
Compiler Design
by dcamenisch

A compiler translates one programming language to another. The sim-
plified compiler has the following structure:

• Lexical Analysis: Source Code → Token Stream
• Parsing: Token Stream → AST
• Intermediate Code Generation: AST → Intermediate Code
• Code Generation: Intermediate Code → Target Code

The first two steps are the frontend and machine independent, the last
step is the backend and machine dependent.

x86lite
x86lite memory consists of 264 bytes numbered 0x00000000 through
0x0xffffffff, split into 8-byte quadwords (has to be quadword-
aligned).

The stack grows from high addresses to low addresses, rsp points to
the top of the stack, rbp points to the bottom of the current stack
frame.

The stack sits at the top of memory space, at the bottom we have code
and data followed by the heap.

Register: rax, rbx, rcx, rdx, rsi, rdi, rsp, rbp, rip, r08-r15

Flags: OF overflow/underflow, SF sign (1 = negative), ZF zero

Condition Codes:

Code Condition
e (equality) ZF
ne (not equals) not ZF
g (strictly greater) not ZF and SF = OF
l (strictly less) SF ∕= OF
ge (greater or equal) SF = OF
le (less or equal) SF ∕= OF or ZF

Instructions: INSTR SRC DEST (AT&T syntax), prefix register with %
and immediate values with $. Note that subq is DEST - SRC.

Operands:
• Imm: 64-bit literal signed integer
• Lbl: label representing a machine address
• Reg: one of the registers, the value is its content
• Ind: machine address

Ind is offset(base, index) is calculated base + index * 8 +
offset.

Thus, %rax refers to the contents of the register, while (%rax) refers
to either the memory address or the contents of the memory address,
depending on whether its used as location or value.

x86 assembly is organized into labeled blocks, indicating code loca-
tions used by jumps, etc. Program begins execution at designated
label (main).

Calling Conventions
• Setup Stack Frame: pushq %rbp movq %rsp, %rbp
• Teardown: popq %rbp
• Caller Save - freely usable by the called code.
• Callee Save - must be restored by the called code (rbp, rsp, rbx,

r12-15).
• Arguments: In rdi, rsi, rdx, rcx, r08, r09 and starting with

n = 7 in (n− 7) + 2) ∗ 8 + rbp
• Return value in rax.
• 128 byte ”red zone” - scratch pad for the callee (beyond rsp),

this means a function can use up to 128 byte without allocationg
a stack frame..

Intermediate Representations
Direct translation is bad as it is hard to optimize the resulting assem-
bly code. The representation is too concrete, as it already committed
to using certain registers etc. Further retargeting the compiler to a
new architecture is hard. Finally control-flow is not structured, ar-
bitrary jumps from one code block to another. Implicit fall-through
makes sequences non-modular.

Using a universal IR means that for p programming languages and q
ISA’s, we only need p+ q compilers instead of p ∗ q.

IR’s allow machine independent code generation and optimization.

Multiple IR’s: get program closer to machine code without losing the
information needed to do analysis and optimizations (high / mid / low
level IR).

Good IR: Easy translation target, easy to translate, narrow interface
(fewer constructs means simpler phases / optimizations).

Basic Blocks are a sequence of instructions that are always executed
from the first to last instruction. They start with a label and end with
a control-flow instruction (no other control-low instruction or label).

Basic blocks can be arranged into a control-flow graph (CFG): Nodes
are basic blocks - directed edges represent potential jumps.

LLVM (Low Level Virtual Machine)
Storage Types: local variable %uid, global variable @gid, abstract
locations (stack-allocated with alloca), heap-allocated structures
(malloc).

Each %uid appears on the left-hand side of an assignment only once in
the entire control flow graph (SSA).

The entry block of the CFG does not have to be labeled, the last
instruction of a block is called the terminator.

Example Program:
@s = global i32 42

declare void @use (i64)

define i64 @foo(i64 %a, i64* %b) {
%sum = add nsw i64 %a, 42
%cond = icmp sgt i64 %sum, 100
br i1 %cond , label %then , label %else

then:
call void @use(i64 %sum)
ret i64 %sum

else:
store i64 %sum, i64* %b
ret i64 %sum

}

GEP
LLVM supports structured data with the use of types, e.g.:

%struct.Node = type {i64, %struct.Node*}

To compute pointer values of structs or index into arrays, LLVM pro-
vides the getelementptr instruction. Given a pointer and a path
through the structured data pointed to by that pointer, GEP com-
putes an address - analog of LEA.

getelementptr <ty>* <ptrval> {, <ty> <idx>}*

GEP never dereferences the address it is calculating.

Lexing
Lexing is the process of taking the source code as an input and pro-
ducing a token stream as output. The problem is to precisely define
tokens and matching tokens simultaneously.

One way of implementing a lexer is, using regular expressions. Regex
rules precisely describe a sets of strings. But regex alone can be am-
biguous if we have multiple matching rules. Most languages therefore
choose the longest match or have another specified order.

Regex can be implemented by forming an NFA and then transforming
it to a DFA.

Parsing
In this part we take the token stream and generate an abstract syn-
tax tree (AST). Parsing itself does not check things such as variable
scoping, type agreement etc.

Parsing uses a more powerful tool than regex - context free grammars
(CFG).

Chomsky Hierarchy:
• Regular - Productions have at most one nonterminal and it is at

the start or end of the word
• Context-Free (CFG) - LHS of productions only have a single non-

terminal
• Context-Sensitive
• Recursively Enumerable

An example for a non CFG would be anbmcndm. This corresponds to
methods having matching parameters.

A CFG consists of a set of terminals, a set of nonterminals, a start
symbol and a set of productions. A production consists of a single
nonterminal LHS and an arbitrary RHS.

Derivation Orders - Productions can be applied in any order, how-
ever they will all lead to the same parse tree. There are two standard
orders:

• Leftmost derivation: Find the left-most nonterminal and apply a
production to it

• Rightmost derivation: Find the right-most nonterminal and apply
a production there

A grammar is ambiguous if there are multiple derivation trees for the
same word. This can be a problem for associative operators.

In CFGs ambiguity can (often) be removed by adding nonterminals
and allowing recursion only on one side. For example, we want + to
be left associative, ∗ right associative and ∗ has the higher precedence:

S -> S + S | S * S | (S) | n

Becomes:

S_0 -> S_0 + S_1 | S_1
S_1 -> S_2 * S_1 | S_2
S_2 -> n | (S_0)

LL Grammars and Top-Down Parsing
When parsing a grammar top-down, we can encounter the problem
of multiple productions being possible.

LL(1) means Left-to-right scanning, Left-most derivation, 1 lookahead
symbol.

Left-factoring a grammar can make it LL(1): If there is a common
prefix we can add a new non-terminal at the decision point. We also
need to eliminate left-recursion:

S -> S a_1 | ... | S a_n | b_1 | ... | b_m

Becomes:

S -> b_1 S‘ | ... | b_m S‘
S‘ -> a_1 S‘ | ... | a_n S‘ |

1

To actually use these grammars, we need to translate them into a
parsing table:

For a given production A → γ:
• Construct the first set of A, this set contains all terminals that

begin strings derivable from the nonterminal. For each nonter-
minal of the first set, add the corresponding production to the
table.

• Construct the follow set of A, this set contains all terminals that
can appear immediately to the right of the given nonterminal. If
is derivable by the production, add the corresponding production
to the table.

Intuitively, if we’re at nonterminal (T, S, S’) then what productions
allow us to parse the terminal (+, $).
This can be extended to LL(k) grammars by generating a bigger table.
Is it an LL(1) grammar? No, if there’s a cell with multiple options.

LR Grammars and Bottom-Up Parsing
LR grammars are more expressive than LL grammars. They can han-
dle left-recursive and right-recursive grammars. However error report-
ing is poorer.

Bottom-up parsing is a sequence of shift and reduce operations:
• Shift: Move look-ahead token to stack.
• Reduce: Replace symbols γ at the top of the stack with nonter-

minal X such that X → γ is a production. Pop γ, push X.
The parser state is made up of a stack of nonterminals and terminals,
as well as the so far unconsumed input.

Action Selection Problem:
• Given a stack σ and a lookahead symbol b, should the parser

shift b onto the stack (new stack is σb) , or reduce a production
X → γ, assuming that σ = αγ?

• Sometimes the parser can reduce, but should not, sometimes the
stack can be reduced in different ways.

We want to decide based on a prefix α of the stack and the look-ahead.

In LR(0) we have states: items to track progress on possible upcoming
reductions. An item is a production with an extra separator ”.” in the
RHS.

The idea is that the stuff before the ”.” is already on the stack and
the rest is what might be seen next.

Constructing the DFA:
• Add new production: S′ → S$, this is the start of the DFA.
• Add all productions whose LHS occurs in an item in the state just

after the dot. Note that these items can cause more items to be
added until a fixpoint is reached (duplicates allowed).

• Add transitions for each possible next (non-)terminal. Shift the
dot by one in each of those states.

• Every state that ends in a dot is a reduce state.

Instead of running the DFA from start for each step, we can store the
state with each symbol on the stack - representing the DFA as a table
of shape state × (terminals + nonterminals).

An LR(0) machine only works if states with reduce actions have a sin-
gle reduce action else we will encounter shift/reduce or reduce/reduce
conflicts (use LR(1) grammar).

In LR(1), each item is an LR(0) item plus a set of look-ahead symbols
A → α.β, L.
To form the LR(1) closure, we first do the same as for LR(0). Addi-
tionally for each item C → .γ we add due to a rule A → β.Cγ, L, we
compute its look-ahead set M including FIRST(γ) and if γ can derive
 also L.

For LR(1) we have a shift-reduce conflict if the shifted token is con-
tained in the follow set of the reduction.

FirstClass Functions
Consider the Lambda Calculus. It has variables, functions and func-
tion application. The only values are (closed) functions. Instead of
(fun x -> e) we write: λx.e

Function application is interpreted by substitution. In fun y -> x +
y, x is said to be free and y is bound by fun y.

A term without free variables is closed, else it is open.
Two terms that differ only by consistent renaming of bound variables
are alpha equivalent.

To avoid accidently capturing a free variable by a substitution
e1{e2/x}, we first pick an alpha equivalent version of e1 such that
the bound variables do not mention the free variables of e2.

Some special Lambda Calculus terms:
• Omega Term (infinite loop):

(λx. x x)(λx. x x)
• Y-Combinator (computes fixed point so Y g = g(Y g)):

λf.(λx.f(x x))(λx.f(x x))

Operational Semantics is a way to give meaning to a program (in-
terpreter) using inference rules. exp ⇓ v means exp evaluates to v.

Inference rules are of the form G;L ⊢ e : t. This means in the global
environment G and local environment L the expression e is of type
t. Sometimes we include a third symbol on the LHS referring to the
return type.

With this we can build up derivation or proof trees. Leaves of the tree
are axioms.

Typing
Applying a set of inference rules allows for type checking of a pro-
gram. For simply typed lambda calculus this implies termination, for
well-typed expressions we are a bit more general.

A well-typed program either terminates in a well-defined way, or it
continues computing forever.

If we view types as sets of values, there is a natural inclusion relation
Pos ⊆ Int. This gives rise to a subtype relation P <: Int and to a
subtyping hierarchy.

The LUB (least upper bound) is defined for two types T1 ∨ T2.

A subtyping rule is sound if it approximates the underlying subset
relation, i.e. if T1 <: T2 implies [[T1]] ⊆ [[T2]]. It follows that
[[T1]] ∪ [[T2]] ⊆ [[LUB(T1, T2)]].

Argument type is contravariant (it is okay if a function takes more
arguments), output type is covariant (it is okay if a function returns
less arguments).

S1 <: T1 T2 <: S2

(T1− > T2) <: (S1− > S2)

For records, we have to decide between width and depth subtyp-
ing. In width subtyping, a record is a subtype of another record if it
has more (or the same number of) fields (order matters!). In depth
subtyping a record is a subtype of another if every elements type is a
subtype of the others.

Mutable structure need to be invariant - else one can break type-safety.
Thus, T ref <: S ref =⇒ T = S.

2

OAT Type System
Definitely non-null reference types: R (named) mutable structs with
width subtyping, strings, arrays

Possibly-null reference types: R?

Subtyping: R <: R?

Note that string[] is not a subtype of string?[] but string[] <:
string[]? holds.

Compiling Objects
The dispatch problem occurs when the same interface is implemented
by multiple classes. In the client program, it may be necessary to dy-
namically choose witch implementation to use. In order to do this,
object contain a pointer to a dispatch vector (vtable) with pointer
to method code.

For extension / inheritance, the dispatch vector gets extended at the
end.

For multiple inheritance there are different approaches:
• Allow multiple DV tables (C++), choose which DV to use based

on static types, casting requires runtime operations.
• Use a level of indirection: Map method identifiers to code pointers

using a hash table, search up through the class hierarchy.
• Give up separate compilation: Use sparse dispatch vectors or bi-

nary decision trees.
Multiple Dispatch Vectors: Objects may have multiple entry points
with individual DVs, casts change entry point of a variable

Optimizations
There are different kinds of optimization: Power, Space, Time.

• Constant Folding: If operands are statically known, compute
value at compile-time. More general algebraic simplification: Use
mathematical identities.

• Constant Propagation: If x is a constant replace its uses by
the constant.

• Copy Propagation: For x = y replace uses of x with y
• Dead Code Elimination: If side-effect free code can never be

observed, safe to eliminate it.
• Inlining: Replace a function call with the body of the function

(arguments are rewritten to local variables).
• Code Specialization: Create Specialized versions of a function

that is called form different places with different arguments.
• Common Subexpression Elimination: It is the opposite of

inlining, fold redundant computations together.
• Loop Optimizations

• Hot spots often occur in loops (esp. inner loops)
• Loop Invariant Code Motion (hoist outside)
• Strength Reduction (replace expensive ops by cheap ones by

creating a dependent induction variable)
• Loop Unrolling

Dataflow Analysis
Almost every dataflow analysis is a variation of the following algorithm.

Forward Must Dataflow Analysis
for all n, in[n] = T, out[n] = T
repeat until no change in ’in’ or ’out’

for all n
in[n] = intersect out[n‘] for all n‘ in pred[n]
out[n] = gen[n] union (in[n] \ kill[n])

Backward: swap in and out and pred with succ.
May: swap ⊤ with ⊥ or ∅ and replace intersect with union.

For each dataflow analysis we only need to define the set gen, kill as
well as the domain of dataflow values L and a combining operator ∪
or ∩.
Liveness (Backward, May)

We can use the same registers for multiple %uids if they are not alive
at the same time (live[n] = uids used before end/reassign). We define
gen[s] as all the variables used (RHS) and kill[s] as all the variables
defined by statement s (LHS). L corresponds to the variables and the
combination operator to the set union.

It holds: in[n] ⊇ gen[n], in[n] ⊇ out[n] \ kill[n] and out[n] ⊇ in[n′] if
n′ ∈ succ[n].

Reaching Definition (Forward, May)

What variable definitions reach a particular use of a variable? Used
for constant and copy propagation. in / out is the set of nodes defin-
ing some variable such that the definition may reach the beginning
resp. end of the current node. For a statement di : A = B : we have
di ∈ gen[n] and kill[n] = {di|di defines A (LHS) \ gen[n] (inclusive
of previous nodes)

It holds: out[n] ⊇ gen[n], in[n] ⊇ out[n′] if n′ ∈ pred[n] and out[n] ⊇
in[n] \ kill[n] or out[n] ∪ kill[n] ⊇ in[n].

Available Expressions (Forward, Must)

Used for common subexpression elimination. in / out are the set of
nodes whose values are available on entry / exit of the current node.
For a statement di : A = B : we have di ∈ gen[n] \ kill[n] and
kill[n] = {di|di uses A (RHS)}
Very Busy (Backward, Must)

An expression is very busy at location p, if every path from p must
evaluate the expression before any variable is redefined. It is used for
hoisting expressions. in/out/gen allow for expressions (x+y)

gen[B] = {expr; expr a op b is evaluated in B, neither a nor b are
subsequently redefinded in B }
kill[B] = {expr; a or b of expr a op b are defined in B and a op b is
not subsequently evaluated in B}
Dominators (Forward, Must)

Define dom[n] as the set of all nodes that dominate n, i.e. dom[n] =
out[n], gen is the singelton set of the node itself, kill is the empty
set.

The iterative solution computes the ideal meet-over-path solution if the
flow function distributes over ∩. Most of the problems that express
properties on how the program computes are distributive and compute
the MOP solution, analyses of what the program computes do not (e.g.
constant propagation). Our analyses also always terminate, as the flow
function (out[n] = ...) is monotonic.

Soundness is defined as an under approximation of the set of vari-
ables.

Register Allocation
Linear-Scan Register Allocation

Compute liveness information and then scan through the program, for
each instruction try to find an available register, else spill it on the
stack.

Graph Coloring

Compute liveness information for each temp, create an inference graph
(nodes are temps and there is an edge if they are alive at the same
time), try to color the graph.

Kempe’s Algorithm:

• Find a node with degree < k and cut it out of the graph
• Recursively k-color the remaining subgraph
• When remaining graph is colored, there must be at least one free

color available for the deleted node.
• If the graph cannot be colored we spill a node and try again.

This can be improve by adding move related edges (temps used in a
move should have the same color). More aggresively, we may coalesce
two move-related nodes into one. This may increase the degree of a
node, so we need to be careful.

Brigg’s strategy is to only coalesce if the resulting node has fewer than
k neighbors with degree ≥ k.

George’s strategs is to only coalesce if for every neighbor t of one of
the coalescing nodes x, t also interferes with the other coalescing node
or t has degree < k.

Precolored Nodes: Certain variables must be pre-assigned to registers
(call, imul, caller-save registers)

Dominator Trees
To identify loops in a CFG we use domination. A dominates B (A dom
B), if the only way to reach B from start node is via A. This relation
is transitive, reflexive and anti-symmetric. This can be computed as
forward must dataflow analysis. A strictly dominate B, if A ∕= B and
A dom B. The Hasse diagram of the dominates relation is called the
dominator tree.

A loop is a set of nodes in the CFG, with a distinguished entry (header)
and exit nodes. It is a strongly connected component (SSC), where
every node is reachable from every other node. A loop contains at
least 1 back edge (target dominates the source).

How-to: Natural Loop
For a back edge s → h, s = source, h = header:

• Look for all nodes dominated by your header (dominates itself)
• From these, take the ones which you can use to reach s without

going through h
• Merge loops with the same header h

We can formally define a loop as:

L(s → h) = {n′ | s is reachable from n′ in G\{h}} ∪ {h}
The dominance frontier of a node A is the set of all CFG nodes γ
such that A dominates a predecessor of γ, but does not strictly dom-
inate γ. Intuitively: starting at A, there is a path to γ, but there is
another route that does not go through A. It is the set of nodes where
A’s dominance stops.

How-to: Dominance Frontier
For each node X: All neighbor nodes it can get to that have some
other way to get there are part of DF[X]. Then do the same for any
nodes dominated by X and add them all to DF[X].

How-to: Least Fixed Point of Join Points
J [N] = DFk[N] where DF0 = DF [N]; DFi+1[N] = DF [DFi[N] ∪N]
To determine the join points (places where φ-nodes have to be inserted)
for N = {X,Y }:

• Find DF0[N] = DF [{X,Y }] = {A} (DF [X] ∪DF [Y] ∪ . . .)
• Find DF1[N] = DF [{X,Y,A}] = {Y,A,B}
• Continue until: DF2[N] = DF [{X,Y,A,B}] = {X,Y,A,B}
• These are our join points: J [N] = DF2[N] = {X,Y,A,B,C}

Single Static Assignment (SSA)
Each LLVM IR %uid can be assigned only once. When coming from
an if-else branch or similar, we might not know which %uid to take.
That’s where we introduce φ-nodes.

A φ-node picks the version of a variable depending on the label from
which the φ-node was entered. It even allows usage of later-defined
%uids.

3

%uid = phi <type> v1, <label1>, ..., vn, <labeln>

Converting to SSA:
• Start with CFG with allocas, identify promotable allocas
• Compute dominator tree information
• Calculate def / use information for each variable
• Insert φ-nodes at necessary join points
• Replace load / stores with freshly generated %uids
• Eliminate unneeded allocas

Some allocas are needed, either if the address of the variable is taken
or the address escapes by being passed to a function. If neither condi-
tion holds, it is promotable.

Necessary join points are defined as the transitive closure of the dom-
inance frontier of all nodes where a variable x is defined or modified.
Then we just need to pick the value of x depending on the predecessors
of the node where we just inserted the φ-node.

To place φ-nodes without breaking SSA, we insert loads at the end
of each block, and insert stores after φ-nodes. We can then optimize
load after stores (LAS) by substituting all uses of the load by the value
stored and remove the load itself. Then, we can eliminate dead stores
and dead allocas. At the very end, we can eliminate φ-nodes with
only a single value, or identical values from each predecessor.

Garbage Collection
An object x is reachable iff a register contains a pointer to x or another
reachable object y contains a pointer to x (we also consider the stack
as a source for pointers!). If an object is not reachable, we might want
to consider it as garbage.

Reachable objects can be found by starting from registers and following
all pointers.

Mark and Sweep

When memory runs out, GC executes two phases: mark phase: trace
reachable objects; sweep phase: collects garbage objects (extra bit
reserved for memory management)

One problem is that it only runs when we are out of memory - yet we
need memory to keep track of our todo-list (not yet checked pointers).
The solution to this is pointer reversal. Pointer reversal enables a
DFS of the reachable objects without using additional memory. We
keep only a backward and forward pointer. The forward pointer (FP)
points to next object to be examined. The backward pointer (BP)
points to the one we just handled. Each iteration we go along a pointer
(P → new): Set P → BP, BP → cur and FP → new.
When going back in reverse, we point the original pointer back to its
original node.

Pros: Objects stay in place, no need to update pointers. Cons: Frag-
mentation.

Stop and Copy

Memory is organized into two areas: Old space (used for allocation),
new space (use as a reserve for GC).

When old space is full all reachable objects are moved to the new space
and the roles of the spaces are swapped. To avoid copying twice, a al-
ready copied object is replaced by a forwarding pointer to the new
copy.

To achieve this without extra space, we divide the new space in three
regions: copied and scanned, a scan pointer followed by the copied
region, and the alloc pointer followed by the empty region. We copy
the objects pointed to by roots, then, as long as scan hasn’t caught up
to alloc: Find each object pointed to by the object at scan, if it’s a for-
warding pointer update our current pointer, if not, copy the pointed-to
object to the new space, update alloc pointer, and update our current
pointer. Increment the scan pointer.

Despite having to update many pointers, stop and copy is generally the
fastest GC technique, as allocation and collection is relatively cheap
when there’s lots of garbage.
Stop and Copy moves objects around. Pointers to those objects must
also be updated. However, objects (structs) in C and C++ do not carry
any metadata that identify which members are pointers and therefore
it is impossible to properly update them.

Reference Counting

Store number of references in the object itself, assignments modify
that number. If the reference count is zero, free the object. Cannot
collect circular structures and updating the reference count on each
assignment is slow.

Exercises
Ex. In parsing, ...
□ LL(1) parsers are more powerful than LR(0) parsers.
⊠ LR(1) parsers are more powerful than LL(1) parsers.
⊠ LALR(1) may introduce new reduce/reduce conflicts compared to

LR(1) when parsing the same grammar.
□ LALR(1) may introduce new shift/reduce conflicts compared to

LR(1) when parsing the same grammar.

Ex. For context free grammars, ...
⊠ LR parsers can handle left-recursive grammars.
⊠ LR parsers can handle right-recursive grammars.
□ LL parsers can handle left-recursive grammars.
□ LR(0) parsers are more powerful than LL(1) parsers.
⊠ even with an unambiguous CFG, there may be more than one

derivation.

Ex. A left-recursive grammar cannot be implemented by an LL(k)
parser for any k.

⊠ True □ False

Ex. LR(k) grammars cannot be right recursive.
□ True ⊠ False

Ex. There is no such thing as a shift/shift conflict for a LR parser.
⊠ True □ False

Ex. Calling conventions, ...
⊠ specify where arguments and return values should be stored.
□ specify the starting address of stack and heap.
⊠ can be disregarded by the compiler for functions that are not ex-

posed to external callers as an optimization.

Ex. Any type-safe program, ...
⊠ can raise en exception.
□ can treat non-code values as code.
□ always terminates.
⊠ can raise a segfault (unsure).

Ex. Nominal subtyping, ...
⊠ requires us to explicitly declare subtyping relationships.
□ is used by OAT for struct subtyping.
□ is a subcategory of structural subtyping.
⊠ is used by Java for subtyping.

Ex. A basic block, ...
⊠ starts with a label.
□ can contain more than one control-flow instruction.
⊠ is always executed starting from the basic block’s first instruction.

Ex. Strength reduction, ...
□ refers to a class of optimizations that can be profitably applied

irrespective of the target architecture.
⊠ is applicable to loops, by creating a dependent induction vari-

able.

□ can only be meaningfully applied if the IR on which the opti-
mization is applied is in SSA form.

□ reduces the static number of operations that are performed.

Ex. Which of the following are examples of forward analysis?
□ Liveness analysis
⊠ Available expressions
⊠ Available registers

Ex. Which of the following statements are true?
□ Contradictory to its name, the linear scan register allocation

runs in a log-linear time in the number of program variables.
□ Spilling two registers is always less efficient than spilling one.
□ To apply linear scan register allocation, we need to compute the

reaching definitions and the liveness analysis.

Ex. What are the types of the followint getelementptr instructions?
struct B {

int64_t c;
struct B *d;
struct A e[10][10];

};
getelementptr %struct.B* @g, i64 0 : struct.B*
getelementptr %struct.B* @g, i64 0, i64 0 : i64*
gep %struct.B* @g, i64 0, i64 2, i64 5 : [10 x struct.A]*

Ex. If we try to precolor nodes in an inference graph while adhering
to the calling convention, what problem might we face?

The problem is that multiple return values and arguments that inter-
fere with each other must use the same registers.

Ex. Apply Mark and Sweep:

After Mark: After Sweep:

Ex. Apply Stop and Copy:

Before: After:

4

