Model Error

Empirical Risk ~ Rp(f) =2 Y00y, f(x))
Population Risk  R(f) = E.,,[¢(y, f(x))]
It holds that Ep[Rp(f)] < R(f). We call R(f)

the generalization error.
Bias Variance Tradeoff:
Pred. error = Bias? + Variance + N01se

Ep[R(f)] = Ei[f*(x) —Ep|fp(x)]]”
+E[Ep[(/p(x) —Ep[/p(x)])’]] +-0

Bias: how close f can get to f*

Variance: how much f changes with D

Regression

Squared loss  (convex)
FEi—f(a)* = 4lly = Xwll3
V,L(w) =2XT(Xw—y)

Solution: W = (X TX)~'X Ty
Regularization

Lasso Regression (sparse)
argmin|[y — ®wl[3 +A[jw||s
weRd
Ridge Regression
argmin|[y — ®wl[3 +A[|w|[3
weRd

VL(w) =2X"(Xw—y)+2Aw
Solution: w = (X "X +AI1)"'XTy
large A = larger bias but smaller variance
Cross-Validation
e Forallfoldsi=1,....k:

— Train f; on D' — D)

— Val. error R; = \Tlﬁl Y O(fi(x),y)
e Compute CV error %Zg‘:] R,
e Pick model with lowest CV error

Gradient Descent
Converges only for convex case.

Wt+1 :Wt_nt'vawt)
For linear regression:
1w = w2 < (1T =nX "X [o | 1w” —w"||2
p=II-nXTXI[,
Opt. fixedn = p—— +7»ma and max. 1 < iax
Momentum: w' ! =w +yAw' "1 —1, Vi(w')

Classification
Zero-One loss  not convex or continuous

bo—1(f(x),y) = ]Iyzésgnf(x)
Logistic loss  log(1+e™/¥)
VU(f(x),y) = 25

1ol ®

conV speed for const. 1.

Hinge loss max (0,1 —yf(x))

Softmax p(1|x) = p(—1]x) = ﬁ

1
Multi-Class  py = e/t /YK | /i)
Linear Classifiers
f(x) = w'x, the decision boundary f(x) = 0.
If data is lin. sep., grad. desc. converges to
Maximum-Margin Solution:

wpMm = argmax margin(w) with ||w||, = 1
Where margin(w) = min; y;w ' x;.
Support Vector Machines
Hard SVM

W:minw||w||2 s.t. Viy,w xi>1

Soft SVM allow”’ slack in the constraints

W= mign—\|w|\2+7u2max01 yiw' x;)

Metrics hinge loss
Choose +1 as the more important class.
. __Fp

. YE:'G C‘a“ CI'I'OI'l/FPR . w
23 TP FP errory/FNR '+ 15 7
2 Precision Y .
T TP 3P
2 FN [ TPR / Recall : w5

AUROC: Plot TPR vs. FPR and compare dif-
ferent ROC’s with area under the curve.
F1-Score: > mpmn fgg N Accuracy : TE:IEN
Goal: large recall and small FPR.

Kernels

Parameterize: w =®'a, K = &P
A kernel is valid if K is sym.: k(x,?7)
and psd: z' Kz >0

lin.: k(x,z) = x'z, poly.: k(x,z) =
rbf: k(x,z) = exp(— E=de)

o = 1 = laplacian kernel

0. = 2 = gaussian kernel

Kernel composition rules
k=ki+k, k=k -k Vec>0.k=c-
ki, Vf convex. k = f(k;), holds for polynoms
with pos. coefficients or exp function.

vf k(xay) = f(x)kl (x)y)f(y)

Mercers Theorem: Valid kernels can be de-
composed into a lin. comb. of inner products.
Kern. Ridge Reg. 1 ||y — Ka|3+1o Ko

KNN Classification
e Pick k and distance metric d
e For given x, find among x,...,
the k closest to x — X;,, ..., X;,
e Output the majority vote of labels

= k(z,x)

(xTz41)m

X, €D

Neural Networks
w are the weights and @ : R — R is a nonlinear

activation function: ¢ (x,w) = @ (w'x)

. exp(z)—exp(~2)
ReLU maX(O Z), Tanh: W
Slngld I-FTP()

Universal Approximation Theorem: We can
approximate any arbitrary smooth target func-
tion, with 1+ layer with sufficient width.
Forward Propagation
Input: v = [x;1]  Output: f = Wwoy(L-1)
Hidden: z() = wy(l=1) y() = [@(z(D);1]
Backpropagation
Non-convex optimization problem:
at ot of
(VW(L) f) = aw® afBW(U

o a¢ of 9zeLD
TawaD T 5f 920D gw LD
T o ¢ of 9zU D 9z1L-2)
(we-s€) =50a= =37 5,05 9,65 oW
Only compute the gradient. Rand. init.
weights by distr. assumption for @. ( 2/n;,
for ReLu and 1 /n;, or 1/(ni, + ney ) for Tanh)
Overfitting
Regularization; Early Stopping; Dropout:
ignore hidden units with prob. p, after train-
ing use all units and scale weights by p;
Batch Normalization: normalize the input
data (mean 0, variance 1) in each layer
CNN o(Wxv(®)
The output dimension when applying m dif-
ferent f x f filters to an n X n image with

padding p and stride s is: [ = "+2p £+
For each channel there is a separate filter.
Unsupervised Learning

k-Means Clustering
Optimization Goal (non convex)

R(w) — 1|3

Lloyd’s heuristics. Init. cluster centers n©
e Assign points to closest center
e Update |; as mean of assigned points
Converges in exponential time.
Initialize with k-Means++:
e Random data point (1 = x;

(VW(L—iJ {’)

e Add p,,..., rand., with prob:
given Juy.; pick i1 = X
where p(i) = ;mingeqy .y |[xi — WH%
Converges in expectation O'(logk) *

opt. solution. Find k by negligible loss de-

crease or reg.
Principal Component Analysis
Optimization goal: argmin Y7, ||x; —
[Iwlla=1.2
The optimal solution is given by z; = w ' x;.
Substituting gives us:
w= argmaxHWHz:l WTZW

wwlf3

Where ¥ = IZ 1xx is the empirical co-
variance. Closed form solution given by the
principal eigenvector of X, i.e. w = v; for
7\,1 > .2 7\,[1 >0:X= Z?:] kiviviT

For k > 1 we have to change the normaliza-
tion to W W = I then we just take the first k
principal eigenvectors so that W = [vy,..., .
PCA through SVD

The first k columns of V where X = USV .
Kernel PCA

= 2 X
O = argmax
Closed form solution:

= X "X = kernel trick:

o'K"Ko
o Ko

a(i):ﬁvi K=Y l7wlv A >..>0
A point x is projected as: z; =} j_; OLJ(. )k(x i,X)
Autoencoders

We want to minimize 1 Y7, ||x; — %1|3.

X = faec (fenc (x eenc) edec)
Lin. activation func. & square loss => PCA
Statistical Perspective
Assume that data is generated iid. by some
p(x,y). We want to find f: X — Y that mini-
mizes the population risk.
Opt. Predictor for the Squared Loss
f minimizing the population risk:
[1@x) =Ely | X =ux]= [y p(y[x)dy

Estimate p(y | x) with MLE:

e*_argmaxp(yh ayn|-x17 Xn,e)

—argmin —Zlogp yi | x,0)

0

The MLE for linear re regress1on is unbiased and
has minimum variance among all unbiased es-
timators. However, it can overfit.
Ex. Conditional Linear Gaussian
Assume Gaussian noise y = f(x) +€ with € ~
A (0,6%) and f(x) =w'x:

Py |x,8)= A (y;w x,0?)
The optimal W can be found using MLE:

= argmax p(yx,0) = argminZ(y, wlx)?



Maximum a Posteriori Estimate

Introduce bias to reduce variance. The small
weight assumption is a Gaussian prior w; ~

A (0,B2). The posterior distribution of w is

given by: p(w | x,y) = pi(wi;&(‘yl)x’w)
Now we want to find the MAP for w:
= argmax,, p(w | %,5)

= argmin,, — log %lyl)wi)

. 2
= argmin,, 5 [w| + Lo (i —w ' x)?
Regularization can be understood as MAP in-
ference, with different priors (= regularizers)

and likelihoods (= loss functions).

Statistical Models for Classification

f minimizing the population risk:
f*(x) = argmax; p(§ | x)

This is called the Bayes’ optimal predictor for
the 0-1 loss. Assuming iid. Bernoulli noise,

the conditional probability is:

p(y | x,w) ~Ber(y;o (w'x))
Where ¢ (Z) = Trexp(—2)
tion. Using MLE we get:

W = argmin}""_, log(1 +exp(—yw ' x;))
w
Which is the logistic loss. Instead of MLE we
can estimate MAP, e.g. with a Gaussian prior:
W = argmin A ||w|2 + X7, log(1 4™ )
w

Bayesian Decision Theory

Given p(y | x), a set of actions A and a cost
C:Y xA— R, pick the action with the maxi-

mum expected utility.
a* = argmin, 4 E\[C(y,a) | x]

Can be used for asymetric costs or abstention.

Generative Modeling

Aim to estimate p(x,y) for complex situations

is the sigmoid func-

using Bayes’ rule: p(x,y) = p(x[y) - p(y)

Naive Bayes Model

GM for classification tasks. Assuming for a
class label, each feature is independent. This

helps estimating p(x | y) = [T, p(x; | yi).

Gaussian Naive Bayes Classifier

Naive Bayes Model with Gaussians features.

Estimate the parameters via MLE:

MLE for class prior: p(y) = py =
MLE for feature distribution: )
Where: p(xily) = </V(xi§lzly,i30),7,-)

R S ..
Hyi = Coumr=y) &j | y=yYii

_ Count(Y=y)

n

2 = %:y)): ily=y(Xji— f,;)> M-Step: compute MLE of ") as for GBC. We have monotonic convergence, each EM-

Oy = Count( . . o
Predictions are made by: Problems: labels if the model is uncertain, iteration increases the data likelihood.

d
y=argmax p(¥ | x) = argmax p(¥) H p(x; | ) tries to extract too much inf. Works poorly GANs

¥ ¥ i=1 if clusters are overlapping. With uniform Learn f : ”simple” distr. + non linear distr.
Equivalent to decision rule for bin. class.: weights and spherical covariances is equiva- Computing likelihood of the data becomes
y =sgn (log p(Y=+1 \x)) lent to k-Means with Lloyd’s heuristics. hard, therefore we need a different loss.
e p(r=—TTx) . Soft-EM Algorithm minmax By, (log D(x,wp)]
Where f(x)is called the discriminant function. E-Step: calculate the cluster membership  "® ""\p  foe(1— D(G
If the conditional independence assumption is weights for each point (w; = 11; = p(Z = j)): T Z".’pz[ og( - ( (ZaWG)MfD))]
violated, the classifier can be overconfident. S (50 - Training requires finding a saddle point, al-
Gaussian Bayes Classifier Y('t)(xi) —p(Z=j|D)= ij)) ways converges to saddle point with if G, D
No independence assumption, model the _ Liwep(a:, ') have enough capacity. For a fixed G, the opti-
features with a multivariant Gaussian M-Step: compute MLE with closed form: mal discriminator is: @
N (33 1y, Ey): () _ 1yn o0 () _ Ty () Deoly) = — Pdatal¥
’ wi = 2Ty ) w =S G(x) =
My = Gam(r=y) L =% SR N e Pane()pa(n)
%y = Gomirsy) L L= (6 — fly) (= fy) T 0 _ Zt ) mn)’ e el 1 e ion
Y = Comt(Y=y) & |yj=y\Xj = Hy)(Xj — Hy X = E— ! erful discriminator could lead to memoriza-
This is also called the quadratic discrimi- Ty () tion of finite data. Other issues are oscilla-

nant analysis (QDA). LDA: ¥ = X_, Fisher Init. the weights as uniformly distributed, tions/divergence or mode collapse.

) 1 . L rand. or with k-Means++ and for variances Qpe possible performance metric:
LDA: p(y) = 7, Outlier detection: p(x) < T. yge spherical init. or empirical covariance of p b

L o . _ N /
le/[‘iondmg OVerfltt|r;ig o Avoid this b the data. Select k using cross-validation. DG = nvlv?)XM(wG’ Wp) HVIV?M(WG’ wp)
LE 1s prone to overfitting. Avoid this by re- Degeneracy of GMMs . . ..
stricting model class (fewer parameters, €.. GMMs can gverfit with limited data. Avoid Where M(w,wp) is the training objective,

GNB) or using priors (restrict param. values). this by add v*I to variance, so it does not col- Various

Generative vs. Discriminative lapse (equiv. to a Wishart prior on the covari- Derivativgs: - +
Discriminative models: ance matrix). Choose v by cross-validation. TVxX A=A VxTa x=Vx a=a

p(y|x), can’t detect outliers, more robust Gaussian-Mixture Bayes Classifiers Vb Ax =A"h V y x=2x V.x'Ax =2Ax
Generative models: Assume that p(x | y) for each class can be Vyly _me2 =2X (Xw—y)

p(x,y), can be more powerful (dectect out- modelled by a GMM Bayes Theorem:

liers, missing values) if assumptions are met, o , xX)= —— -p(x

are typically less robust against outliers pix[y)=X j):1 Wg‘y)JV (x5 M}”vzﬁ'y)) p(y | ) .p(x) M
Gaussian Mixture Model Giving highly complex decision boundaries: Normal Distribution: p(x.y) oo
Assume that data is generated from a convex- py|x)= %p(y) Z’j‘_y:] Wﬁy){/V(x; Mj(.y)jzﬁy)) N (W, E) = m exp(—w)
combination of Gaussian distributions: GMMs for Density Estimation Other Facts

_ _ vk .
p(x|6) B P, Zw) = X5 WiV (% 17,Z)) Can be used for anomaly detection or data im- Tr(AB) = Tr(BA), Var(X) = E[X2] — E[X]2,
We don’t have labels and want to cluster this putation. Detect outliers, by comparing the x ¢ Rrxd . x-1 _ O(d®) XX — O(nd?),

data. The problem is to estimate the param. egtimated density against T.  Allows to con- /my Toolls — JooT

for the Gaussian dlStrlb,}ltlonS' trol the FP rate. Use ROC curve as evaluation (k) = (n—k)'k!> [ wllz = vw'w
argming — Y} long:I wj- A (x| 1j,X;) criterion and optimize using CV to find <. Cov[X] =E[(X —E[X])(X — E[X])T]

This is a non-convex objective. Similar to General EM Algorithm (2lx,0) = p(x,2]8)

training a GBC without labels. ~Start with E-Step: Take the expected value over latent "/ = "p(x[0)

guess for our parameters, predict the unknown variables z to generate likelihood function Q: Convexity
labels and then impute the missing data. Now 0(6:0" V) =E,[log p(X,Z | 8) | X,080 1] 0: LAAw+ (1—=A)v) <AL(w)+ (1—A)L(v)
we can get a closed form update. ’ 0ok ’ ’ 1: Lw)+ VL(w) " (v—w) < L(v)

Hard-EM Algorithm = Yo, (x))log p(xi,zi | ©)  2: Hessian V2L(w) 3= 0 (psd
E-Step: predict the most likely class for each ,; z,«gl 0 x) (50,2 16) e 0f+Pg (z) B(> E)p cc))nvex if f,g con-
data point: with 1, (x) = p(z | x,00 1) Vex o

zl(t) — argmax p(z | x;,0" V) M-Step: Compute MLE / Maximize: ® fog,convex if f convex and g affine or

f non-decresing and g convex

b4 (1) _ .at—1)
- 0% = arggnax 0(6:6 ) e max(f,g), convex if f,g convex

= argmax p(z |87~ - p(xi [ 2,677V
<



