
Model Error
Empirical Risk R̂D( f ) = 1

n ∑ℓ(y, f (x))
Population Risk R( f ) = Ex,y∼p[ℓ(y, f (x))]
It holds that ED[R̂D( f̂ )]≤ R( f̂ ). We call R( f̂ )
the generalization error.
Bias Variance Tradeoff:
Pred. error = Bias2 + Variance + Noise
ED[R( f̂ )] = Ex[ f ∗(x)−ED[ f̂D(x)]]2

+Ex[ED[( f̂D(x)−ED[ f̂D(x)])2]]+σ
Bias: how close f̂ can get to f ∗

Variance: how much f̂ changes with D
Regression
Squared loss (convex)

1
n ∑(yi − f (xi))

2 = 1
n ||y−Xw||22

󰑢wL(w) = 2X⊤(Xw− y)
Solution: ŵ = (X⊤X)−1X⊤y
Regularization
Lasso Regression (sparse)

argmin
w∈Rd

||y−Φw||22 +λ ||w||1
Ridge Regression

argmin
w∈Rd

||y−Φw||22 +λ ||w||22

󰑢wL(w) = 2X⊤(Xw− y)+2λw
Solution: ŵ = (X⊤X +λ I)−1X⊤y
large λ ⇒ larger bias but smaller variance
Cross-Validation

• For all folds i = 1, ...,k:
– Train f̂i on D′−D′

i
– Val. error Ri =

1
|D′

i|
∑ℓ( f̂i(x),y)

• Compute CV error 1
k ∑k

i=1 Ri
• Pick model with lowest CV error

Gradient Descent
Converges only for convex case.

wt+1 = wt −ηt ·󰑢ℓ(wt)
For linear regression:
||wt −w∗||2 ≤ ||I −ηX⊤X ||top||w0 −w∗||2

ρ = ||I −ηX⊤X ||top conv. speed for const. η .
Opt. fixed η = 2

λmin+λmax
and max. η ≤ 2

λmax
.

Momentum: wt+1 =wt +γ∆wt−1−ηt󰑢ℓ(wt)
Classification
Zero-One loss not convex or continuous

ℓ0−1( f̂ (x),y) = Iy∕=sgn f̂ (x)

Logistic loss log(1+ e−y f̂ (x))
󰑢ℓ( f̂ (x),y) = −yixi

1+eyi f̂ (x)

Hinge loss max(0,1− y f̂ (x))
Softmax p(1|x) = 1

1+e− f̂ (x) , p(−1|x) = 1
1+e f̂ (x)

Multi-Class p̂k = e f̂k(x)/∑K
i=1 e f̂ j(x)

Linear Classifiers
f (x) = w⊤x, the decision boundary f (x) = 0.
If data is lin. sep., grad. desc. converges to
Maximum-Margin Solution:

wMM = argmax margin(w) with ||w||2 = 1
Where margin(w) = mini yiw⊤xi.
Support Vector Machines
Hard SVM

ŵ = minw ||w||2 s.t. ∀i yiw⊤xi ≥ 1
Soft SVM allow ”slack” in the constraints

ŵ = min
w,ξ

1
2
||w||22 +λ

n

∑
i=1

max(0,1− yiw⊤xi)󰁿 󰁾󰁽 󰂀
hinge lossMetrics

Choose +1 as the more important class.
error1/FPR : FP

TN + FP
error2/FNR : FN

TP + FN
Precision : TP

TP + FP
TPR / Recall : TP

TP + FN

.
AUROC: Plot TPR vs. FPR and compare dif-
ferent ROC’s with area under the curve.
F1-Score: 2TP

2TP + FP + FN , Accuracy : TP + TN
P + N

Goal: large recall and small FPR.
Kernels
Parameterize: w = Φ⊤α , K = ΦΦ⊤

A kernel is valid if K is sym.: k(x,z) = k(z,x)
and psd: z⊤Kz ≥ 0
lin.: k(x,z) = x⊤z, poly.: k(x,z) = (x⊤z+1)m

rbf: k(x,z) = exp(− ||x−z||α
τ )

α = 1 ⇒ laplacian kernel
α = 2 ⇒ gaussian kernel
Kernel composition rules
k = k1 + k2, k = k1 · k2 ∀c > 0. k = c ·
k1, ∀ f convex. k = f (k1), holds for polynoms
with pos. coefficients or exp function.
∀ f . k(x,y) = f (x)k1(x,y) f (y)
Mercers Theorem: Valid kernels can be de-
composed into a lin. comb. of inner products.
Kern. Ridge Reg. 1

n ||y−Kα||22 +λα⊤Kα
KNN Classification

• Pick k and distance metric d
• For given x, find among x1, ...,xn ∈ D

the k closest to x → xi1 , ...,xik
• Output the majority vote of labels

Neural Networks
w are the weights and ϕ :R 󰀁→R is a nonlinear
activation function: φ(x,w) = ϕ(w⊤x)
ReLU: max(0,z), Tanh: exp(z)−exp(−z)

exp(z)+exp(−z)
Sigmoid: 1

1+exp(−z)
Universal Approximation Theorem: We can
approximate any arbitrary smooth target func-
tion, with 1+ layer with sufficient width.
Forward Propagation
Input: v(0) = [x;1] Output: f = W (L)v(L−1)

Hidden: z(l) =W (l)v(l−1),v(l) = [ϕ(z(l));1]
Backpropagation
Non-convex optimization problem:

Only compute the gradient. Rand. init.
weights by distr. assumption for ϕ . ( 2/nin
for ReLu and 1/nin or 1/(nin+nout) for Tanh)
Overfitting
Regularization; Early Stopping; Dropout:
ignore hidden units with prob. p, after train-
ing use all units and scale weights by p;
Batch Normalization: normalize the input
data (mean 0, variance 1) in each layer
CNN ϕ(W ∗ v(l))
The output dimension when applying m dif-
ferent f × f filters to an n × n image with
padding p and stride s is: l = n+2p− f

s +1
For each channel there is a separate filter.
Unsupervised Learning
k-Means Clustering
Optimization Goal (non-convex):

R̂(µ) = ∑n
i=1 min j∈{1,...,k} ||xi −µ j||22

Lloyd’s heuristics: Init. cluster centers µ(0):
• Assign points to closest center
• Update µi as mean of assigned points

Converges in exponential time.
Initialize with k-Means++:

• Random data point µ1 = xi
• Add µ2, ...,µk rand., with prob:

given µ1: j pick µ j+1 = xi

where p(i) = 1
z minl∈{1,..., j} ||xi −µl||22

Converges in expectation O(logk) ∗
opt. solution. Find k by negligible loss de-

crease or reg.
Principal Component Analysis
Optimization goal: argmin

||w||2=1,z
∑n

i=1 ||xi − ziw||22

The optimal solution is given by zi = w⊤xi.
Substituting gives us:

ŵ = argmax||w||2=1 w⊤Σw
Where Σ = 1

n ∑n
i=1 xix⊤i is the empirical co-

variance. Closed form solution given by the
principal eigenvector of Σ, i.e. w = v1 for
λ1 ≥ ...≥ λd ≥ 0: Σ = ∑d

i=1 λiviv⊤i
For k > 1 we have to change the normaliza-
tion to W⊤W = I then we just take the first k
principal eigenvectors so that W = [v1, ...,vk].
PCA through SVD
.The first k columns of V where X =USV⊤.
Kernel PCA
Σ = 1

n ∑n
i=1 xix⊤i = X⊤X ⇒ kernel trick:

α̂ = argmaxα
α⊤K⊤Kα

α⊤Kα
Closed form solution:
α(i) = 1√

λi
vi K = ∑n

i=1 λiviv⊤i ,λ1 ≥ ...≥ 0
A point x is projected as: zi =∑n

j=1 α(i)
j k(x j,x)

.Autoencoders
We want to minimize 1

n ∑n
i=1 ||xi − x̂i||22.

x̂ = fdec( fenc(x,θenc);θdec)
Lin. activation func. & square loss => PCA
Statistical Perspective
Assume that data is generated iid. by some
p(x,y). We want to find f : X 󰀁→ Y that mini-
mizes the population risk.
Opt. Predictor for the Squared Loss
f minimizing the population risk:

f ∗(x) = E[y | X = x] =
󰁕

y · p(y | x)dy
Estimate p̂(y | x) with MLE:

θ ∗ = argmax
θ

p̂(y1, ...,yn | x1, ...,xn,θ)

= argmin
θ

−
n

∑
i=1

log p(yi | x,θ)
The MLE for linear regression is unbiased and
has minimum variance among all unbiased es-
timators. However, it can overfit.
Ex. Conditional Linear Gaussian
Assume Gaussian noise y = f (x)+ε with ε ∼
N (0,σ2) and f (x) = w⊤x:

p̂(y | x,θ) = N (y;w⊤x,σ2)
The optimal ŵ can be found using MLE:
ŵ = argmax

w
p(y|x,θ) = argmin

w
∑(yi−w⊤xi)

2

1



Maximum a Posteriori Estimate
Introduce bias to reduce variance. The small
weight assumption is a Gaussian prior wi ∼
N (0,β 2). The posterior distribution of w is
given by: p(w | x,y) = p(w)·p(y | x,w)

p(y | x)
Now we want to find the MAP for w:
ŵ = argmaxw p(w | x̄, ȳ)

= argminw − log p(w)·p(y | x,w)
p(y | x)

= argminw
σ2

β 2 ||w||22 +∑n
i=1(yi −w⊤xi)

2

Regularization can be understood as MAP in-
ference, with different priors (= regularizers)
and likelihoods (= loss functions).
Statistical Models for Classification
f minimizing the population risk:

f ∗(x) = argmaxŷ p(ŷ | x)
This is called the Bayes’ optimal predictor for
the 0-1 loss. Assuming iid. Bernoulli noise,
the conditional probability is:

p(y | x,w)∼ Ber(y;σ(w⊤x))
Where σ(z) = 1

1+exp(−z) is the sigmoid func-
tion. Using MLE we get:

ŵ = argmin
w

∑n
i=1 log(1+ exp(−yiw⊤xi))

Which is the logistic loss. Instead of MLE we
can estimate MAP, e.g. with a Gaussian prior:
ŵ = argmin

w
λ ||w||22 +∑n

i=1 log(1+ e−yiw⊤xi)

Bayesian Decision Theory
Given p(y | x), a set of actions A and a cost
C : Y ×A 󰀁→ R, pick the action with the maxi-
mum expected utility.

a∗ = argmina∈A Ey[C(y,a) | x]
Can be used for asymetric costs or abstention.
Generative Modeling
Aim to estimate p(x,y) for complex situations
using Bayes’ rule: p(x,y) = p(x|y) · p(y)
Naive Bayes Model
GM for classification tasks. Assuming for a
class label, each feature is independent. This
helps estimating p(x | y) = ∏d

i=1 p(xi | yi).
Gaussian Naive Bayes Classifier
Naive Bayes Model with Gaussians features.
Estimate the parameters via MLE:
MLE for class prior: p(y) = p̂y =

Count(Y=y)
n

MLE for feature distribution:
p(xi | y) = N (xi; µ̂y,i,σ2

y,i)Where:
µy,i =

1
Count(Y=y) ∑ j | y j=y x j,i

σ2
y,i =

1
Count(Y=y) ∑ j | y j=y(x j,i − µ̂y,i)

2

Predictions are made by:
y= argmax

ŷ
p(ŷ | x)= argmax

ŷ
p(ŷ) ·

d

∏
i=1

p(xi | ŷ)

Equivalent to decision rule for bin. class.:
y = sgn

󰀓
log p(Y=+1 | x)

p(Y=−1 | x)

󰀔

Where f (x)is called the discriminant function.
If the conditional independence assumption is
violated, the classifier can be overconfident.
Gaussian Bayes Classifier
No independence assumption, model the
features with a multivariant Gaussian
N (x; µy,Σy):

µy =
1

Count(Y=y) ∑ j | y j=y x j

Σy =
1

Count(Y=y) ∑ j | y j=y(x j − µ̂y)(x j − µ̂y)
⊤

This is also called the quadratic discrimi-
nant analysis (QDA). LDA: Σ+ = Σ−, Fisher
LDA: p(y) = 1

2 , Outlier detection: p(x)≤ τ .
Avoiding Overfitting
MLE is prone to overfitting. Avoid this by re-
stricting model class (fewer parameters, e.g.
GNB) or using priors (restrict param. values).
Generative vs. Discriminative
Discriminative models:
p(y|x), can’t detect outliers, more robust
Generative models:
p(x,y), can be more powerful (dectect out-
liers, missing values) if assumptions are met,
are typically less robust against outliers
Gaussian Mixture Model
Assume that data is generated from a convex-
combination of Gaussian distributions:
p(x|θ) = p(x|µ,Σ,w) = ∑k

j=1 w jN (x; µ j,Σ j)
We don’t have labels and want to cluster this
data. The problem is to estimate the param.
for the Gaussian distributions.
argminθ −∑n

i=1 log∑k
j=1 w j ·N (xi | µ j,Σ j)

This is a non-convex objective. Similar to
training a GBC without labels. Start with
guess for our parameters, predict the unknown
labels and then impute the missing data. Now
we can get a closed form update.
Hard-EM Algorithm
E-Step: predict the most likely class for each
data point:

z(t)i = argmax
z

p(z | xi,θ (t−1))

= argmax
z

p(z | θ (t−1)) · p(xi | z,θ (t−1))

M-Step: compute MLE of θ (t) as for GBC.
Problems: labels if the model is uncertain,
tries to extract too much inf. Works poorly
if clusters are overlapping. With uniform
weights and spherical covariances is equiva-
lent to k-Means with Lloyd’s heuristics.
Soft-EM Algorithm
E-Step: calculate the cluster membership
weights for each point (w j = π j = p(Z = j)):

γ(t)j (xi) = p(Z = j | D) =
w j·p(xi;θ

(t−1)
j )

∑k wk·p(xi;θ
(t−1)
k )

M-Step: compute MLE with closed form:

w(t)
j = 1

n ∑n
i=1 γ(t)j (xi) µ(t)

j =
∑n

i=1 xi·γ(t)j (xi)

∑n
i=1 γ(t)j (xi)

Σ(t)
j =

∑n
i=1 γ(t)j (xi)(xi−µ(t)

j )(xi−µ(t)
j )⊤

∑n
i=1 γ(t)j (xi)

Init. the weights as uniformly distributed,
rand. or with k-Means++ and for variances
use spherical init. or empirical covariance of
the data. Select k using cross-validation.
Degeneracy of GMMs
GMMs can overfit with limited data. Avoid
this by add v2I to variance, so it does not col-
lapse (equiv. to a Wishart prior on the covari-
ance matrix). Choose v by cross-validation.
Gaussian-Mixture Bayes Classifiers
Assume that p(x | y) for each class can be
modelled by a GMM.

p(x | y) = ∑ky
j=1 w(y)

j N (x; µ(y)
j ,Σ(y)

j )
Giving highly complex decision boundaries:

p(y | x)= 1
z p(y)∑ky

j=1 w(y)
j N (x; µ(y)

j ,Σ(y)
j )

GMMs for Density Estimation
Can be used for anomaly detection or data im-
putation. Detect outliers, by comparing the
estimated density against τ . Allows to con-
trol the FP rate. Use ROC curve as evaluation
criterion and optimize using CV to find τ .
General EM Algorithm
E-Step: Take the expected value over latent
variables z to generate likelihood function Q:
Q(θ ;θ (t−1)) = EZ[log p(X ,Z | θ) | X ,θ (t−1)]

=
n

∑
i=1

k

∑
zi=1

γzi(xi) log p(xi,zi | θ)

with γz(x) = p(z | x,θ (t−1))
M-Step: Compute MLE / Maximize:

θ (t) = argmax
θ

Q(θ ;θ (t−1))

We have monotonic convergence, each EM-
iteration increases the data likelihood.
GANs
Learn f : ”simple” distr. 󰀁→ non linear distr.
Computing likelihood of the data becomes
hard, therefore we need a different loss.

min
wG

max
wD

Ex∼pdata [logD(x,wD)]

+Ez∼pz [log(1−D(G(z,wG),wD))]
Training requires finding a saddle point, al-
ways converges to saddle point with if G, D
have enough capacity. For a fixed G, the opti-
mal discriminator is:

DG(x) =
pdata(x)

pdata(x)+ pG(x)
The prob. of being fake is 1−DG. Too pow-
erful discriminator could lead to memoriza-
tion of finite data. Other issues are oscilla-
tions/divergence or mode collapse.
One possible performance metric:

DG = max
w′

D

M(wG,w′
D)−min

w′
G

M(w′
G,wD)

Where M(wG,wD) is the training objective.
Various
Derivatives:

󰑢xx⊤A = A 󰑢xa⊤x = 󰑢xx⊤a = a
󰑢xb⊤Ax=A⊤b 󰑢xx⊤x= 2x 󰑢xx⊤Ax= 2Ax

󰑢w||y−Xw||22 = 2X⊤(Xw− y)
Bayes Theorem:

p(y | x) =
1

p(x)
p(y) · p(x | y)󰁿 󰁾󰁽 󰂀

p(x,y)Normal Distribution:
N (x; µ,Σ)= 1√

(2π)ddet(Σ)
exp(− (x−µ)⊤Σ−1(x−µ)

2 )

Other Facts
Tr(AB) = Tr(BA), Var(X) = E[X2]− E[X ]2,
X ∈ Rn×d : X−1 → O(d3) X⊤X → O(nd2),󰀃n

k

󰀄
= n!

(n−k)!k! , ||w
⊤w||2 =

√
w⊤w

Cov[X ] = E[(X −E[X ])(X −E[X ])⊤]

p(z|x,θ) = p(x,z|θ)
p(x|θ)

Convexity
0: L(λw+(1−λ )v)≤ λL(w)+(1−λ )L(v)
1: L(w)+󰑢L(w)⊤(v−w)≤ L(v)
2: Hessian 󰑢2L(w)󰃓 0 (psd)

• α f +βg, α,β ≥ 0, convex if f ,g con-
vex

• f ◦g, convex if f convex and g affine or
f non-decresing and g convex

• max( f ,g), convex if f ,g convex

2


