0.051, 0.089, 0.212,
0.762. You want to control the FWER at 5% and use a Bonferroni
correction. How many hypotheses do you reject?

□ 1 ⊠ 2 □ 3 □ 4

Ex. The TAs want to fit a two-way ANOVA model but the data is
unbalanced. The first model is aov(y ∼ A*B) and the second one is
aov(y ∼ B*A). What do we expect from the results?

□ All the p-values will be the same.

⊠ Only the p-value of the interaction term is guaranteed to be the
same in both cases.

□ Only the p-values of the main effects are guaranteed to be the
same.

□ The fitted coefficients are different.

Ex. The denominator mean square for F -tests in random effects mod-
els will always be the MSE , like in fixed effects models.

□ True ⊠ False

Ex. Suppose we are given data coming from a Split-Plot design exper-
iment and we decide to fit a two-way ANOVA instead of the correct
model. What can we say in general about the resulting p-values?

□ The p-values will be the same.

□ The p-values will pessimistic.

⊠ The p-values will optimistic.

Ex. Given the random effect model Yij = µ+αi+󰂃ij , i = 1...4, j =
1...5, what is the number of parameters?

□ 2 ⊠ 3 □ 4 □ 5

The parameters are µ,σ2
α and σ2.

Ex. You run a random effects model and get the following R-output.
Can you reject the null-hypothesis that the true variance for random
effect of batch is equal to 0.3?

Computing profile confidence intervals...
sd_(Intercept)|batch 0.50143 1.19412
sd_sigma. 0.58312 0.97491
(Intercept) 10.28499 11.24959

□ Yes, can reject H0

⊠ No, cannot reject H0
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We have to square the confint to get the confint for the variance.

Ex. We are testing some hypothesis while controlling the Type I error
at level alpha = 0.05. Is the following statement True or False? If we
increase the sample size N , the Power increase and the Type I error
probability decreases.

□ True ⊠ False

The Type II error decreases while the Type I error is fixed at level
alpha!

Ex. The denominator mean square for F -tests in random effects mod-
els will always be the MSE , like in fixed effects models.

□ True ⊠ False

Ex. Assume we perform 100 statistical tests. We use the rule to reject
the H0 if the corresponding p-value is less than 0.05. If all 100 null
hypotheses are true, then we expect to get ...

⊠ 5 significant results.

□ 5 significant results but only if the tests are independent.

□ Cannot be judged with the available information.

Ex. Consider the following block design and the statements: 1) we
can estimate the difference between treatment A and C, 2) we can
estimate the difference between treatment A and D.

□ True / True ⊠ True / False □ False / True □ False / False

The day component is disconnected, therefore we cannot decide if a dif-
ference comes from the different days and we can only make statement
about the results within the same day.
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