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1. Overview & Principles

1.1 What is a network made of?
Networks are composed of three basic components:

• End systems : Send an receive data, such as computers, smartphones, etc.
• Switches / Routers : Forward data to the destination.
• Links : Connect the routers and switches and end systems.

A Digital Subscriber Line (DSL) brings high bandwidth to households over phone lines.
These Lines are unbalanced in the sense that the upload bandwith is much lower than the
download bandwidth. This is due to the fact that the average user mostly uses the download
line.

Another common access type is using Cable Access Technologies (CATV) , where a cable
provider is connected via a fiber cable to some distribution center and from there via copper
cable to different households. The fiber cable is shared between many different households.

1.2 How is a network shared?
An Internet Service Provider (ISP) such as Swisscom benefits from sharing by
statistical multiplexing . They might have a 100 mbps line on which they make

subscriptions of 5 mbps. Knowing that it is very unlikely that every user is active at the
same time, they send out more contracts that theoretically supported (that is, more than 20
contracts in our example). An oversubscription of x100 is generally accepted.

1.2.1 Resource Sharing
We differ between two types of resource sharing:

• Reservations : Reserve the bandwidth you need in advance, happens at the flow-level.
Implemented by circuit-switching .

• On-demand : Send data whenever you need, happens at the packet-level. Implemented
by packet-switching .

For each network flow we define P has the peak flow rate and A as the average flow rate. The
problem with reservation is that we must reserve a flow of P , however the level of utilization
is only A

P . We therefore put the general rule:

• Reservation makes sense if P
A is small.

• Reservation wastes capacity if P
A is big.

The internet uses packet switching and we will focus on this for the rest of the
course.

1.3 How does communication in a network happen?
Assume there are two people, Alice and Bob, which wish to exchange some data over the
internet. To exchange data, the use a set of network protocols . A protocol is like a
conversational convention.
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1.3.1 Network Layer Model
To provide structure to the design of network protocols, internet communication can be
decomposed into 5 independent layer :

• L5 - Application layer: Provides network access, exchanges messages between pro-
cesses. Protocol: HTTP, SMTP, FTP, etc.

• L4 - Transport layer: Provides end-to-end delivery, transports segments between end
systems. Protocol: TCP, UDP, etc.

• L3 - Network layer: Provides a global best-effort delivery, moves packets around the
network. Protocol: IP.

• L2 - Link layer: Provides local best-effort delivery, moves frames across a link.
Protocol: Ethernet, Wifi, DSL, LTE, etc.

• L1 - Physical layer: Provides physical transfer of bits, moves bits around a physical
medium. Protocol: Twister pair, fiber, coaxial cable, etc.

Each layer provides a service to the layer above by using the services of the layer
directly below it.

Each layer takes messages from the layer above, and encapsulates them with its own
header and/or trailer.

1.3.2 The End-End Principle
If no reliable transport is provided, every application that needs reliability has to engineer it
from scratch, which is a wasteful effort. However it also wouldn’t make sense for the network
layer to provide reliable delivery, since it is a burden for applications that rely on speed and
not on reliability.

The solution to this problem is the end-end principle . We allow unreliable steps (e.g.,
the network layer is best effort), but the destination end system checks the received data
and tells the source end system to retry on failure.

1.4 How do we characterize communication and its per-
formance?
A network connection is characterized by its delay / latency , loss rate , and
throughput .

1.4.1 Sources of Network Delays
Each packet suffers from several types of delays at each node along the path:

• Transmission delay
• Propagation delay
• Processing delay (tends to be very small)
• Queuing delay

Those add up to the total delay .

The transmission delay is the amount of time required to push all bits onto
the link:

Transmission Delay [sec] = packet size [# bits]
link bandwidth [# bits/sec]

The propagation delay is the amount of time required for a bit to travel to
the end of the link:

Propagation Delay [sec] = link length [m]
propagation speed [m/sec]

The queuing delay is the amount of time a packet waits in a buffer to be
transmitted on a link. It is the hardest to evaluate and is characterized with
statistical measures.
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We introduce the following notations and terms:

• Average packet arrival rate: a [packet/sec]
• Transmission rate of outgoing link: R [bit/sec]
• Fixed packet length: L [bit]
• Average bits arrival rate: La [bit/sec]
• Traffic intensity : La

R

When the traffic intensity is > 1, the queue will increase without bound, and so does the
queuing delay.

In practice, queues are not infinite. There is therefore an upper bound on the queuing delay
which is given by NL

R , where N is the number of packets the queue can fit at once.

1.4.2 Packet Loss
Since there is an upper bound to how many packets can be in the queue, it can be the case
that a queue gets overloaded. If this is the case, newly arriving packets get dropped (loss).

1.4.3 Throughput
The throughput is the rate at which a host receives data: >

Average Throughput [# bits/sec] = data size [# bits]
transfer time [sec]

To compute the throughput, one has to consider the bottleneck link . The throughput
will be equal to the the transmission rate of the slowest link.
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2. Application Layer

2.1 Domain Name Service (DNS)
The Internet has one global system for addressing hosts (IP) and naming hosts (domain
names), called the Domain Name Service (DNS) . DNS provides a mapping between domain
names and IP addresses.

We might map names to more than one IP for load-balancing or vice-versa, map an IP
to more than one name to reuse infrastructure .

2.1.1 Naming Structure
Web addresses are hierarchical . We read the from right to left.
At the top sits the Top Level Domain (TLD) , such as .com, .org, .net, .ch, etc. Domains
such as .epfl, .ethz, .nzz, etc. are subtrees of the TLD. A name such as inf.ethz.ch represents
a leaf-to-root path in the hierarchy.

2.1.2 Management
The DNS system is hierarchically administrated:

• Root servers are managed by the IANA.
• TLDs are managed by private or non-profit organizations (for example, .ch is managed

by the Swiss Education & Research Network).
• Domains managed by ISPs or local organizations, such as the ETH Zürich Informatik-

dienste ICT-Networks for .ethz.

2.1.3 Infrastructure
There are 13 root servers , named from a to m, which are managed professionally and
serve as the root. Instances of the k-root server are hosted in more than 75 locations
worldwide, two of them in Switzerland (Zurich and Geneva).

To scale root servers, operators rely on BGP anycast (Internet’s routing protocol). This
enables seamless replication of resources by finding the shortest-paths. If several locations
announce the same prefix, then routing will deliver the packets to the “closest” location.

To ensure availability , each domain must have at least a primary and secondary DNS
server. This has the following advantages:

• It ensures name service availability.
• It allows DNS queries to be load-balanced.
• On a timeout, clients can use an alternate server.

In order for DNS lookups to work, we have to ensure that:

• Each nameserver knows the address of the root server.
• Each root server knows the address of all TLD server.
• Each TLD server knows the address of all its domains.

2.1.4 Resource Records
The DNS server stores resource records that are tuples of the form (name, value, type, TTL).
We show the different types of records in the following table:
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Record Type Name Value
A hostname IP address
NS domain DNS server name
MX domain Mail server name
CNAME alias Canonical name
PTR IP address Corresponding hostname

2.1.5 DNS Resolution
DNS resolution can either be recursive or iterative:

Recursive

The client offloads the task of resolving to the next server. This is never (exclusively) used
in practice, root servers to actually not allows recursive queries on them.

Iterative

The DNS client sends a query to the local DNS server. The local DNS server then handles
the rest, but each sever it queries returns the information it has directly back to the local
DNS server.
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2.1.5 Caching
To reduce resolution times, DNS relies on caching . DNS server cache responses to former
queries. Authoritative servers associate a TTL (Time-To-Live) to each record. The DNS
records can only be cached for TTL seconds, after which they must be cleared.

As top-level servers rarely change and popular websites are visited ofen, caching is very
effective.

2.2 The Web - How do you see weather.com?
The WWW as we know it consists of three major components:

• Infrastructure: Client/Browser, servers, proxies, etc.
• Content: Objects, such as files, pictures, videos, etc, organized in websites, which is a

collection of objects.
• Implementation: URL, HTTP, etc.

We will focuse on the implementation.

2.2.1 URL
A Uniform Resource Locator (URL) refers to an Internet resource and is of the form:

protocol://hostname[:port]/directory_path/resource

The URL consists of the following components:

• protocol : HTTP(S), FTP, SMTP, etc.
• hostname : DNS name or IP address
• port : Defaults most often to protocols standard (HTTP:80 and HTTPS:443)
• directory_path/resource : Identify the resource at the destination

2.2.2 HTTP
The Hypertext Transfer Protocol (HTTP) is a rather simple synchronous request-
response protocol. It is layered over a bidirectional byte stream (almost always TCP),
text-based (ASCII) and stateless, which means it maintains no information about past client
requests.

HTTP sends two kinds of messages:
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HTTP Request Message

The request header specifies a method field, which can be one of the three following values:

• GET : Requests the server to return a resource
• HEAD : Same as the GET method but only asks for the header of the resource
• POST : Requests that sends data to the server

The request header fields are of variable lengths, but still human readable. They can
hold the following information:

• Authorization info
• Acceptable document types/encodings
• Senders
• If-Modified-Since
• Referrer (cause of the request)
• User Agent, i.e., client software
• etc.
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HTT Answer Message

The response message holds a 3-digit status fields which can be one of the following values:

3-digit response code status
1XX informational
2XX success
3XX redirection
4XX client error
5XX server error

For example, the error codes 404 and 505 correspond to the reason phrase Not Found and 200
corresponds to OK. (Another notable error code is 418 which corresponds to I’m a teapot.)

Answer messages might include the following additional header fields:

• Location
• Allow
• Content encoding
• Content length
• Content type
• Expires (caching)
• Last-Modified
• etc.

2.2.3 Cookies
HTTP is stateless, however, some applications need or want some kind of information about
the previous requests from the same client. That is what cookies are used for. They store
a state of the client on behalf of the server.
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2.2.4 Speeding up the Web
Webpages today have very complex dependencies between different files such as HTML files,
CSS files and JS files.

We can estimate the load time of a webpage by modelling the above mentioned dependen-
cies as a DAG. Nodes are tasks (such as loading dependencies) and arcs indicate a “must-
happen-before” dependency. The weights of the arcs represent the times it takes to complete
the preceding task. Finally, we can model the load time as the critical path (time) :

1. Sort nodes topologically.
2. Process tasks in reverse order: Each task’s finish time is the max over the tasks it

depends on plus the time it takes to complete it.

Example: We might ask what the longest A-start distance is:

This can be determined by max (dpink+30, dyellow + 60) and then recursively determining the
same for dpink and dyellow.

There are a lot of possible ways to speed up Web browsing, such as:

• Simplify, restructure, and redesign web pages.
– Use efficient image codes.
– Inline JSS and CSS.

• Use faster computing devices.
• Increase network bandwidth.
• Make the networks RTTs smaller.
• etc.

Two other approaches for speeding up Web browsing are:

Simplifying Network Protocols

A naive HTTP connection opens a TCP connection for each of n objects. This requires
about 2n RTTs. We introduce several different approaches to solve this problem:

• We might use multiple parallel (M) TCP connections, thus only needing 2n
M RTTs.

• We might use a persistent connection across multiple requests which leads to n+1
RTTs.

• We might pipeline requests in an asynchronous way and pack them into batches
that fit into one TCP segment. For small segments this uses only 2 RTTs.

Caching

We might cache often used content at a server. HTTP allows for conditional requests ,
that is, a client conditionally requests a resource using the “If-Modified-Since” header in the
HTTP requests.
The server compares this against the “last modified” time of the resource and returns either
Not Modified or OK with the latest version.

We may perform caching and one of the following three different locations:

• Client: Browser cache
• Close to the client: Forward proxy or via a Content Distribution Network (CDN),

managed by the ISPs
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• Close to the destination: Reverse proxy

2.3 Content Delivery Networks (CDN)
The idea behind CDNs is to optimize web traffic. This can either be done through caching
(reactive) or replication (proactive).

Replication is to duplicate popular content all around the globe. This has the following
effects:

• Spreads the load on sever, for example, across multiple data-centers.
• Places content closer to clients.
• Helps to speed up some uncachable content.

To direct clients to the closest server, we can either use a DNS-based or BGP-Anycast-based
approach. Both approaches are used in the industry.

Akamai is one of the largest CDNs in the world. It used a combination of pull caching ,
which is a direct result of client requests, and push replication , which is done when
high access rates are expected. For getting clients to their servers they use the DNS-based
approach.

2.4 Internet Video - How does video streaming work?
The general goal for internet video is to have the best quality without experiencing load
times.

2.4.1 End-End Workflow
We encode a video stream into different bitrates offering different levels of qualities and
resolutions (note that bitrate and resolution are independent of each other). The content
is then replicated using a CDN. Finally, a video player will pick bitrates adaptively by
estimating the connection’s available bandwidth.

The video is not fetched as an entire file but rather in chunks of some short time (maybe 1
second pieces). This way the bitrate can be adapted as the available bandwidth changes.
One big problem is, that estimating the bandwidth is really hard. Available bandwidth often
has large variation.

In the end this gets combined with buffering to decrease loadtime. Buffer size can also be
used to determine the bandwidth.
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3. Transport Layer

3.1 What should the transport layer provide?
What do we actually need in the transport layer?

• Data delivery to the correct application, which means that it needs to demultiplex
incoming data.

• Files or byte-streams abstractions for applications
• Reliable transfer (if needed)
• No overloading at the receiver (flow control)
• No overloading the network (congestion control)

3.2 How do we build reliable transport? (Reliable Trans-
port)
3.2.1 Principles of Reliable Transport
Since the Internet is an unreliable environment, packets may get lost, corrupted, reordered, or
even duplicated.

A reliable transport protocol should enable communication with the fol-
lowing properties:

• Correctness: Packets should be received in the same order and without any
gap

• Timeliness: It should minimize the time until data is transferred.
• Efficiency: It should minimize the use of bandwidth by not sending too

many packets.
• Fairness It should play well with concurrent communications.

We might define the correctness of a reliable transport design the following way:

• A reliable transport design is correct if a packet is always resent if the previous
packet was lost or corrupted. A packet may be resent at other times.

We can state the following equivalent condition:

• A reliable transport system is correct ⇔ The system resends all lost or corrupted
packets.

3.2.2 First Approach to Designing a Reliable Transport Protocol
Our first approach to designing a reliable transport protocol starts the following way:

Alice:
for word in list:

send_packet(word);
set_timer();

upon timer going of:
if no ACK received:

send_packet(word);
reset_timer();
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upon receiving ACK:
pass;

Bob:
receive_packet(p);
if check(p.payload) == p.checksum:

send_ack();

if word not delivered:
deliver_word(word);

else:
pass;

3.2.3 Improvements to our Design
We might improve the above idea in the following two ways:

• We can improve timeliness by sending multiple packets at the same time.
– We need to add a sequence number inside each packet.
– We need to add buffers to the sender and receiver.

∗ Sender stores packets that were sent and not yet acknowledged.
∗ Receiver stores out-of-sequence packets that he received.

• We can introduce flow control via a sliding window . This ways the receiver wont
be overwhelmed when we send multiple packets.

– The sender keeps a list of sequence numbers it can send, known as the
sending window .

– The receiver keeps a list of acceptable sequence numbers, known as the
receiving window .

– The sender and receiver negotiate the window size, it must be that
sending window ≤ receiving window.

The following figure shows an example of the senders view with a window composed of 4
packets:

The timeliness depends on the size of the sending window. But how do we de-
termine the “perfect” size for it? One way to answer this question is with the
bandwidth-delay-product (BDP) :

• If Alice and Bob were connected by a link with a bandwidth of X Mbps and a RTT of
d seconds, then the window size should be X · d Mb to maximize timeliness.
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3.2.4 Receiver Feedback
There are three different ways me may encode feedback in ACKs:

• Individual ACKs : received 1, received 2, received 3, received 5
– Pros: We know the fate of each packet, we have a simple window algorithm, it is

not sensitive to reordering.
– Con: Loss of an ACK packet causes unnecessary retransmission.

• Cumulative ACKs : received up to 3
– We trigger a resend after k duplicate ACKs as seen in the figure below. However

it is not exactly clear what to resend (only the missing ACK? Or everything after
it too?)

• Full Information ACKs : received up to 3 and received 5
– Fixes the problem of cumulative ACKs since it makes missing packets explicit.

3.2.5 Fairness
Fairness means that when n entities use the transport mechanism, the available bandwidth

is allocated in a fair manner. We might use an equal-per-flow, which means we divide the
available bandwidth evenly over each data stream, however this is not fair per se.
A universally agree upon minimal goal is to avoid starvation , which can be reached with
equal-per-flow.

One approach is the max-min fair allocation:

The max-min fair allocation is such that the lowest demand is maximized,
after that the second lowest is maximized, and so on.

The max-min fair allocation can easily be computed the following way:

1. Start with flow at rate 0.
2. Increase the flows until there is a new bottle neck in the network.
3. Hold the fixed rate of the flows that are bottlenecked.
4. Go to step 2 for the remaining flows.

3.2.6 Corruption, Reordering, Delay and Duplication
Corruption

Dealing with corruption is easy. We simply rely on a checksum and treat corrupted
packets as lost.

Reordering

The problem of reordering depends on the type of ACKs used:
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• Individual: No problem
• Full feedback: No problem
• Cumulative: Can lead to creating duplicate ACKs

Delays

Long delays can lead to useless timeouts, for all designs.

Duplicates

Packet duplicates can lead to duplicate ACKs whose effects will depend on the type of
ACKs used:

• Individual: No problem
• Full feedback: No problem
• Cumulative: Same problem as with reordering

3.2.7 Go-Back-N Protocol
The Go-Back-N (GBN) protocol is a simple sliding window protocol using cumulative ACKs:

• Principle: Receiver should be as simple as possible.
• Receiver: Delivers packets in-order to the upper layer. For each received segment, the

receiver ACKs the last in-order packet delivered (cumulative).
• Sender: Uses a single timer to detect loss, resets the timer at each ACK. Upon a

timeout, the sender resend all W packets, starting with the lost one, where W is the
size of the sliding window.

3.2.8 Selective Repeat
The Selective Repeat (SR) protocol avoids unnecessary retransmissions by using per-
packet ACKs.

• Principle: Avoids unnecessary retransmissions
• Receiver: Acknowledge each packet, in-order or not, buffer out-of-order packets.
• Sender: Uses a per-packet timer to detect loss. Upon a loss, only the lost packet is

resent.

3.3 How does the Internet’s transport work?
3.3.1 UDP
UDP is a simple extension of IP that only allows for data delivery to the correct application

(optionally with checksums for corruption detection).

A UDP packet simply consists of 4 header fields and one variable length data field, as seen
in the figure below:
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UDP is thus an unreliable, connectionless protocol for data transfer. Although there is no
recovery from losses, reordering, etc., UDP is very good for certain types of application like
DNS, Gaming or VoIP, due to the following reasons:

• There is no connection establishment delay like in TCP
• Finer control over what data is sent and when
• The small header leads to a small packet overhead which results in faster delivery
• Since there is no connection state, no timers, etc., UDP provides better scalability

Google’s QUIC protocol is based on UDP (more about that later).

3.3.2 TCP
TCP is a connection-oriented, reliable byte-stream transport service.

Reliability requires keeping the state at both the sender (in the form of timers and send
buffers) and at the receiver (in the form of a receive buffer). Each byte-stream is called
connection/session and has their own connection state.

TCP Design Choices

• ACKs: TCP uses byte sequence number and cumulative ACKs
• Checksums: TCP uses checksum for error detection
• Timeout/Retransmission: Retransmission are based on timeouts and duplicate

ACKs. Timeouts are based on an estimate of the RTT.
• Sliding Window Flow Control: Allows for W contiguous bytes to be in transfer.
• Timer: When a timer for a packet goes off, we resend the packet and double the

timeout period. On three duplicate ACKs we can initiate a fast retransmit .

TCP Header

In order for a TCP packet to be sent over the network, it has to be wrapped into an IP
packet, which cannot be bigger than the maximum transmission unit (MTU) (e.g. 1500
bytes for Ethernet).
A TCP packet consists of a TCP header of at least 20 bytes, shown in the figure be-
low, and the TCP segment, which contains the data. Thus, the TCP segment is at
most maximum segment size (MSS) bytes long, where MSS = MTU − (IP header size) −
(TCP header size).
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ACKing and Sequence Numbers

If the sender sends a packet containing B bytes and starting at sequence number X, then
the bytes in the packet are X, X + 1, ..., X + B − 1.
Upon the receipt of the packet, the receiver sends an ACK:

• If all data prior to X was already received, then the ACK acknowledges X + B, since
X + B is the next expected byte.

• If the highest contiguous byte received is Y (smaller than X), then the ACK acknowl-
edges Y + 1, even if it has been ACKed before.

The sequence number field thus holds the starting byte offset of the data carried in the
segment. The acknowledgment number field denotes what byte is expected next.

Sliding Window Flow Control

The Advertised Window field holds the number W of bytes which can be sent beyond the
next expected byte. The receiver uses this field to prevent the sender from overflowing its
buffer since it limits the number of bytes the sender can have in flight.

Transfer Speed

We finish our discussion of TCP with a simple example of computing the transfer speed.
Assume the following:

• W in bytes is the sliding window size, assumed to be constant
• RTT in seconds is the round-trip-time, assumed to be constant
• B in bytes/second is the bandwidth of the link

We distinguish two cases:

• W/RTT < B, then the transfer speed is W/RTT
• Otherwise, the transfer speed is B
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3.3.3 Connection Establishment
To establish a TCP connection, each host generates its ISN (initial sequence number)
and then they exchange it in a so called 3-way handshake :

1. Host A sends a SYN packet (with the SYN flag set) and its ISN in the sequence number
field.

2. Host B returns a SYN ACK packet (with the SYN and ACK flag set) and its ISN in
the sequence number field. The acknowledgment number is set to A’s ISN + 1.

3. Host A sends an ACK to acknowledge the SYN ACK and can now start sending data.

If the SYN packet gets lost, no SYN ACK will arrive and thus the SYN packet will be simply
retransmitted. The only problem with this is that it’s totally unclear how far away the
receiver is and it therefore is hard to set a timeout period. The default wait is 3 seconds.

The ISN is generated at random. If we would start at 0, it could be that after a connection
ends the port is reused and receives a packet from the old connection that got delayed.

3.3.4 Connection Teardown
Normal Termination - One Side at a Time

Host A sends a packet with the FIN flag set and waits to receive an ACK from host B. As
soon as that happens, A closes its side of the connection, the connection is now half-closed.
A can still receive bytes from B.
If B sends a FIN as well, the connection is fully closed as soon as A sends back an ACK.

Normal Termination - Both Together

Same as before, but when A sends its FIN packet, B responds with both FIN and ACK set.
A then sends back a final packet with ACK flag set and the connection is closed.

3.3.5 TCP State Transition Diagram
The following figure shows a summary of the TCP state transitions:
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3.3.6 Timeouts & Retransmissions
TCP resets a timer whenever new data is ACKed, not on a duplicate ACK. Upon a timeout,
the packet containing the next byte, i.e., the SeqNo of the ACK packet.

The problem here is that setting the timeout value is hard. Choosing it too short will result
in duplicate packets, choosing it too long will result in inefficiencies. In order to set the
timeout value, we need some estimate of the connections RTT.

The Kern-Partridge Algorithm gives us an idea on how to estimate the RTT.
We start with measuring the SampleRTT for original transmissions, that is, not
for retransmissions. We are then able to estimate the RTT the following way:

SampleRTT = AckRcvdTime − SendPacketTime

EstimatedRTT = α × EstimatedRTT + (1 − α) × SampleRTT

for α = 0.875. From this, we determine the retransmission timeout (RTO)
by

RTO = 2 × EstimatedRTT

We might use an exponential backoff , that is, upon a timeout we double the
RTO. Every time a new measurement comes if, we collapse the RTO back to
2 × EstimatedRTT.

3.3.7 Congestion Control
Congestion control aims at solving three problems:

• Bandwidth estimation: How to adjust the bandwidth of a single flow to the bottleneck
bandwidth?

• Bandwidth adaptation: How to adjust the bandwidth of a single flow to variation of
the bottleneck bandwidth?

• Fairness: How to share bandwidth fairly among flows, without overloading the network?

It is important to note that congestion control differs from flow control, but both are provided
by TCP though:

• Flow control : Prevents one fast sender from overloading a slow receiver
• Congestion control : Prevents a set of senders from overloading the network
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The sender adapts its sending rate based on these two windows:

• Receiving Window (RWND) : How many bytes can be sent without overflowing the
receiver buffer?

• Congestion Window (CWND) : How many bytes can be sent without overflowing the
routers?

From those two windows follows the Sender Window . determined by min (CWND, RWND).

The ideal congestion window size is given by the bandwith delay product:

W = bandwith × delay

Congestion Detection

There are essentially three ways to detect congestion:

• The network could tell the source but the signal itself could be lost on the way.
• We could measure the packet delay but the signal probably will be noisy.
• We could measure the packet loss. This is a fail-safe signal that TCP already has to

detect.

If we detect duplicated ACKs, we have a mild congestion signal and if we have a
timeout, we have a severe congestion signal .

Reacting to Congestion

TCP’s approach is to gently increase when not congested and to rapidly decrease when
congested.

We start with the Slow Start Phase , that is, we set the CWND to 1 and increase it by
one for each ACK we receive. However, once we have a rough estimate of the bandwidth, we
need a more gentle adjustment algorithm.

The two possible options are:

• Multiplicative Increase or Decrease (MIMD) , i.e., CWND = a · CWND.
• Additive Increase or Decrease (AIAD) , i.e., CWND = b + CWND.

TCP implements additive increase multiplicative decrease (AIMD) : After each
ACK, we increment the CWND by 1/CWND. Per RTT, the increase is therefore at most
1. One might ask the question on when the sender leaves the slow-start phase and starts
AIMD. We introduce a slows start threshold , and adapt it as a function of congestion.
On a timeout, we set SSTHRESH = CWND/2.

// TODO: more infos

There are different congestion control algorithms in TCP (Reno, CUBIC, Vegas, BBR, . . . ).

3.3.8 QUIC - Quick UDP Internet Connections
QUIC is a transport layer protocol designed by Google to improve performance of HTTPS.

Broadly explained, QUIC takes everything from the TCP header and puts it into the data
field of a UDP packet.

• QUIC rolls in TCP and TLS connection negotiation. Therefore, a QUIC handshake is
enough (instead of a separate TCP and a separate TLS handshake).

• Based on a cookie, QUIC allows for 0-RTT session resumption where a secret learned
from a previous session is used to encrypt/decrypt messages.

3.4 Sockets: the application and the transport interface
A socket is a software abstraction by which an application process exchanges
network messages with the transport layer in the operating system.

Note: Socket are an OS abstraction and ports are a networking abstraction. In this context,
they do not correspond to any physical port like on routers and switches, but are rather
logical interfaces that one uses.
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3.4.1 Ports
To determine which app (socket) gets which packets, ports act as a 16-bit transport layer
identifier. A packet then carries source/destination port number is the transport header and
the OS stores the mapping between sockets and ports.

The 16-bit address space is built up in the following way:

• Ports 0-1023 are well known and there is an agreement on which services run on these
ports, e.g., SSH:22, HTTP:80, HTTPS:443, etc. A client using these services therefore
knows the appropriate port and can listen on it directly.

• Ports 1024-65535 are ephemeral and are given to clients at random.

3.4.2 Multiplexing & Demultiplexing
A host receives IP datagrams with a source and destination IP address as well as a source
an destination port number . The IP address and the port are then used to deliver the
segment to the appropriate socket.

The mappings are as follows:

• For UDP ( SOCK_DGRAM ): OS stores (local port, local IP address) ⇔ socket
• For TCP ( SOCK_STREAM ): OS stores (local port, local IP, remote port, remote IP) ⇔

socket

This is due to the nature of the protocols. Since TCP is connection oriented, it needs to
remember the source IP and port number of an incoming IP datagram, whereas UDP as a
connectionless protocols need not remember that information.
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4. Network Layer

The network-layer protocols are among the most challenging in the protocol stack.
The network layer can be decomposed into two interacting parts, the data plane and the
control plane .

The primary role of the network layer is deceptively simple - to move packets to appropriate
output links from a sending to a receiving host. For that there are two functions:

• Forwarding : A packet arrives at some input link of a router and needs to be moved
to an appropriate link. This one of the functions of the data plane and happens
router-locally.

• Routing : Network layer must determine a route a packet takes on its way from sender
to receiver. This is a network-wide operation that is very complex and expensive and
is part of the control plane.

The main challenges for the network layer are:

• Scalability
• Heterogeneity
• Bandwith Control
• Economics (traffix needs to be economically viable)

4.1 Network Service Models
The network service model specifies what service the network layer provides to the trans-
port layer and how it is implemented. We distinguish a datagram / connectionless service
like IP and a virtual circuits / connection-oriented service .

Both models are implemented with store-and-forward packet switching :

• Routers receive complete packets, store them temporarily (if necessary) before forward-
ing it. Most of the time statistical multiplexing is used to share the link bandwidth
over time.

The switching element provides an internal buffer for each output port to handle contention.

4.1.1 Datagram Model
Each (IP) packet contains a destination address. This is used by the router to forward each
packet individually on different paths. For this, we consult the forwarding table which
is keyed by the address and stores the next hop for each destination address.

The datagram model uses the internet protocol (IP) which is based on datagrams and
carries source and destination address in each packet.

4.1.2 Virtual Circuit Model
The virtual circuit model uses circuit switching, but in a virtual sense: there is no bandwidth
reservation but rather statistical sharing of links. There are three phases in a virtual circuit:

1. Connection establishment: Circuit is set up, i.e., path is chosen and the circuit infor-
mation is stored in the routers.

2. Data transfer : Circuit is used, i.e., packets are forwarded along the path.
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3. Connection teardown: Circuit is deleted, i.e., circuit information is removed from
routers.

Each packet thus only needs to carry a short label that identifies the circuit. This label,
however, has no global meaning and is link specific, such that at every router it needs to be
translated. The forwarding tables are keyed by the circuits identifier and returns the output
port the circuit uses.

4.1.3 Multi-Protocol Label Switching
ISPs use the virtual circuit switching technology by setting up circuits in their backbone
ahead of time. When a packet enters the network, it adds a 4 byte MPLS label to the IP
packet and removes it upon leaving the network.

The advantage MPLS offers are:

• Potential increase of switching speed since the IP header is not needed.
• MPLS provides the ability to forward packets along routes that would not be possible

using the standard IP routing protocols.

The following table provides a short summary over the advantages and disadvantages of both
network service models:

Issue Datagram Virtual Circuit
Setup Phase Not needed Required
Router state Per destination Per connection
Addresses Packet carries full address Packet carries short label
Routing Per packet Per circuit
Failures Easier to mask Difficult to mask
Quality of service Difficult to add Easier to add

4.2 Internet Protocol - Version 4 (IPv4)
The IP Protocol is the lowest common denominator of the internet. It supports a wide range
of apps above and links below it.

4.2.1 IP Datagram
Most of the fields of a IPv4 datagram are self-explanatory, the rest is explained in short here:

• Type of Service: Allows to distinguish between different types of datagrams, e.g.,
real-time (VoIP) vs non-real time (FTP)

• Datagram length: Total length of datagram in bytes, at max 216 bytes, but normally
not larger than 1500 to fit into an Ethernet frame.

• Fragmentation offset and flags: Used for IP fragmentation.
• Protocol: Specifies the transport layer protocol (TCP or UDP).
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• Options Allows the IP header to be extended but leads to processing overhead (not
included in IPv6 anymore).

4.2.2 IP Addresses and Prefixes
An IPv4 address is a 32-bit number written in dotted-quad notation a.b.c.d
where a, b, c, and d are 8-bit (1 byte) numbers.

IP addresses are allocated in prefixes . Addresses in an L-bit prefix have the same top
L bits. Thus, there are 232−L addresses in an L-bit. IP prefixes are written in IP address
notation, e.g., 128.13.0.0/16 denotes the first address in the prefix (L = 16 in this case).

We say a prefix is more specific if it is longer, and hence has a smaller number of IP addresses.
A less specific prefix has a shorter prefix and hence a larger number of IP addresses.

The first and last address of a prefix are typically not used since they have a special function:

• Network Identifier : First address in a prefix, e.g., 128.13.0.0 for 128.13.0.0/16 .
• Broadcast Address: Last address in a prefix, e.g., 128.13.255.255 for

128.13.0.0/16 .

Prefixes are also specified by using a network mask . Performing a logical AND on the two
produces the prefix (i.e. the network identifier). Example: 255.255.255.0 is the network
mask for a 24-bit prefix.

The following blocks are reserved for private IP addresses:

• 10.0.0.0/8
• 172.16.0.0/12
• 192.168.0.0/16

4.2.3 IP Forwarding
Each router uses a forwarding table that lists the next-hop address for IP prefixes. Note that
this may lead to overlapping prefixes in the table, i.e., an entry might list a more specific
prefix than another entry. This leads to the following rule:

The Longest Prefix Matching forwarding rule is described as follows: For
each packet, find the longest (most specific) prefix that contains the destination
address and forward the packet to the next-hop router for that prefix.
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Host Forwarding

Since routers do all the routing, hosts have to send remote traffic to the nearest router. For
that, they use a small forwarding table, consisting only of two entries: Note that 0.0.0.0/0
represents a default route . Any other prefix is more specific and is thus captured first by
the longest prefix matching rule.

Prefix Next-Hop Destination
My own network prefix Directly send to that IP
0.0.0.0/0 Send to router

4.2.4 IP Helper Protocols
In order for IP forwarding to work, we still need to fill in some gaps, namely how, e.g., hosts
get their IP addresses and how IP is mapped to link addresses.

Getting IP Addresses - Dynamic Host Configuration Protocol (DHCP)

When a node wakes up for the first time it doesn’t know its IP address, the network prefix
or the IP of the default router and the address of the DNS resolver. We use DHCP to
automatically configure those addresses.

DHCP leases IP addresses to nodes and provides other important parameters, such as
the network prefix, the default gateway (local router address) and various servers
(DNS, time, etc.). DHCP is a client-server application that uses UDP ports 67 and 68 and
can therefore snoop on these ports for messages. DHCP works as follows:

1. The client sends a DISCOVER broadcast message with the address bits all being 1,
i.e. the IP address 255.255.255.255 and ff:ff:ff:ff:ff:ff for Ethernet/MAC
address.

2. The server answers with an OFFER message, offering a few IP addresses as well as
other options.

3. The client chooses one of the offers and requests with a REQUEST message.
4. The server responds with an ACK such that the client can use the configuration.

Renewing an existing lease is as easy as sending a REQUEST message and getting back an
ACK.

Address Resolution Protocol - ARP

Problem: A node needs the link layer address to send a frame over a local link, but how does
it get the destination link address from the destination IP address?

An ARP module is a sending host that takes any IP address on the same LAN as input, and
returns the corresponding MAC address, meaning that it only resolves IP addresses for hosts
and router interfaces that are on the same subnet. This works as follows:
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1. The node sends a REQUEST broadcast message with an IP address.
2. The target that uses this IP address replies with its MAC address.

4.2.5 Packet Fragmentation and MTU
When connecting networks with different maximum packet sized (or Maximum Transmission Unit MTU )
we need to split up packets, or discover the largest size we can use. We can thus either use
fragmentation to split up large packets or use discovery to find the largest packet size

that fits on the network path.

IPv4 Fragmentation

Routers fragment packets that are too large and the receiving host reassembles to reduce
the load on routers. For that, there are multiple fields in the IP header (identification, flags,
fragment offset, fragment length, etc.). The splitting procedure works as follows:

1. Break the data that is contained into pieces.
2. Copy the IP header into the previously split pieces and adjust the length.
3. Set the offset to indicate the position and set the MF flag on all pieces except for the

last.

Path MTU Discovery

Today, IP uses path MTU discovery , as it puts less load on the routers. The host tests
the path with a large packet and the routers provide feedback. If the packet is too large, the
router tells the host what size would fit. This is implemented in ICMP with the DF flag,
such that ICMP can provide the necessary feedback messages and error messages in general,
e.e., when something goes wrong during forwarding.

4.2.6 Internet Control Message Protocol (ICMP)
ICMP is a companion protocol to IP, they are implemented together and ICMP sits on to of
IP. If a router encounters some error while forwarding, the ICMP sends back a report to the
IP source address and discards the problematic packet.

ICMP Message Format

A ICMP message is carried in an IP packet and has a type, code, and a checksum. As a
payload it often carries the start of the offending packet:
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4.3 Network Address Translation (NAT)
The layering principle means that routers should not look beyond the IP header, e.g., the
TCP segment is not looked at. However, in modern networks there are many middleboxes
that sit inside the network but perform processing beyond what IP does on packets to add
new functionality. Examples are NAT boxes, Firewalls or Intrusion Detection Systems.

4.3.1 NAT box
A NAT box connects an internal network to an external network. That way, many internal
hosts can be connected to the external network using a single external IP address. This way,
the home network looks like a single computer.

4.3.2 How NAT works
The NAT box keeps a table where it stores a mapping between internal and external (address,
port) tuples.

Internal IP : Port External IP : Port
192.168.1.12:5523 44.25.80.3:1500
192.168.1.13:1234 44.25.80.3:1501
192.168.2.20:1234 44.25.80.3:1502

The mapping is created as the first packet from the client into the external network is being
sent, i.e., when a new TCP connection is opened. If connections go to different destinations,
it is possible to use the same port numbers, since returning packets will also contain the
destinations IP address and thus make it able to distinguish the connection using the same
port.

For public services (e.g. webserver), we need to manually create an entry in the NAT table.

Sending a Packet

Receiving a Packet
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4.4 IPv6

Some important changes in the header are:

• Streamlined header processing: No option fields mean fixed size of 40 bytes in the
header, which allows for faster processing

• Flow labelling: Allows for grouping of packets that belong to the same flow, e.g. packets
in a video stream or for a high-priority user

• Traffic class: Allows to give priority to certain datagrams within a flow from certain
applications

4.4.1 IPv6 Addresses
Since the IPv4 address space is running out and there is still room for different improvements
there is IPv6, which features 128-bit addresses, which are denoted in 8 groups of 4 hexadecimal
digits. Leading zeros are omitted and one consecutrive set of groups of zeros can be replaced
by a second colon.

Example: 2001:0db8:0000:0000:0000:ff00:0042:8329 may be written as 2001:db8::ff0:42:8329 .
Remember that we may only remove one groupe of consecutive zeros, e.g., 2001:0db8:0000:0000:1a12:0000:0000:1a13
may either be written as 2001:db8::1a12:0:0:1a13 or as 2001:db8:0:0:1a12::1a13 .

4.4.2 IPv6 Transition
The big problem is how should we transition from IPv4 to IPv6. One proposed solution is so
called Happy Eyeballs . They use both IP versions but prefere IPv6.

4.4.3 IPv6 Tunneling
The goal of IPv6 tunneling is to allow IPv6 communication over IPv4. We want a tunnel
to act as a single link across an IPv4 network. We encapsulate an IPv6 packet as payload
into an IPv4 packet. The IPv6 is extracted as soo as it reaches an IPv6 link.

4.5 Routing
Now we have a look at the control plane . The goal for any routing algorithm , no
matter which routing scheme it uses, is that it should obey the following properties:

• Correctness: Finds paths that work
• Efficient paths: The given path should be minimal for some metric
• Fair paths: The path doesn’t starve any nodes
• Fast convergence: The path recovers quickly after changes
• Scalability: Works well as the network grows large
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There are some rules that are common to all routing algorithms:

• All nodes are alike
• Nodes only know what they learn by communicating with their neighbors
• Nodes operate concurrently
• There may be node / link / message failures

4.5.1 Shortest Path Routing (Dijkstra Algorithm)
To find a shortest path we do the following steps:

1. Assign each link a cost (distance).
2. Define the best path between each pair of nodes as the path that has the lowest total

cost.
3. Pick randomly to break any ties.

One property when choosing the shortest path as described above, is that sub-paths of
shortest paths are also shortest paths.

The problem is to use a “good” cost function. There are many metrics to consider i.e. latency,
bandwith, money, etc.

We furthermore define a sink tree of some node as the union of all shortest paths (i.e. the
shortest path from each node) to the destination node.

The following assets show an example of how to use Dijkstra's Algorithm :
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(Some intermediate steps are left out)

4.5.2 Hierarchical Routing
There are several key impacts of routing growth, listed below:

• Forwarding tables grow
• Routing messages grow
• Routing computation grows

Some techniques to scale routing are:

1. IP prefixes (route to block of hosts, not individual hosts)
• We group hosts under an IP prefix and connect them directly to the router, this

way there is only one entry needed for all hosts.
2. Network hierarchy (route to network regions)

• The idea is to introduce a larger routing unit. We then route first to the region,
then to the IP prefix within the region.

3. IP prefix aggregation (combine and split prefixes)
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The idea is to create subnets (splitting) and joining (aggregation) IP’s based on their prefix,
such that we may address a “pool” of IP’s and once in there, route to the more specific IP’s
in the subnet. More specific:

• Subnets : Internally split one less specific prefix into multiple more specific prefixes.
• Aggregation : Externally join multiple more specific prefixes into one large prefix.

4.5.3 Distance Vector Routing
The distance vector routing algorithm follows a distributed Bellman-Ford approach.
It works well and was used in RIP and ARPANET, but converges slowly after some types of
failures:

• Setting: Nodes know only the cost to neighbors, not the topology. They can communi-
cate with their neighbors via messages.

• Process: Each node maintains a vector of distances and next-hops to all destina-
tions. The algorithm proceeds as follows:

1. Initialize each vector with cost to oneself = 0 and cost to others = ∞
2. Periodically send this vector to the neighbors
3. Every round, after receiving the vectors of all neighbors:

1. For each neighbor, add the cost of the link to the neighbor to the vector
received from that neighbor

2. Set all vector entries (except the oneself) to the minimum of all received
values and set the corresponding neighbor as the next-hop

4.5.4 Flooding
Flooding is used to broadcast a message to all nodes in a network in a very simple but

highly inefficient way:

1. Send an incoming message to all neighbors, but
2. Remember the message (using sequence numbers) such that a message is flooded only

once to the neighbors.

4.5.5 Link State Routing
The Link State Routing Algorithm works as follows:

1. The nodes flood the topology in the form of link state packets (LSP) such that each
node learns the full topology.

2. Each node computes its own forwarding table by running Dijkstra (or equivalent)

If there is a change, we simply flood an update LSPs and recompute the forwarding table.

4.5.6 Distance Vector Routing vs. Link State Routing

Goal Distance Vector Link State
Correctness Distributed Bellman-Ford Replicated Dijkstra
Efficient Paths Approximate with shortest paths Approximate with shortest paths
Fair paths Approximate with shortest paths Approximate with shortest paths
Fast convergence Slow (many exchanges) Fast (flood and compute)
Scalability Excellent Moderate

4.5.7 Equal-Cost Multi-Path Routing
We might allow multiple routing paths from node to destination to be used at once. To
achieve this, we can extend our shortes path model by keeping both records if there is a tie.
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4.6 Border Gateway Protocol (BGP)
So far, we have looked at intra-domain routing protocols like distance vector and link
state algorithms. These work fine within, e.g., an autonomous system (AS), but as soon as a
network gets too big, they quickly become infeasible:

• Distance vector protocols converge slowly, so for a network as big as the internet,
convergence would never happen.

• Link state algorithms need the whole network topology, which is impossible for the
internet.

Since the internet is a network of networks, referred to as an autonomous system (AS) ,
we use special inter-domain routing protocols like BGP to connect the autonomous
systems. By using BGP, autonomous systems exchange information about IP prefixes that
they can reach. The protocol needs to solve three key challenges:

• Scalability: The number of networks and prefixes is huge
• Privacy: Networks don’t want to expose internal topologies
• Policy Enforcement: The network needs to control where to send and receive traffic in

the absence of an internet-wide link-cost metric

BGP relies on path-vector routing , similar to distance-vector routing, but with the key
idea, that we advertise an entire AS-level path instead of distances. Each AS then appends
itself to the path when it propagates the announcement.

4.6.1 BGP Policies
Two ASes connect only if they have a business relationship. We distinguish between two
types of relationships:

• Customer-Provider Relationship:
– In a customer-provider relationship, a customer pays a provider to get internet

connectivity globally, e.g. Swisscom is a customer of Deutsche Telekom. The
amount the customer pays is based on the peak usage.

• Peer-Peer Relationship
– In a peer-peer relationship, peers don’t pay each other for connectivity bur rather

connect out of common interests, mainly since they exchange a large amount if
traffic, e.g. Swisscom and Sunrise.

Policy Rules

BGP obeys the following policy rules:

• Providers transit traffic for their customers.
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• Peers to not transit traffic between each other.
• Customers do not transit traffic between their providers.

Selection and Export

In selection , we must decide which path to use for outbound traffic. The general rule is
to prefer routes coming from customers over peers over providers.

In export we must decide which path to use for inbound traffic. Routes coming from
customers are propagated to everyone else, that is, to peers and providers, where as routes
coming from peers and providers are only propagated to customers.
Note that this requires Tier-1’s to be connected through a full-mesh of peer links, otherwise
the Internet would be partitioned.

4.6.2 BGP Protocol
There are two different types of BGP sessions:

• external BGP (eBGP) : Those sessions connect border routers in different ASes and
are used to learn routes to external destinations.

• internal BGP (iBGP) : Those sessions connect the routers in the same AS and are
used to disseminate externally-learned routes internally.

BGP as a protocol is rather simple and consists of four basic types of messages:

• OPEN : Establish TCP-based BGP session
• NOTIFICATION : Report unusual conditions
• UPDATE : Inform neighbor of a) a new best route, b) a change in the best route, or c)

the removal of the best route
• KEEPALIVE : Inform a neighbor that the connection is alive

BGP Updates

A BGP update message carries an IP prefix together with a set of attributes that describe
route properties that can be used in route selection/export decisions. Such attributes can
either be local (only seen in iBGP sessions) or global (seen on both iBGP and eBGP sessions).
Possible attributes are:

• NEXT-HOP : A global attribute which indicates where to send traffic next. It identifies
the egress point and is set when a route enters an AS and does not change within the
AS.

• AS-PATH : A global attribute that lists all ASes a route has traversed (in reverse order).
• LOCAL-PREF : A local attribute set at the border, it represent how “preferred” a route

is. A higher value results in all routers using this route to reach any external prefixes,
even if they are closer to another egress point.

• MED (Multi-Exit Discriminator) : A global attribute which encodes the relative
“proximity” of a prefix with respect to the announcer. In contrast to LOCAL-PREF , a
lower MED indicates closeness and is preferred over a higher value.

The network that is sending the traffic always has the final word when it comes to deciding
where to forward. Therefore LOCAL-PREF is more important than MED .

BGP Decisions

Given the set of all acceptable routes for each prefix, the BGP decision process elects a
single route. BGP thus is a single path protocol.

Route picking in BGP works as follows: Out of all possible routes, BGP
decision processing picks exactly one with the following precedence:

1. Highest LOCAL-PREF.
2. Shortest AS-PATH length.
3. Lower MED.
4. On a tie of the first three attributes, we pick the routes that were learned

via eBGP over routes that were learned internally via iBGP:
• A lower IGP metric to the next hop
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• A smaller egress IP address (tie-breaker)

4.6.3 Problems with BGP
There are several problems with BGP:

• Reachability: BGP does not guarantee reachability even if a graph is connected.
• Security: Simply absent. AS can advertise any prefix, AS can arbitrarily modify content

og an AS-PATH, and can forward traffic along different paths than the advertised one.
• Convergence: With arbitrary policies, the protocol might fail to converge tue to policy

oscillations (in practice this does not happen that often).
• Performance: Path selection happens for economic reasons, not based on performance.
• Anomalies: BGP is bloated and underspecified at the same time such that there are

conflicting interpretations and configuration is hard to get right.
• Relevance: BGP policies are rapidly changing.

If all ASes policies follow the customer/peer/provider rules, also called Gao-
Rexford rules, then BGP is guaranteed to converge .
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5. Link Layer

The link layer is concerned with transferring messages over one or more connected links,
thus providing a service to the network layer by building on top of the physical layer.
We’ll refer to any device that runs the link layer as a node and to the communication
channels that connect adjacent nodes as links . Over a given link, a transmitting node
encapsulates a datagram in a link-layer frame .

5.1 Framing
The physical layer gives us a stream of bits. But how do we interprete it as a sequence of
frames?

The job of the link layer is to interprete that bitstream as a sequence of frames.

5.1.1 Byte Count
The first idea is to use a byte count . In this approach we start each frame with a length
field that denotes the size of the frame in bytes.

The problem with this approach is that once a framing error is made, there is no way to
recover from it, and all the subsequent frames are decoded incorrectly.

5.1.2 Byte Stuffing
A better idea is byte stuffing . The approach is to have a special FLAG byte that denotes
the start and end of a frame and a special ESC byte.

• If FLAG appears in the data, replace it with ESC FLAG .
• If ESC appears in the data, replace it with ESC ESC .

This way, any unescaped (ESC) FLAG is a start/end of a frame.

5.1.3 Bit Stuffing
We can also stuff at the bit level:

• We call a FLAG six consecutive 1s
• On transmit, after five 1s in the data, insert a 0
• On receive, a 0 after five 1s is deleted

5.2 Error Detection and Correction
Bit-errors are introduced by signal attenuation and electromagnetic noise and are, in general,
not avoidable when using certain types of media for transport. Our aim is to detect and
possibly even correct these errors at a very low level, namely at the link layer. A possibility
is to add redundancy , i.e., check bits that allow some errors to be detected. Adding even
more check bits even makes it possible to directly correct some errors.

Goal: Structure code to detect many errors with few check bits and modest computational
effort.
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5.2.1 Intuition & Usage
A codeword consists of D data bits and R check bits. The sender computes R based on
the data D and sends the codeword of D + R bits (concatenated). A receiver then, upon
receiving D + R bits, recomputes R′ based on D. If R′ doesn’t match R, then there is an
error somewhere.

Note: For data bits D, the set of correct codewords should only be a tiny fraction of the set
of all codewords, such that the probability of a randomly chosen codeword being correct is
very small.

Hamming Distance

Let the distance of two codewords D + R1 and D + R2 be the number of bits that need
to be flipped to turn D + R1 into D + R2 (or vice versa).

The hamming distance of a code is the minimum distance between a pair of
codewords. A code of hamming distance d + 1 can detect up to d errors. A
code of hamming distance 2d + 1 can correct up to d errors by mapping to
the closest codeword.

5.2.2 Error Detection
Parity Bit

Take D data bits and add only a single check bit c such that c is the sum of all D bits
modulo 2, i.e.

c ≡2

D∑
i=1

xi

where xi denotes the i-th data bit.

The distance of the code is 2, it can thus detect exactly one error (but not locate it) and
correct none.

Checksums

Idea: Sum up data in N -bit words, that gives a stronger protection than parity and is widely
used in TCP/IP/UDP etc. Internet checksum works as follows:

Sending side:

1. Arrange data in 16-bit words.
2. Put 0 in the checksum position and add the words.
3. Add any carryover back to get 16 bits.
4. The checksum is now given by the complement (negation).

Receiving side:

1. Arrange the data in 16-bit words.
2. Add the words and the checksum.
3. Add any carryover back to get 16 bits.
4. Negate the result and check if it is 0, if not, then an error occurred.

Cyclic Redundancy Check (CRC)

Let the data D consist of d data bits. Sender and receiver then agree on a k + 1 bit pattern,
which is called the generator G (and can be expressed as a polynomial over the finite field
GF (2)). The sender will then choose r bits R to append to D such that the resulting d + r
bit pattern is congruent modulo 2 to G, i.e., D + R ≡2 G.
The receiver then checks whether the received d+r bits are divisible by G with a 0 remainder.
If not, an error occurred.
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5.2.3 Error Correction
The general problem that makes error correction so hard is that check bits aren’t reliable
either. If we can construct a code of Hamming Distance ≥ 2d + 1, then codewords containing
at most d bit errors are uniquely mapped to the closest valid codeword.

Hamming Code

A hamming code is a code with hamming distance 3. It can hence correct 1 bit error. For a
message of n bits, choose k such that n = 2k − k − 1 holds. We insert check bits at positions
of powers of 2, starting with position 1.
When written in binary, the positions of the check bits have exactly one bit set to 1. The
check bit p8 for example records the parity of all positions that have the 4-th bit set to 1.
Check bit p4 records parity of all positions that have the 3rd bit set to 1.

Now to decode, we recompute the check bits, arrange them as a binary number, called the
syndrome . It tells us the error positions where the bit needs to be flipped. If the syndrome

is 0, no error occurred.

5.2.4 Detection vs. Correction
Instead of correcting bit-errors, one could simply try to detect them and, upon detecting an
error, requesting a retransmit. This might be more efficient than correction, but it is largely
dependent on the setting:

• Error correction is needed when we expect error at a small rate or when there is no
time for retransmission (physical layer).

• Error detection is more efficient when errors are not expected and when errors are large
when they occur (link layer and above).

5.3 Retransmissions
Instead of correcting errors, one can simply detect them and retransmit the frames in which
they occurred.

Automatic Repeat reQuest (ARQ)
ARQ is often used when errors are common or if they must be corrected (e.g. TCP). It works
in the following way:

• Receiver: Automatically ACKs correct frames
• Sender: Automatically retransmits after timeout until ACK is received.

5.4 Multiple Access
Multiplexing is the network word for the sharing of a resource. A classic scenario is the

sharing of a link among different users with one of the following approaches:

• Time Division Multiplexing (TDM) : Users take turns on a fixed schedule which
lets them send at a high rate but only during a fraction of time.

• Frequency Division Multiplexing (FDM) : Puts users on different frequency bands
which lets them send at a low rate but at all the time.

5.4.1 Multiplexing Network Traffic
Network traffic is bursty, the load varies greatly over time, and it is thus very inefficient to
allocate the peak need with TDM/FDM. We therefore need multiple access schemes
that multiplex users according to their demand.

Randomized Multiple Access

Assume a distributed network with no master node, i.e. no-one is in charge. We will
now look at a randomized multiple access protocol which is also referred to as the
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medium access control (MAC) protocol , which provided the basis for the classic
Ethernet.

ALOHA Protocol

The ALOHA Protocol connected the Hawaiian islands in the 1960s. The protocol is really
simple:

• Nodes just send whenever it has traffic.
• If there was a collision, i.e. no ACK was received, then wait a random time and resend.

Under low load, this works fairly well. However, under high load the efficiency is very bad.

Carrier Sense Multiple Access (CSMA)

CSMA denotes a improvement of ALOHA for LAN. It works by listening for activity before
sending. This way we have less collisions, but they can still occur due to sending delays.

• CSMA/CD is a CSMA protocol with added collision detection. This will reduce the cost
of collisions by detecting them and aborting the rest of the frame time.

Let D be the distance between the two furthest away nodes in the network. Then the time
window in which a node may hear of a collision is 2D. We therefore impose a minimum
frame size that lasts for 2D seconds such that the nodes can’t finish before the collision is
detected. This leads to a minimum frame size of 64 bytes for Ethernet.

Another problem arises when a node detects that another node is sending. When it simply
waits and sends when the other node is done, this might lead to multiple waiting loads
queuing up and even amplifying the problem. One simple solution is, that for N queued
senders, each sends with probability 1

N . The waiting time interval is doubled for each
successive collision which leads to a binary exponential backoff.

Wireless Multiple Access

Wireless is much more complicated than the wired case:

• Nodes may have a different area of coverage. This may lead to the fact that for some
nodes there is interference and for others there isn’t. We distinguish between:

– Hidden terminals : Two nodes that cannot reach each other, yet they collide
at some intermediate node.

– Exposed terminals : Two nodes that can reach and thus “hear” each other, yet
they don’t collide.

• Nodes can’t hear while sending and therefore, collision detection is a waste of time.

Multiple Access with Collision Avoidance (MACA) is a possible solution. The proto-
col works with the following rules:

1. A sender node transmits a RTS (Request-To-Send, with frame length).
2. The receiver replies with a CTS (Clear-To-Send, with frame length).
3. Sender transmits the frame while nodes hearing the CTS stay silent.

Note: MACA solves both the hidden and exposed terminal problem.
Note: Collisions on the RTS/CTS are still possible, but less likely.

Token Ring

Another protocol where nodes are arranged in a ring. A token rotates “permission to send”
to each node in turn.

• This leads to a fixed overhead, no collisions, predictable, and a regular chance for each
node to send.

• However, what if a token is lost, what if a token manager crashes? Overhead is way
too high for lower loads.

In practice, it is hard to beat random multiple access protocols.
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5.5 LAN Switching
Modern Ethernet is based on the usage of switches rather than multiple access, i.e., hosts
are connected with to switch ports. We distinguish three types of devices:

• Hub/Repeater : Only at the physical layer, strengthens the signal
• Switch : At the link layer, looks where to forward the packet
• Router : At the network layer

5.5.1 Inside a Switch
A Switch :

• uses frame addresses to connect input port to the right output port. It allows for
multiple frames to be switched in parallel.

• ports are full-duplex, allowing for both input and output. There is no multiple access
control.

• in case there is contention, there are both input and output buffers. On overload,
frames are lost.

Switches and hubs have replaced shared cable of classic Ethernet, since they provide a better
reliability and scalable performance.

5.5.2 Switch Forwarding
A switch needs to find the right output port for the destination address in the Ethernet
frame.

Backward Learning

Switches use a port/table to forward frames and they generate the table as follows:

1. To fill the table, it looks at the source address of the input frames.
2. To forward, it sends it to the port, or else broadcasts it to all ports.

This method works as long as there are no loops in the system.

Switch Spanning Tree

One solution to loops in the network are spanning trees.
Switches collectively find a spanning tree for the topology and then only forward to along
the tree. When a frame is broadcasted, it goes all the way up to the root and then all the
way down to all the branches.

Spanning Tree Algorithm

1. Elect a root node of the tree (the switch with the lowest address)
2. Grow tree as shortest distances from the root (using the lowest address to break distance

ties)
3. Turn off ports for forwarding if they are not on the spanning tree
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6. Physical Layer

The physical layer concerns how signals are used to transfer message bits over a link.
We want to send digital signals but the medium we use uses analog signals.

6.1 Properties of Media
6.1.1 Link Model
We abstract the physical model as follows: We consider the rate (or bandwidth) in
bits/second and the delay or latency in seconds as the key properties of such a physical
channel.

Message Latency

The message latency L consists of two parts:

• Transmission delay T : The time used to put a M bit message on the wire:

T = M [bits]
Rate [bits/sec] = M

R
[sec]

• Propagation delay P : The time used for the bits to propagate across the wire:

P = length

speed of signals
= length

2
3 c

= D [sec]

This yields a total latency or delay of L = M
R + D. For rates we use powers of 10, for

storage/data sizes we use powers of 2.

Bandwidth-Delay Product

The amount of data in flight is the bandwidth-delay product , given by BD = R · D, and
is measured in either bits or messages.

6.1.2 Types of Media
We introduce the following different types of media:

• Wires - Twisted Pair : Used in LANs and telephone lines. Twists reduce radiated
signals and effects of external interference.

• Wires - Coaxial Cable: A copper core shielded by insulating material, braided outer
conductor and protective plastic covering. Provides a better performance due to better
shielding.

• Fiber : Long, thin, pure strands of glass allow for enormous bandwidths over long
distances. Works by having a light source at one end and a photo-detector on the other
end. Transmits at around 2

3 c.
• Wireless: Sender radiates signal over and entire region into all directions. This

potentially leads to interference.
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6.2 Simple Signal Propagation
Analog signals are used to encode digital bits. A signal over time can be represented by its
frequency components (called Fourier analysis). As signals propagate over a wire , the
following happens:

1. The signal is delayed (since it propagates at 2c
3 )

2. The signal is attenuated
3. Frequencies above a cutoff are highly attenuated
4. Noise is added to the signal

When a signal, however, is propagated over fiber , the light propagates with very low
loss in three very wide frequency bands (furthermore, at these frequencies the attenuation is
very low).

Signals that are sent over wireless travel at the speed of light, spread out and attenuate
at a fast rate. Multiple signals on the same frequency cause interference at a receiver.

6.3 Modulation Schemes
We need signals to represent bits. One way to do this is the Non-Return to Zero (NRZ)
scheme. In this scheme, high voltage (+V ) represents a 1, low voltage (−V ) represents a 0.

This simple scheme uses only 2 levels, if we were to increase it to 4 levels, it could support 2
bits per symbol.

6.3.1 Clock Recovery
The receiver needs frequent signal transitions to decode bits. It needs to know how many 0’s
in a row were transmitted. This can be hard for very long sequences of 0’s.

For that reason, the 4B/5B Clock Recovery maps every 4 data bits into 5 code bits while
eliminating long runs of 0’s. This is done with an encoding table, and each string that is
mapped to has at most 3 zeros in a row.
Another approach is to invert signal on a 1 to break long runs of 1’s, which is called NRZI .

6.3.2 Passband Modulation
We have so far only seen baseband modulation for wires, which can be applied when a
signal is sent directly on a wire.
However, these signals do not propagate well on fiber or on wireless, so we need to send at
higher frequencies. This is exactly what passband modulation does: It carries a signal by
modulating a carrier (a signal oscillated at a desired frequency). This modulation happens
by changing amplitude, frequency, and phase.
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6.4 Fundamental Limits
Key properties of a channel include bandwidth B, signal strength S, and noise strength N .
It holds that:

• The rate of transitions is limited by B
• The number of signal levels that can be distinguished is limited by S and N .

6.4.1 Nyquist Limit
The maximum symbol rate is 2B (on alternating 1s and 0s). Thus, if there are V signal
levels, ignoring noise, the maximum bit rate is:

R = 2B log2 B [bits / sec]

6.4.2 Shannon Capacity
How many levels that can be distinguished depends on the signal-to-noise ration (or
S/N). SNR is given on a log-scale in decibels according to:

SNRdB = 10 log10(S/N)

The Shannon limit for a capacity C is the maximum information carrying rate of the
channel and is given by:

C = B log2

(
1 + S

N

)
[bits / sec]

6.4.3 Digital Subscriber Line (DSL)
DSL reuses a twisted pair telephone line to the home. Since only the lowest 4 kHz of

approximately 2 MHz of bandwidth are used by the telephone service, the rest can be used
for different purposes.

DSL uses passband modulation which creates separate bands for up- and downstream with
different bandwidth sizes. The modulation varies both amplitude and phase. On high SNR,
there are up to 15 bits per symbol, where as on low SNR, there is only 1 bit per symbol, so
the connection is slower.
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7. Algorithms in Networking

7.1 Examples for algorithmic problems in networking
Shortest paths
Again, assume a network, shown as a directed graph, and trying to find a shortest path from
some source node S to a destination node T .

Traffic engineering
Max-Flow-Problem : Given a network, displayed as a directed graph, what is the maximum

traffic from some endpoint S to another endpoint T ? Solved by determining the min-cut of
the graph (which will be equal to the max-flow).

Matchings and circuits
Matchings are often seen inside circuit switches that consist of micro-mirrors and we want

to allow as many concurrent connections/circuits as possible.

7.2 Linear programming: a powerful, generic tool
7.2.1 What is a linear program?
A linear program is based on the following three definitions one needs to assign to define
a linear program:

1. Variables : E.g., flows on edges, distance from start, etc. Must be real numbers,
x ∈ R

2. Objective : E.g., maximize flow, minimize distance, etc. The objective function Θ
Must be a linear combination of the variables.

3. Constraints : Flow on edge ≤ capacity of edge, etc. Must too be a linear combination
of variables.

The Canonical Form of an LP has the following form:

• Variables as a vector x ≥ 0
• Objective must be maximized and Θ = c⊤ · x
• Constraints of the form A · x ≤ b

Every LP can be transformed into canonical form. As a rule of thumb one can say that in
practice LPs can be solved in O(n3).

7.2.2 Previous algorithms as linear programs
Max-Flow

We can state the max-flow problem as a linear program in the following way:

• Objective: Maximize flow from s to t.
• Constraint: Obey edge capacities cu, v.

In the linear-programming language, our constraints could look as follows:

• Variables: Flow s → t : f , flow on edge u → v : fu, v
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• Objective: Maximize f
• Constraints: Capacity fu, v ≤ cu, v, flow conservation

∑
s→v fs, v = f =

∑
v→t fv, t

where s is the source and t is the sink,
∑

w→u fw, u =
∑

u→v fu, v ∀u ∈ V \ {s, t}.

Max-Flow with multiple commodities

We are trying to maximize different flow fx on the same graph/network. Our objective is
therefore to maximize/minimize

∑
x fx. We have the following constraints:

• Capacity:
∑

x fx, uv ≤ cu v

• Flow conservation: in-flow = out-flow
–

∑
w→u fx, wu =

∑
u→v fx, uv ∀u ∈ V \ {u, d(x)}, where d(x) is the destination

of x (this constraint makes sure that flows don’t mix).
–

∑
x→v fx, xv = fx

–
∑

v→d(x) fx, vd(x) = fx

Shortest Path

Our goal is to minimize an s − t path length with given edge lengths wu, v, i.e. minimize∑
u, v xu, vwu, v.

We have the following constraints:

• Path must be connected:
∑

u→v xu, v −
∑

v→w xv, w = 0 ∀v ∈ V \ {s, t} (= 1 if v = t
and = −1 if v = s).

• xu, v ∈ {0, 1}, however in this case xu, v ∈ [0, 1] is enough.

7.2.3 Integer Linear Programs (ILP)
Constraints like x ∈ {0, 1} are not linear anymore. Whereas LPs are solvable in polynomial
time, the general class of ILPs is NP-hard!

7.3 Probabilistic Techniques in Networking
7.3.1 Load balancing
Assume you run a popular network application. How do we distribute requests? Our goal is
to keep response time uniformly low and we wish to have a uniform load at the servers.

• round-robin: Might not work since requests might follow a pattern such as every second
request is a complex one. This way, every even numbered server is fucked.

• send to the least loaded server : Keeping track of the different loads of each server
generates a big overhead and is quite complex to implement.

Our solution is to pick a server uniformly at random, similar to the balls-into-bins
problem.

Recap: Let there be m balls and n bins, then (P [Xi, j ] = 1) = 1
n , which is the probability

that two balls collide.

The expected number of collisions is therefore:

E
[ ∑

Xi, j

]
= 1

n

(
m

2

)
The expected maximum load on any bin is therefore:

O
( ln n

ln ln n

)
which is actually not that good. We can improve this by, instead of only choosing one
bin, choosing two bins at random and then selecting the one with the smaller load. This
improvement leads to the following expected load:
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O
( ln ln n

ln 2

)
which is exponentially better. We can extend this idea by choosing k instead of 2 bins and
then choose the one with the smallest load.

O
( ln ln n

ln k

)
We normally only use random distribution once for each session. We determine the server by
hashing the user-id and taking the hash % n. However this means, that upon failure of a

server, we will reassign most sessions (since now we calculate % (n − 1)). We can prevent
this with consistent hashing , where we hash the server-id’s into the same hash-space as
we do with the user-id’s. Each requests will simply be mapped to the server with the next
greater hash-value as the user-id of the request.

7.3.2 Membership testing & counting
If we want to check if. . .

• an object is already in the CDN cache
• a packet has been seen before
• etc.

We need an effective way to do this with a low error rate.

With a bloom filter we use m bits of memory in table T with k hash functions h1, h2, .., hk

in the hash range {1, 2, ..., m}. We are trying to represent n elements.

A check for membership occurs when we hash the value with all k functions and check
whether all fields are 1, if not we can be certain that it isn’t a member. If all fields are 1,
then it is very likely that it is a member.

After n insertions, the probability that the t-th bit is still 0 is given by:

P [T (i) = 0] =
(

1 − 1
m

)kn

≃ e
−kn

m

Thus, the probability of a match being a false positive is approximately

(1 − e
−kn

m )k

If we choose k = m
n log 2 we can minimize the false positive probability, which then becomes

2−k.

To avoid the bloom filter filling up, we need to reset it periodically. One solution to avoid
fully clearing our filter is to use two filters. We only insert into the first one and clear the
second when swapping.

7.3.4 Traffic monitoring
Traffic monitoring is a problem where we want to detect unusual traffic patterns. For example
to detect a DoS attack. But looking at all the traffic is not feasible. Instead we might only
look at a subset of the traffic.

Sampled NetFlow

Sampled NetFlow samples ever k-th packet. The it upscales the traffic by a factor of k, to
get an estimate of the traffic. The main advantage of this is that it is very easy to implement.
On the other hand, it is not very accurate (especially for short-lived flows) and it produces a
large memory overhead (one entry per flow in the worst case).
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Large-flow detectors

Large flows are flows that consume more than a given threshhold of link capacity during a
given amount of time.

We looked at various approaches including the Majority algorithm. But here I only want to
highlight Frequent-item finding / MG algorithm. The goal is to find all items in a stream of
m items that occur at least k times with no false negatives. The algorithm is as follows:

1. Initialize n = m/k − 1 empty counters
2. For each new item:

1. if there is an counter with the same label, increment it
2. else if an empty counter is available, assign the label to it and increment it
3. else decrement all counters

3. At the end all labels are candidates for frequent items (requires second pass)
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8. Routing Security

8.1 Basic Security Properties
8.1.1 Terminology
We define the following meanings for the 4 key terms:

• Secrecy : Keep data hidden from unintended receivers
• Confidentiality : Keep someone else’s data secret
• Privacy : Keep data about a person secret
• Anonymity : Keep the identity of a protocol participant secret

Furthermore, we want to distinguish the following terms:

• Data Integrity : Ensure that data is correct and prevent unauthorized or improper
changes

• Entity Authentication/Identification : Verifies the identity of another protocol
participant

• Data Authentication : Ensures that data originates from a claimed sender

8.2 Basic Cryptographic Mechanisms
8.2.1 Symmetric Encryption Primitives
In this protocol, the following holds:

• Encryption key EK = decryption key DK

• Encryption: EK(plaintext) = ciphertext
• Decryption: DK(ciphertext) = plaintext

We write {plaintext}K for EK(plaintext).

8.2.2 Asymmetric Encryption Primitives
In this protocol, the following holds:

• Encryption key K is publicly know: public key
• Decryption key K−1 is secret: private key
• Encryption: EK(plaintext) = ciphertext
• Decryption: DK−1(ciphertext) = plaintext

We write {plaintext}K for EK(plaintext).
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8.2.3 Symmetric vs Asymmetric Encryption
We make the following observations:

• Symmetric Encryption
– Need shared secret key
– 100’000’000 ops/s

• Asymmetric Encryption
– Need authentic public key
– 1000 signatures/s or 10’000 verify/s

8.3 Security For Routing Protocols
8.3.1 Intra-Domain Routing
To perform an attack on link-state protocols, one only needs to compromise one router or
one routing adjacency since link-state protocols rely on flooding.

In both cases, the attacker obtains a complete network view and the ability to inject messages
network-wide.

The solution is quite simple: One simply needs to rely on cryptography. We only need to
send authenticated announcements and cryptographically protect topology information.

8.3.2 Inter-Domain Routing
We look at the lack of security of BGP , the problems that follow from this and their solutions.

BGP does not validate the origin of advertisements

Regional Internet Registries assign IP address blocks. However, the origination of a prefix
into BGP must be proper, i.e., by the AS who owns the prefix.

This is, however, not checked by BGP. So what’s to stop someone else, i.e. another AS, from
originating the prefix? This process is known as Prefix Hijacking .

BGP Does not validate the content of advertisements

We might get bogus AS paths by removing a part of an AS path, for example turning ‘701
3715 88’ into ‘701 88’. This way we can for example avoid AS 3715 or help AS 88 look like it
is closer to the Internet’s core.

We might also add ASes to the path, e.g. turning ‘701 88’ into ‘701 3715 88’. This way we
can trigger loop detection in AS 3715 or making our AS look like it has richer connectivity.

Proposed enhancements

We could develop a secure BGP , with origin authentication and cryptographic signatures.
BGPsec adds the following:

• Address attestations: Claims the right to originate a prefix, is signed and distributed
out-of-band, and is checked through delegation chain from ICANN.

• Route attestations: Distributed as an attribute in BGP update messages, and signed
by each AS as route traverses the network.
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• Resource Public-Key Infrastructure (RPKI): Per-prefix certificate issued by Regional
Internet Registries (RIR), and used to authenticate the first AS hop through Route
Origin Authorization (ROA).
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9. DNS Security

Similar to the routing security, we want to protect DNS from being abused. For this we first
look at potential threats.

9.1 DNS Threat Landscape
9.1.1 Denial of Service
There are multiple DoS style attacks one can perform:

1. Reflection & Amplification: Pretend to be the victim to send a DNS query. The DNS
server will then send the response to the actual victim. The message to the victim will
be larger than the message from the attacker.

This can be prefent through source authentication.

2. Water Torture (Random Prefix) Attacks: The attack sends DNS requests for random
prefixes for the victim domain (to bypass caching). This will result in overloading the
victim DNS server.

There are many more possible ways to perform a DoS attack by abusing DNS, but I won’t
list everyone of them here.
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9.1.2 DNS Privacy
DNS itself does not store any sensitive information. However, if one does track the domain
name of the query and the IP address of the server that answered the query, one can gain
private data. Today ISPs store this information in their logs.

DNS QMIN is a mechanism that tries to reduce the amount of information that is sent to a
minimum.

DoT is another possible solution to DNS privacy. It works by sending every DNS query to a
public recursive resolver. Therefore the ISP does not process the query and does not get
any information about it. On the other hand this only works if the public DNS resolver is
trustworthy.

9.1.3 DNS Spoofing & Authentication
By injecting a fake record into a DNS cache, one can spoof a domain name and redirect
traffic to a fake site.

On-path eavesdropper

After the victim sends a query, the attack immidiatly sends a fake response to the resolver,
while making the auth server busy. It is trivial to forge a response with matching parameters.

Malicious auth server

Data in the additional section of a response is unrestricted and gets cached. By sending
a query with a domain that is under the control of the attacker, one can inject arbitrary
records into the cache.

9.2 DNS Security Extensions (DNSSEC)
The basic idea behind DNSSEC is a hierarchy of signed zones. Then the resolver can use a
public key to authenticate DNS messages.

While this is a simple idea, it has its problems. On one hand it relies on a global trust anchor,
which is not secure. On the other hand, it increases query and response time by a factor of
10 to 100.
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10. Satellite Networks

The current internet infrastructure is completely reliant on fiber intrastructure. To make the
internet more accessible in remote areas and to decrease latency, satellite networks are used.

10.1 Constellations
Satellite networks consist of thousands of satellites. They are aranged in a constellation. A
constellations can consist of multiple orbital shells and different motifs.

10.2 Satellite Connections
Individual satellites communicate through ground-to-satellite links or intra-satellite links.

For intra-satellite links it is important that the connected satellites move relative to each
other. For this reason satellites that move opposite to each other can’t communicate. A
satellite therefore is often only connected to four neighbors in the same motif.
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10.3 Opportunities for Satellite Networks
Satellite networks offer opportunities beyond connecting remote locations. They can also be
used to connect AS that are not directly connected.
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11. SCION - A Secure
Multipath Interdomain Routing
Architecture

11.1 SCION Principles
SCION is based on the following principles:

• Stateless packet forwarding
• Instant convergence routing
• Path-aware networking
• Multi-path communication
• High security through design and formal verification
• Sovereignty and transparency for trust roots

11.2 SCION Overview
11.2.1 Control Plane: How to find end-to-end paths?
One first approach to scalability is Isolation Domains (ISDs) :

• Isolation Domains (ISDs) are grouped ASes
• There is an ISD core , which are the ASes that manage the ISD
• A core AS is an AS that is part of the ISD core
• Each ISD defines their TRC (Trust Root Configuration) , which contains the root

cryptographic keys to verify ISD operations

Path Exploration

Beaconing describes one way of intra-ISD path exploration:

• Core ASes initiate Path-segment Construction Beacons (PCBs) , also called bea-
cons

• PCBs traverse the ISD as a flood to reach downstream ASes
• Each AS receives multiple PCBs representing path segments to a core AS

A PCB contains an info field with the PCB creation time. Each AS on the path adds to this:

• its AS name
• a hop field for data-plane forwarding including:

– Link identifiers
– Expiration time
– Message Authentication Code

• an AS signature

PCBs contain path segments that can be used as communication paths to communicate
with the core AS that initiated it. We differ between:

• Up-path segments : PCB is used from AS to core AS
• Down-path segments : PCB is used from core AS to AS
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Path Registration

Up-path segment registration works the following way:

• AS selects path segments to announce as up-path segments for local hosts
• Up-path segments are registered at local path servers

Down-path segment registration works as follows:

• AS selects path segments to announce as down-path segments for others to use to
communicate with AS

• Down-path segments are uploaded to core path server in the core AS

11.2.2 Data Plane: How to send packets?
Path lookup

The following steps are performed by a host to obtain path segments (path lookup) :

1. The host H contacts RHINE server with a name it wants to look up:
1. H → RHINE : www.scion-architecture.net
2. RHINE → H : ISD X, AS Y, local address Z

2. Host contacts local path server to query path segments
1. H → PS : ISD X, AS Y
2. PS → H : up-path, core-path, down-path segments

3. Host combines path segments to obtain an end-to-end path

When receiving a message, the host can simply use the reverse path to answer the message.

Path combination

The following path combinations are possible in SCION:

SCION Packet Header

The SCION common header encodes the following attributes:

• Version
• Destination and Source address types
• Total packet and header length
• Pointer to current info and hop fields
• Next header type field
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