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❗ This and many more summaries can be found on https://n.ethz.ch/~dcamenisch. Feel free to 
leave a comment in the document if you spot any mistakes! As always no guarantees for 
completeness or correctness are made.
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1. Computing with Matrices and Vectors
1.2.1 Eigen
The method .block(int i, int j, int m, int n)  returns a sub-matrix starting at the top left corner  with 
size .

1.2.3 Dense Matrix Storage Formats
All numerical libraries store the entries of a dense matrix  in a linear array of length .

1.4 Computational Effort

1.4.2 Cost of Basic Linear-Algebra Operations
Performing elementary operations through simple (nested) loops, we arrive at the following complexity 
bounds: 

Computational Cost of Basic Operations

Operation Description asymptotic complexity

dot product O(n)

tensor product O(mn)

matrix * vector O(mn)

matrix product O(mnk)

1.4.3 The Kronecker product
Definition: The Kronecker product  of two matrices  and  is the -
matrix 

1.5 Machine Arithmetic and Consequences

1.5.2 Machine Numbers
Computers are finite automatons, which therefore can only handle finitely many number, not . 

8.7.1 (Damped) Newton Method 
8.7.2 Gauss-Newton Method

10. Additional Content

(i, j)
m,n

A ∈ Km,n mn

A =
⎣

⎡1
4
7

2
5
8

3
6
9⎦

⎤

Row major: [1,  2,  3,  4,  5,  6,  7,  8,  9]
Column major: [1,  4,  7,  2,  5,  8,  3,  6,  9]

(x ∈ R , y ∈n R ) →n x yH

(x ∈ R , y ∈m R ) →n xyH

(x ∈ R ,A ∈n R ) →m,n Ax

(A ∈ R ,B ∈m,n R ) →n,k AB

A⊗B A ∈ Km,n B ∈ Kl,k (ml) × (nk)

A⊗B := ∈

⎣

⎡ (A) B11
(A) B21

⋮
(A) Bm1

(A) B12
(A) B22

⋮
(A) Bm2

⋯
⋯

⋯

(A) B1n
(A) B2n

⋮
(A) Bmn

⎦

⎤

Kml, nk

R

https://www.notion.so/dot-product-027ce610b96e47e7b634a2e4c8fd884b
https://www.notion.so/tensor-product-a411f9460b724c159683f3764727ef84
https://www.notion.so/matrix-vector-8f6c7cf87682491999f41e144371d549
https://www.notion.so/matrix-product-b21f02211eb04396a622a9456377d2ea
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The set of machine numbers  cannot be close under elementary arithmetic 
operations  that is, when adding, multiplying, etc. This leads to the 
fact, that roundoff errors are inevitable.

1.5.3 Roundoff Errors
Definition: Let  be an approximation of . Then the absolute error is given by

and its relative error is defined as

The number of correct digits of an approximation  of  is defined through the relative error: If 
, then  has  correct digits, .

1.5.4 Cancellation
We define the term cancellation as the subtraction of almost equal numbers (with both having some 
relative error), which leads to an extreme amplification of the relative errors. It is important to see that 
cancellation only happens if we have substraction, therefore it is advisable to avoid it or have it at the 
innermost part of an equation.

A important formula to avoide cancelation is given by:

Further the logarithmic formulas can be useful.

2. Direct Methods for Square Linear Systems of 
Equations

2.1 Introduction: Linear Systems of Equations (LSE)
The problem: solving a linear system

We are given the following input and are looking for the output as shown below:

Input/data: square matrix , vector 

Output/result: solution vector , such that 

We call  the system matrix or coefficient matrix and  the right hand side vector

Definition: The rank of a matrix , denoted by , is the maximal number of linearly 
independent rows/columns of . Equivalently, .

Theorem: A square matrix  is invertible/regular if one of the following 
equivalent conditions is satisfied: 

M
+, −,  ⋅,  /,

∈x~ K x ∈ K

ϵ :=abs ∣x− ∣,x~

ϵ :=rel .
∣x∣

∣x− ∣x~

x~ x ∈ K
ϵ ≤rel 10−l x~ l l ∈ N0

a− b =
a+ b

a − b2 2

A ∈ Kn,n b ∈ Kn

x ∈ Kn Ax = b

A b

M ∈ Km,n rank(M)
M rank(M) = dimR(A)

A ∈ Kn,n



Numerical Methods for CS 5

1.  
2. the columns or rows of  are linearly independent 
3.  
4. 

2.3 Gaussian Elimination (GE)

2.3.1 Basic Algorithm

The computational cost of Gaussian elimination is given by

forward elimination:  Ops.

backward elimination:  Ops.

which yields a total asymptotic complexity for GE without pivoting for a generic LSE of .

2.3.2 LU-Decomposition
A matrix factorization expresses a general matrix  as the product of two special matrices.

We can perform LU-Decomposition by performing the known Gaussian elimination algorithm, but keeping 
track of the negative multipliers and let them take the places of matrix entries mate to vanish.

After performing the above Gaussian elimination, we get the following decomposition

Definition: Given a square matrix , an upper triangular matrix  and a normalized 
lower triangular matrix  form an LU-decomposition of , if .

The asymptotic complexity for LU-factorization of  is given by  if . But if we 
once solve the decomposition, we can reuse it with an asymptotic complexity of .

❗ If we give a matrix to the .solve()  function, each column gets threated like a vector, meaning we 
solve  systems of linear equation. Therefore we get a runtime of  for the backwards 
substitution.

2.3.3 Pivoting
When doing pivoting in numerical methods we usually choose the relatively largest pivot.

Lemma: For any regular  there is a permutation matrix , a 
normalized lower triangular matrix , and a regular upper triangular matrix 

, such that .

∃B ∈ K :n,n BA = AB = I

A

det(A) = 0
rank(A) = n

Ax = b⇒ A x =′ b ,  if A =′ ′ TA,  b =′ Tb.

n(n− 1)( n+3
2 ) ≈6

7 n3

n2

O(n )3

A

A = LU ⇒ =
⎣

⎡1
2
3

1
1
−1

0
−1
−1⎦

⎤

⎣

⎡1
2
3

0
1
4

0
0
1⎦

⎤

⎣

⎡1
0
0

1
−1
0

0
−1
3 ⎦

⎤

A ∈ Kn,n U ∈ Kn,n

L A A = LU

A ∈ Rn,n O(n )3 n→∞
O(n )2

n O(n )3

A ∈ Kn,n P ∈ Kn,n

L ∈ Kn,n

U ∈ Kn,n PA = LU
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2.6 Exploiting Structure when Solving Linear Systems
By structure of a linear system we mean prior knowledge that

either certain entries of the systems vanish,

or the system matrix is generated by a particular formula.

System matrix: coefficient matrix of an linear system of equations

Triangular linear systems

Triangular linear systems are linear systems of equations whose system matrix is a triangular matrix. They 
can be solved by backward/forward elimination within   compared to  for a generic dense 
matrix.

Linear Systems with arrow matrices

From , a diagonal matrix  and , we can build an 
 arrow matrix

In this case we have that

This yields an asymptotic complexity for solving arrow systems of  for .

Solving LSE subject to low-rank modification of system matrix

Given a regular matrix , let us assume that at some point we are in a position to solve any linear 
system  "fast" because

either  has a favorable structure, eg. triangular,

or an LU-decomposition of  is already available

Now, a  is obtained by changing a single entry of . This modification represent so-called rank-1-
modification of . A generic rank-1-modification reads

We consider the block partitioned linear system

The Schur complement system after elimination of  reads . We do block 
elimination again, now getting rid of  first, which yields the other Schur complement system

O(n )2 O(n )3

n ∈ N D ∈ K ,  c ∈n,n K ,  b ∈n K ,n α ∈ K (n+ 1) ×
(n+ 1)

A = ⇒

⎣

⎡
D

b

c

α ⎦

⎤

⎣

⎡⋱

⋯
⋱
⋯

⋮

⋮
⋅⎦

⎤

Ax = =[
D

bT
c

α
] [
x1
ζ

] y := [
y1
η

]

⇒ ζ = ,  x =
α− b D cT −1

η− b D yT −1
1

1 D (y −−1
1 ζc).

O(n) n→∞

A ∈ Kn,n

Ax = b

A

A

A
~

A

A

A ∈ K →n,n :=A
~

A+ uv ,  u, v ∈H K .n

=[
A

vH
u

−1
] [
x~

ζ
] .[

b

0
]

ζ (A+ uv ) =H x~ b⇔ =A
~
x~ b

x~

H 1 H 1



Numerical Methods for CS 7

2.7 Sparse Linear Systems
Notion:  is said to be sparse, if

The matrix is said to be dense otherwise.

2.7.1 Sparse Matrix Storage Formats
Sparse matrix storage formats for storing a sparse matrix  are designed to achieve two 
objectives:

1. Amount of memory required is only slightly more than  scalars.

2. Computational effort for matrix vector multiplication is proportional to .

Triplet/coordinate list (COO) format

This format stores triplets :

The vector of triplets in a TripletMatrix   has size  We write  because repetitions of index 
pairs  are allowed. The matrix entry  is defined to be the sum of all values  associated with 
the index pair .

Compressed row-storage (CRS) format

The CRS format for a sparse matrix  keeps the data in three contiguous arrays:

std::vector<scalar_t> val  → size 

std::vector<size_t> col_ind  → size 

std:vector<size_t> row_ptr  → size  and row_ptr[m]  = 

(1 + v A u)ζ =H −1 v A bH −1

⇒ A =x~ b− b.
1 + v A uH −1

uv AH −1

A ∈ K , m,n ∈n,n N

nnz(A) := #{(i, j) ∈ {1, ...,m} × {1, ...,n} : a =ij  0} << mn.

A ∈ Km,n

nnz(A)

× nnz(A)

(i,  j, α),  1 ≤ i ≤ m,  1 ≤ j ≤ n

≥ nnz(A). ≥
(i, j) (A)ij αij

(i, j)

A ∈ Km,n

nnz(A)

nnz(A)

m+ 1 nnz(A) + 1
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3. Direct Methods for Linear Least Squares Problems
Overdetermined (OD) linear systems of equations, a linear system with a "tall" rectangular system matrix:

3.1 Least Squares Solution Concepts
Recall from linear algebra that  has a solution, if and only if the right hand side vector  lies in the 
image of the matrix :

Following the notation for important subspaces associated with a matrix :

image/range:  ,

kernel/nullspace:  .

3.1.1 Least Squares Solutions: Definitions
Definition: For a given  the vector  is a least squares solution of the linear 
system of , if

We write  for the set of least squares solutions of the linear system of equations 

Theorem: For any  a least squares solution of  exists.

3.1.2 Normal Equations
Theorem: The vector  is a least squares solution of the linear system of equations  if and 
only if it solves the normal equations

Theorem: For  holds

Lemma: For any matrix  holds

"Ax = b" : x ∈ R ,  b ∈n R , A ∈m R , m ≥m,n n

=

⎣

⎡

A

⎦

⎤

⎣

⎡
x
⎦

⎤

⎣

⎡

b

⎦

⎤

Ax = b b

A

∃x ∈ R :n Ax = b⇔ b ∈ R(A).

A ∈ Km,n

R(A) := {Ax,  x ∈ K } ⊂n Km

N (A) := {x ∈ K :n Ax = 0}

A ∈ R ,  b ∈m,n Rm x ∈ Rn

Ax = b

x ∈ argmin ∣∣Ay−y∈Rn b∣∣2
2

lsq(A, b) Ax = b, A ∈
R ,  b ∈m,n R :m

lsq(A, b) := {x ∈ R :n x is a least squares solution of Ax = b} ⊂ R .n

A ∈ R ,  b ∈m,n Rm Ax = b

x ∈ Rn Ax = b,

A Ax =T A b.T

A ∈ R , m ≥m,n n,

N (A A) =T N (A),
R(A A) =T R(A ).T

A ∈ Km,n

H ⊥
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Corollary: If  and , then the linear system of equations 
 has a unique least squares solution

that can be obtained by solving the normal equations.

3.1.3 Moore-Penrose Pseudoinverse
Theorem: Given  the generalized solution  of the linear system of equations 

 is given by 

where  is any matrix whose columns form a basis of .

The matrix  is called the Moore-Penrose pseudoinverse of . 
Note, that the Moore-Penrose pseudoinverse does not depend on the choice of .

3.2 Normal Equation Methods
We can give a simple algorithm for the normal equation method for solving full-rank least squares 
problems :

1. Compute regular matrix . 

2. Compute right hand side vector . 

3. Solve symmetric positive definite (s.p.d.) linear system of equations . 

The asymptotic complexity of the normal equation method is given by  for .

3.3 Orthogonal Transformation Methods

3.3.1 Transformation Idea
In this chapter we consider the full-rank linear least squares problem  given and we 
try to find . We furthermore know that  and  has full rank: 

.

The idea is that if we have a transformation matrix  satisfying , then

where  and .

3.3.2 Orthogonal/Unitary Matrices
Definition: Unitary and orthogonal matrices

 is unitary, if 

 is orthogonal, if 

N (A) = R(A )H ⊥

N (A) =⊥ R(A ).H

m ≥ n N (A) = {0} Ax = b, A ∈ R ,  b ∈m,n

R ,m

x = (A A) A b,T −1 T

A ∈ R ,  b ∈m,n R ,m x†

Ax = b

x =† V (V A AV ) (V A b),T T −1 T T

V N (A)⊥

A :=† V (V A AV ) V A ∈T T −1 T T Rn,m A

V

Ax = b

C := A A ∈T Rn,n O(n m)2

c := A bT O(nm)

Cx = c O(n )3

O(n m+2 n )3 m,n→∞

A ∈ R ,  b ∈m,n Rm

x = argmin ∣∣Ay−y∈Rn b∣∣2 m ≥ n A

rank(A) = n

T ∈ Rm,m ∣∣Ty∣∣ =2 ∣∣y∣∣  ∀y ∈2 Rm

argmin ∣∣Ay−y∈Rn b∣∣ =2 argmin ∣∣ y−y∈Rn A
~ ∣∣ ,b

~
2

=A
~

TA =b
~

Tb

Q ∈ K , n ∈n,n N, Q =−1 QH

Q ∈ K , n ∈n,n N, Q =−1 QT
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Theorem: A matrix is unitary/orthogonal, if and only if the associated linear mapping preserves the 2-
norm:

From the above theorem we can directly state the following conclusions. If a matrix  is 
unitary/orthogonal, then

all rows/columns have Euclidean norm 

all rows/columns are pairwise orthogonal

, and all eigenvalues 

 for any matrix 

3.3.3 QR-Decomposition
3.3.3.1 QR-Decomposition: Theory

Theorem: If  is linearly independent, then the Gram-Schmidt algorithm computes 
orthogonal vectors  satisfying

 for all .

Theorem: For any matrix  with  there exists

1. a unique matrix  that satisfies , and a unique upper triangular Matrix 
 with , such that

2. a unitary Matrix  and a unique upper triangular matrix  with 
, such that

If , all matrices will be real and  is then orthogonal.

3.3.3.2 Computation of QR-Decomposition

Corollary: The product of two orthogonal/unitary matrices of the same size is again orthogonal/unitary.

The following so called Householder matrices (HHM) effect the reflection of a vector into a multiple of the 
first unit vector with the same length:

where  is the first Cartesian basis vector.

Suitable successive Householder transformations determined by the left most column of shrinking 
bottom right matrix blocks can be used to achieve upper triangular form . Writing  for the Householder 
matrix used in the -th factorization yields for the QR-decomposition of 

Q ∈ K  unitary ⟺n,n ∣∣Qx∣∣ =2 ∣∣x∣∣  ∀x ∈2 K .n

Q ∈ Kn,n

= 1

∣detQ∣ = 1,  ∣∣Q∣∣ =2 1 ∈ {z ∈ C : ∣z∣ = 1}
∣∣QA∣∣ =2 ∣∣A∣∣2 A ∈ Kn,m

{a , ...,a } ⊂1 n Rm

q , ...q ∈1 n Rm

Span{q , ..., q } =1 l Span{a , ...,a },1 l

l ∈ {1, ...,n}

A ∈ Kn,k rank(A) = k

Q ∈0 Rn,k Q Q =0
H

0 Ik R ∈0
Kk,k (R) >ii 0,  i ∈ {1, ...,k}

A = Q ⋅0 R  ("economical" QR-decomposition)0

Q ∈ Kn,n R ∈ Kn,k (R) >ii 0,  i ∈
{1, ...,n}

A = Q ⋅R (full QR-decomposition)

K = R Q

Q = H(v) := I − 2  with v =
v vT
vvT

a± ∣∣a∣∣ e2 1

e1

R Ql

l A ∈ C , A =n,n QR :

T T
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The following orthogonal transformation, a Givens rotation, annihilates the -th component of a vector 
. Here  stands for  and  for ,  the angle of rotation:

The QR-decomposition by successive Householder transformations has asymptotic complexity  
for .

3.3.4 QR-Based Solver for Linear Least Squares Problems
We consider the full-rank linear least squares problem: Given , seek 

 such that . We assume that we are given a QR-decomposition: 
 orthogonal,  regular upper triangular matrix.

We then apply the orthogonal 2-norm preserving transformation encoded in  to :

Normal equations vs. orthogonal transformations methods

Use orthogonal transformation methods for least squares problems, whenever  is dense 
and  is small.

Use normal equations in the expanded form, when  is sparse and  are big.

3.4 Singular Value Decomposition (SVD)

3.4.1 SVD: Definition and Theory
For any  there are unitary/orthogonal matrices  and a generalized 
diagonal matrix  such that

Definition: The decomposition  is called the singular value decomposition (SVD) of . 
The diagonal entries of  of  are the singular values of . The columns of  are the left/right 
singular vectors of .

Remark: As in the case of QR-decomposition we can also drop the bottom zero rows of  and the 
corresponding columns of  in the case of . Thus we end up with an economical singular value 
decomposition, also called thin SVD in literature.

Lemma: The squares  of the non-zero singular values of  are the non-zero eigenvalues of 
 with associated eigenvectors  respectively.

Q ⋅n−1 Q ⋯Q A =n−2 1 R and Q := Q ⋯Q .1
T

n−1
T

k

a = [a , ...,a ] ∈1 n
T Rn γ cosϕ σ sinϕ ϕ

G (a ,a )a :=1k 1 k ⋅

⎣

⎡ γ

⋮
−σ

⋮
0

⋯

⋱
⋯

⋯

σ

⋮
γ

⋮
0

⋯

⋯

⋱
⋯

0

⋮
0

⋮
1⎦

⎤

=

⎣

⎡a1

⋮
ak

⋮
an⎦

⎤

,

⎣

⎡a1

⋮
0

⋮
an⎦

⎤

γ = ,  σ =
∣a ∣ + ∣a ∣1

2
k
2

a1

∣a ∣ + ∣a ∣1
2

k
2

ak

O(mn )2

m,n→∞

A ∈ R , m ≥m,n n,  rank(A) = n

x ∈ Rn ∣∣Ax− b∣∣ →2 min A =
QR, Q ∈ Rm,m R ∈ Rm,n

Q Ax− b

∣∣Ax− b∣∣ =2 ∣∣QRx− b∣∣ =2 ∣∣Q(Rx−Q b)∣∣ =T
2 ∣∣Rx− ∣∣ ,  :=b

~
2 b
~

Q b.T

A ∈ Rm,n

n

A ∈ Rm,n m,n

A ∈ Km,n U ∈ K , V ∈m,m Kn,n

Σ = diag(σ , ...,σ ) ∈1 p R ,  p :=m,n min{m,n},  σ ≥1 σ ≥2 ⋯≥ σ ≥p 0

A = UΣV .H

A = UΣV H A

σi Σ A U/V
A

Σ
U m > n

σi
2 A

A A, AAH H (V ) , ..., (V ) ,  (U) , ..., (U):,1 :,p :,1 :,p



Numerical Methods for CS 12

Lemma: If, for some  the singular values of  satisfy 
 then

 (the number of non-zero singular values)

3.4.2 SVD in Eigen
The asymptotic complexity for the economical SVD is 

3.4.3 Solving General Least-Squares Problems by SVD
In this chapter we consider the most general setting

We can use the invariance of the 2-norm of a vector with respect to multiplication with  
together with the fact that  is unitary:

With this equation we arrive at the generalized solution

Theorem: If  has the SVD decomposition  then its Moore-Penrose pseudoinverse 
is given by .

3.4.4 SVD-Based Optimization and Approximation
3.4.4.1 Norm-Constrained Extrema of Quadratic Forms

We consider the following problem of finding the extrema of quadratic forms on the Euclidean unit sphere 
 :

This problem can be solved with SVD with the minimizer  from which we can obtain 
the minimal value .

Lemma: If  has singular values , then its 
Euclidean matrix norm is given by . If  and  is regular/invertible, then its 2-norm 
condition number is .

3.4.4.2 Best Low-Rank Approximation

TLDR: for the best k-rank approximation you turn the sigma into  matrix (cut everything else away) 
then you take away the columns in U and V accordingly.

Solving Linear Systems of Equations Overview

1 ≤ r ≤ p := min{m,n}, A ∈ Km,n σ ≥1 ⋯≥
σ >r σ =r+1 ⋯σ =p 0,

rank(A) = r

N (A) = Span{(V ) , ..., (V ) }:,r+1 :,n

R(A) = Span{(U) , ..., (U) }:,1 :,r

O(min{m,n} ⋅2 max{m,n})

Ax = b ∈ R  with A ∈m R ,  rank(A) =m,n r ≤ min{m,n}.

U := [U  U ]1 2

U

∣∣Ax− b∣∣ =2 [U  U ] x−
∣
∣
∣
∣

1 2 [
Σr
0

0
0] [

V1
T

V2
T ] b =

∣
∣
∣
∣
2

−
∣
∣
∣
∣

[
Σ V xr 1

T

0 ] .[
U b1
T

U b2
T ]

∣
∣
∣
∣
2

x =† V Σ U b,  ∣∣r∣∣ =1 r
−1

1
T

2 ∣∣U b∣∣ .2
T

2

A ∈ Km,n A = UΣV H

A =† V Σ U1 r
−1

1
H

{x ∈ K :n ∣∣x∣∣ =2 1}

given A ∈ K , m ≥m,n n,  find x ∈ K ,  ∣∣x∣∣ =n
2 1,   ∣∣Ax∣∣ →2 min.

x =∗ V e =n (V ):,n
∣∣Ax ∣∣ =∗

2 σn

A ∈ Km,n σ ≥1 σ ≥2 ⋯≥ σ ≥p 0,  p := min{m,n}
∣∣A∣∣ =2 σ (A)1 m = n A

cond (A) =2 σ /σ1 n

k × k
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Given , there are 6 different cases we have to differentiate:

Case 1.1 :  

Algorithm:  We use LU-Decomposition with Gauss elimination to solve this LSE. 
                    Alternatively we could use QR-Decomposition. 
Runtime:    

Case 1.2 :  

Algorithm:  We use SVD to compute a LSQ solution. 
Runtime:    

Case 2.1 :  

Algorithm:  We use QR-Decomposition to get the LSQ. 
                    Alternatively we could use the normal equation with LU-Decomposition. 
                     
Runtime:     / 

Case 2.2 :  

Algorithm:  We use SVD to compute a LSQ solution. 
Runtime:    

Case 3.1 :  

Algorithm:  We use SVD to compute a LSQ solution. 
Runtime:    

Case 3.2 :  

Algorithm:  We use SVD to compute a LSQ solution. 
Runtime:    

4. Filtering Algorithms

4.1 Filters and Convolutions

4.1.1 Discrete Finite Linear Time-Invariant Casual Channels/Filters
Mathematically speaking, a discrete channel / filter is a function or mapping  from 
the vector space  of bounded input sequences ,

to the vector space  of bounded output sequences .

Ax = b,A ∈ Rm,n

m = n & rank(A) = n

O(n )3

m = n & rank(A) < n

O(n )3

m > n & rank(A) = n

O(mn +2 n ) =2 O(mn )2 O(mn +2 n ) =3 O(mn )2

m > n & rank(A) < n

O(mn )2

m < n & rank(A) = m

O(m n)2

m < n & rank(A) < m

O(m n)2

F : l (Z) →∞ l (Z)∞

l (Z)∞ {x }j j∈Z

l (Z) :=∞ {(x ) :j j∈Z sup∣x ∣ <j ∞},

l (Z)∞ (y )j j∈Z
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Definition: A channel/filter   is called finite, if every input signal of finite duration 
produces an output signal of finite duration,

Since it should not matter when exactly signals are fed into a channel, we introduce the time shift 
operator for signals. For :

Hence, by applying  we delay a signal by .

Definition: A filter is called time-invariant (TI), if shifting the input time leads to the same output shifted in 
time by the same amount:

Definition: A filter  is called causal, if the output does not start before the input:

With the above definitions we can state the following acronym:

LT-FIR: finite, linear, time-invariant, and causal filter

4.1.2 LT-FIR Linear Mappings
We aim for a precise mathematical description of the impact of a finite, time-invariant, linear, causal filter 
on an input signal: Let  be the impulse responses of that LT-FIR 

:

In compact notation we can write the non-zero components of the output signal  as

Superposition of impulse responses: The output  of a LT-FIR for finite length input 
 is a superposition of -weighted  time-shifted impulse 

F : l →∞ l (Z)∞

{∃M ∈ N : ∣j∣ >M ⇒ x =j 0} ⇒ ∃N ∈ N : ∣k∣ > N ⇒ (F((x ) )) =j j∈Z k 0

m ∈ Z

S :m l (Z) →∞ l (Z), S ((x ) ) =∞
m j j∈Z (x ) .j−m j∈Z

Sm ∣m∣ ⋅ Δt

∀(x ) ∈j j∈Z l (Z), ∀m ∈∞ Z : F(S ((x ) )) =m j j∈Z S (F((x ) )).m j j∈Z

F : l (Z) →∞ l (Z)∞

∀M ∈ N : (x ) ∈j j∈Z l (Z), x =∞
y 0 ∀j ≤M ⇒ F((x ) ) =j j∈Z k 0 ∀k ≤M.

(..., 0, h , h , ..., h , 0, ...), n ∈0 1 n−1 N,
F : l (Z) →∞ l (Z)∞

F((δ ) ) =j ,0 j∈Z (..., 0, h , h , ..., hn− 1, 0, ...).0 1

(y )j j∈Z

y =k F((x ) ) =j j∈Z k h x , k =
j=0

∑
m−1

k−j j 0, ..., m+ n− 2

(h :=j 0 for j < 0 and j ≥ n).

(..., y , y , y , ...)0 1 2

x = (..., 0, x , ..., x , 0, ...) ∈0 n−1 l (Z)∞ xj jΔt



Numerical Methods for CS 15

responses.

Definition: Given two sequences  at least one of which is finite or decays sufficiently 
fast, their convolution is another sequence  defined as

If well-defined, the convolution of sequences commutes

4.1.3 Discrete Convolutions
Given  their discrete convolution is the vector 

 with components

where we have adopted the convention  for  or . We denote a discrete convolution by 
.

4.1.4 Periodic Convolutions
An -periodic signal, , is a sequence  satisfying

Though infinite, an -periodic signal  is uniquely determined by the finitely many values 
 and can be associated with a vector .

The discrete periodic convolution of two -periodic sequences  yields the -periodic 
sequence

We denote a discrete periodic convolution by .

Definition: A matrix  is circulant if

4.2 Discrete Fourier Transform (DFT)

4.2.1 Diagonalizing Circulant Matrices
We introduce the following notation: The -th root of unity is defined as 

. The -th root of unity satisfies the following properties:

(h ) , (x ) ,k k∈Z k k∈Z
(y ) ,k k∈Z

y =k h x , k ∈
j∈Z

∑ k−j j Z.

y =k (x ) ∗k (h ) =k (h ) ∗k (x ).k

x = [x , ..., x ] ∈0 m−1
T K , h =m [h , ..., h ] ∈0 n−1

T K ,n

y ∈ Km+n−1

y =k h x , k =
j=0

∑
m−1

k−j j 0, ..., n+m− 1,

h :=j 0 j < 0 j ≥ n

y = h ∗ x

n n ∈ N (x ) ∈j j∈Z l (Z)∞

x =j+n x ∀j ∈j Z.

n (x )j j∈Z
x , ...x0 n−1 x = [x , ..., x ] ∈0 n−1

T Rn

n (p ) , (x ) ,k k∈Z k k∈Z n

(y ) :=k (p ) ∗k (x ), y :=k k p x =
j=0

∑
n−1

k−j j x p , k ∈
j=0

∑
n−1

k−j j Z.

(p ) ∗k n (x )k

C = [c ] ∈ij i,j=1
n Kn,n

∃(p ) n-periodic sequence: c =k k∈Z ij p , 1 ≤j−i i, j ≤ n

n ω :=n exp( ) =
n

−2πi cos( ) −
n
2π

i sin( ), n ∈
n
2π N n

=ωn ωn
−1



Numerical Methods for CS 16

We consider a general circulant matrix , with , for an -periodic sequence 
. We define the following vector:

Then it holds, that  is an eigenvector of  for eigenvalue . The set 
 provides the so-called orthogonal trigonometric basis of .

Definition: The matrix effecting the change of basis from the trigonometric basis to the standard basis is 
called the Fourier-matrix:

Lemma: The scaled Fourier-matrix  is unitary: .

Lemma: For any circulant matrix  -periodic sequence, holds true

Definition: The linear map , is called discrete Fourier 
transform (DFT), i.e. for 

Discrete Fourier transform in Eigen

The Eigen-functions for discrete Fourier transform and its inverse are given by

DFT:  c = fft.fwd(y)

inverse DFT:  y = fft.inv(c)

Before using  fft  , remember to  #include <unsupported/Eigen/FFT> .

int main() { 
 using Comp = complex<double>; 
 const VectorXd::Index n = 5; 
 VectorXcd y(n), c(n), x(n); 
 y << Comp(1, 0), Comp(2, 1), Comp(3, 2), Comp(4, 3), Comp(5, 4); 
 FFT<double> fft;  // DFT transform object 
 c = fft.fwd(y);   // DFT of y 
 x = fft.inv(c);   // inverse DFT of c 
 
 cout << "y = " << y.transpose() << endl 

ω =n
n 1

ω =n
n/2 −1

ω =n
k ω , ∀k ∈n

k+n Z

C ∈ Cn,n c :=ij (C) =i,j ui−j n

(u ) , u ∈k k∈Z k C

v ∈k C :n v :=k [w ] , k ∈n
−jk

j=0

n−1
{0, ..., n− 1}.

vk C λ =k u ω∑l=0
n−1

l n
lk

{v , ..., v } ⊂0 n−1 Cn Cn

F =n =

⎣

⎡ωn
0

ωn
0

ωn
0

⋮

ωn
0

ωn
0

ωn
1

ωn
2

⋮

ωn
n−1

⋯
⋯
⋯

⋯

ωn
0

ωn
n−1

ωn
n−2

⋮

ωn
(n−1)2⎦

⎤

[ω ] ∈n
lj

l,j=0

n−1
C .n,n

F
n
1

n F =n
−1 F =

n
1

n
H

n
1F n

C ∈ K , c =n,n
ij u , (u )i−j k k∈Z n

C =Fn diag(d , ..., d ), [d , ..., d ] =Fn 1 n 0 n−1
T F [u , ..., u ] .n 0 n−1

T

DFT :n C →n C , DFT(y) :=n F y, y ∈n Cn

[c , ..., c ] :=0 n−1 DFT (y)n

c =k y ω , k ∈
j=0

∑
n−1

i n
kj 0, ..., n− 1.
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    << "c = " << c.transpose() << endl 
    << "x = " << x.transpose() << endl; 
 return 0; 
}

4.2.2 Discrete Convolution via Discrete Fourier Transform
Discrete periodic convolution: straightforward implementation

Eigen::VectorXd pconv(const Eigen::VectorXd &u, const Eigen::VectorXcd &x) { 
 const int n = x.size(); 
 Eigen::VectorXd z = VectorXd::Zero(n); 
 // native two loop implementation of discrete periodic convolution 
 for(int k = 0; k < n; ++k) { 
  for(int i = 0, l = k; j <= k; ++j, --l) {  
   z[k] += u[l] * x[j];  
  } 
  
  for(int j = k+1, l = n; j < n; ++j, --l) {  
   z[k] += u[l] * x[j];  
  } 
 } 
 return z; 
}

Convolution Theorem: The discrete periodic convolution  between -dimensional vector  and  is 
equal to the inverse DFT of the component-wise product between the DFTs of  and , i.e.:

Discrete periodic convolution: DFT implementation

Eigen::VectorXcd pconvfft(const Eigen::VectorXcd &u, const Eigen::VectorXcd &x){ 
 Eigen::FFT<double> fft; 
 return fft.inv(((fft.fwd(u)).cwiseProduct(fft.fwd(x))).eval()); 
}

4.2.5 Two-dimensional DFT
In this section we study the frequency decomposition of matrices. Due to the natural analogy

one-dimensional data ("audio signal") → vector ,

two-dimensional data ("image") → matrix ,

these techniques are of fundamental importance for image processing.

Definition: We can state the two-dimensional discrete Fourier transform of the matrix  as 
follows:

We abbreviate it by . We state the inversion formula as follows:

∗n n u x

u x

(u) ∗n (x) := [ u  mod nx ] =
j=0

∑
n−1

(k−j) j
k=0

n−1
F [(F u) (F x) ] .n
−1

n j n j j=1
n

y ∈ Cn

Y ∈ Cm,n

Y ∈ Cm,n

C = F (F Y ) =m n
T T F Y F .m n

DFT :m,n C →m,n Cm,n

Y = F CF =m
−1

n
−1 C

mn

1
Fm Fn
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Two-dimensional discrete Fourier transform

template <typename Scalar> 
void fft2(Eigen:.MatrixXcd &C, const Eigen::MatrixBase<Scalar> &Y) { 
 using idx_t = Eigen::MatrixXcd::Index; 
 const idx_t m = Y.rows(), n = Y.cols(); 
 C.resize(m, n); 
 Eigen::MatrixXcd tmp(m, n); 
 
 Eigen::FFt<double> fft;   //Helper class for DFT 
 // Transform rows of matrix Y 
 for(idx_t k = 0; k < m; k++) { 
  Eigen::VectorXcd tv(Y.row(k)); 
  tmp.row(k) = fft.fwd(tv).transpose(); 
 } 
 
 // Transform columns of temporary matrix 
 for(idx_t k = 0; k < n; k++) { 
  Eigen::VectorXcd tv(tmp.col(k)); 
  C.col(k) = fft.fwd(tv); 
 } 
}

Theorem: For any , we have

where  stands for the entrywise mutliplciation of matrices of equal size.

This suggests the following DFT-based algorithm for evaluating the periodic convolution of matrices:

1. Compute  by inverse 2D DFT of 

2. Compute  by 2D DFT of 

3. Component-wise multiplciation of  and .

4. Compute  through inverse 2D DFT of .

4.3 Fast Fourier Transform (FFT)
To understand how the discrete Fourier transform of -vectors can be implemented with an asymptotic 
computational effort smaller than  we start with an elementary manipulation for :

This means that for even  we can compute  from DFTs of half the length plus  additions 
and multiplications.

The asymptotic complexity of the FFT algorithm for  is .

5. Data Interpolation and Data Filtering in 1D

X,Y ∈ Cm,n

X ∗m,n Y = DFT (DFT (X) ⊙m,n
−1

m,n DFT (Y )),m,n

⊙

Ŷ Y

Ŷ X

X̂ :Ŷ =Ẑ ∗X̂ Ŷ

Z Ẑ

n

O(n )2 n = 2m, m ∈ N

c =k y e =
j=0

∑
n−1

j
− jk

n
2πi

y e +
j=0

∑
m−1

2j
− 2jk

n
2πi

y e

j=0

∑
m−1

2j+1
− (2j+1)k

n
2πi

= y e +
j=0

∑
m−1

2i
− jk

m
2πi

e ⋅− k
n
2πi

y e , k ∈
j=0

∑
m−1

2k+1
− jk

m
2πi Z.

n DFT (y)n ∼ n

n = 2L O(L ⋅ 2 ) =L O(n log n)2
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5.1 Abstract Interpolation
Definition: One-dimensional data interpolation

Given: data points 

Objective: Reconstruction of a function 

1. satisfying the  interpolation conditions (IC) 

2. and belonging to a set  of eligible functions

The function  we find is called the interpolant of the given data set .

When we talk about interpolation schemes in 1D, we mean a mapping

In the context of numerical methods, "function" should be read as "subroutine", a piece of code that can, 
for any , compute  in finite time.

C++ data type representing a real-valued function

class Function{ 
 private; 
  // various internal data describing f 
 public; 
  // Constructor: expects information for specifying the cuntion 
 Function(/*...*/); 
  // Evaluating operator 
 double operator() (double t) const; 
};

C++ class representing an interpolant in 1D

class Interpolant { 
 private; 
  // various internal data describing f 
  // can be the coefficients of a basis representation 
 public; 
  // constructor: computation of coefficients c_j 
 Interpolant(const vector<double> &t, const vector<double> &y); 
  // exaluation operator for interpolant f 
 double operator() (double t) const; 
};

Definition: A basis  of an -dimensional vector space of functions  is 
a cardinal basis with respect to the set  of nodes,

We consider the setting for interpolation that the interpolant belongs to a finite-dimension space  of 
functions spanned by basis functions . Then the interpolation conditions imply that the basis 
expansion coefficients satisfy a linear system of equations:

(t , y ), i =i i 0, ..., n, n ∈ N, t ∈i I ⊂ R, y ∈i R
f : I → R

n+ 1 f(t ) =i y , i =i 0, ..., n

V

f {(t , y )}i i i=0
n

I : R ×n+1 R →n+1 {f : I → R}, ([t ] , [y ] ) →i i=0
n

i i=0
n interpolant

x ∈ I f(x)

{b , .., b }0 n n+ 1 f : I ⊂ R → R
{t , ..., t } ⊂0 n I

b (t ) =j i δ :=ij 1,  if i = j, 0 else.

Vm
b , ..., b0 m
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5.2 Global Polynomial Interpolation
Global polynomial interpolation, that is, interpolation into spaces of functions spanned by polynomials, is 
the simplest interpolation scheme and of great importance as building block for complex algorithms. 
Compared to the piecewise linear basis functions from the previous section, our functions isn’t 0 outside of 
the given points.

5.2.1 Uni-Variante Polynomials
Polynomials in a single variable are familiar and simple objects:

Notation: Vector space of the uni-variate polynomials of degree :

Terminology: The functions , are called monomials and the formula 
 is the monomial representation of a polynomial.

Dimension of space of polynomials

Efficient evaluation of a polynomial in monomial representation is achieved through the Horner scheme as 
indicated by the following representation:

This allows us to evaluate a polynomial in .

Horner scheme (vectorized version)

Eigen::VectorXd horner(const Eigen::VectorXd &p, const Eigen::VectorXd &t) { 
 const VectorXd::Index n = t.size(); 
 Eigen::VectorXd y{p[0] * VectorXd::Ones(n)}; 
 for(unsigned i = 1; i < p.size(); ++i) { 
  y = t.cwiseProduct(y) + p[i] * VectorXd::Ones(n); 
 } 
 return y; 
}

5.2.2 Polynomial Interpolation: Theory
In the previous section (5.2.1) we extended the local interpolantion (5.1) to a global interpolation. This 
caused us to loose the cardinal basis property, making the computation of the coefficients  a lot 
harder. Now we introduce the Lagrange polynomial which brings back this cardinal basis property.

f(t ) =i c b (t ) =
j=0

∑
m

j j i y , i =i 0, ..., n

⟺

Ac := =
⎣

⎡b (t )0 0

⋮
b (t )0 n

⋯

⋯

b (t )m 0

⋮
b (t )m n

⎦

⎤

⎣

⎡ c0

⋮
cm⎦

⎤
=:

⎣

⎡y0

⋮
yn⎦

⎤
y

≤ k, k ∈ N

P :=k {t→ a t +k
k a t +k−1

k−1 ⋯+ a t+1 a , a ∈0 i R}.

t→ t , k ∈k N0 t→ a t +k
k

a t +k−1
k−1 ⋯+ a t+1 a0

dimP =k k + 1 and P ⊂k C (R).∞

p(t) = t(⋯ t(t(a t+n a ) +n−1 a ) +n−2 ⋯+ a ) +1 a .0

O(n)

α (≡i c )j



Numerical Methods for CS 21

Lagrange Polynomial Interpolation problem (LIP)

Given the set of interpolation nodes  , and the value  compute 
 such that it staisfies the interpolant conditions (IC)

For a given set  of nodes consider the

It is obvious that  and that . Further Lagrange polynomials are linearly independent.

The Lagrange polynomial interpolation  for data points  allows a straightforward representation 
with respect to the basis of Lagrange polynomials for the node set :

The general LPI problem admits a unique solution  for any set of data points  and 
.

The polynomial interpolation in the nodes  defines a linear operator

5.2.3 Polynomial Interpolation: Algorithms
We are given the following setting:

Given: nodes , values 

Notation: we write  for the unique Lagrange polynomial interpolant.

When used in a numerical code, different demands can be made for a class that implements Lagrange 
interpolants. These demands determine, which algorithm is most suitable for constructors and the 
evaluation operators. 

In the following part we will look at two algorithms.

5.2.3.1 Multiple evaluations

The definition of a possible interpolator data type could be as follows:

class PolyInterp { 
 private: // various internal data describing p 
  Eigen::VectorXd t; 
 public: // constructors taking node vector (t_0,..., t_n) as argument 
 PolyInterp(const Eigen::VectorXd &_t); 

{t , ..., t } ⊆0 n R, n ∈ N y , ..., y ∈0 n R
p ∈ Pn

p(t ) =j y  for j =j 0, ..., n.

{t , t , ..., t } ⊂0 1 n R

Lagrange polynomials L (t) :=i , i =
j=0, j=i

∏
n

t − ti j

t− tj 0, ..., n.

L ∈i Pn L (t ) =i j δij

p (t , y )i i i=0
n

{t }i i=0
n

p(t) = y L (t) ⟺
i=0

∑
n

i i p ∈ P  and p(t ) =n i y .i

p ∈ Pn {(t , y )}i i i=0
n

n ∈ N

T := {t }j j=0
n

I :T R →n+1 P , (y , ..., y ) →n 0 n
T interpolating polynomial p.

T := {−∞ < t <0 t <1 ... < t <n ∞} y := {y , y , ..., y }0 1 n

p := I (y)T
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 template <typename SeqContainer> PolyInterp(const SeqContainer &v); 
 // Evaluation operator for data (y_0,..., y_n); 
 // computes p(x_k) for x_k's passed in x 
 Eigen::VectorXd eval(const Eigen::VectorXd &y, 
   const Eigen::VectorXd &x) const; 
};

Barycentric interpolation formula

We want to precompute part of the Lagrange polynomial to reduce the asymptotic effort of eval . By some 
simple manipulations we end up with this:

Where  is independent of  and . Therefore we can precompute 

these values! 

We end up with the following complexity:

5.2.3.2 Single evaluation

Instead of evaluating at multiple point, we might only be interested in the evaluation at a single point 
.

Aitken-Neville Scheme

We are still given a list of points  in a plane and want to fit a polynomial through these points. The 
starting point is a recursion formula for partial Lagrange interpolants, we define:

We easily find that:

λ =i (t −t )⋯(t −t )(t −t )⋯(t −t )i 0 i i−1 i i+1 i n

1 t yi

x ∈
R

(t ,y )j j
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Now the values of the partial Lagrange interpolants can be computed sequentially (based on their 
dependecies), expressed by the following so-called Aitken-Neville Scheme:

For the Aitken-Neville Scheme we get a runtime of .

5.2.3.3 Extrapolation to Zero

Extrapolation is interpolation with the evaluation point  outside the interval . We assume  and 
that . Of course, Lagrangian polynomial interpolation can also be used for 
extrapolation.

This is especially usefull, since often around 0 we encounter cancellation. To avoid this, we can compute, 
for a given function , the values  with acceptable accuracy. Then we approximate  with a 
polynomial and evaluate it at position 0. I.e. we fit a polynomial through the points  and evaluate 
this polynomial at the position 0. This is the exact problem we solve with Aitken-Neville.

5.2.3.4 Newton Basis and Divided Differences

This chapter we want to have an update friendly basis.

We define the Newtonbasis for  as follows:

We find the coefficients for the interpolating polynomial by a method similar to the Aitken-Neville Scheme 
(see the Lecture Document for more details). We end up with the following interpolating polynomial:

O(n )2

t [t , t ]0 n t = 0
t >i 0, i = 0, ...,n

g g(h )i g(h)
(h , g(h ))i i

Pn
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This polynomial representation already implies that we can use “backward evaluation” in the spirit of 
Horner Scheme.

5.2.4 Polynomial Interpolation: Sensitivity
This section addresses a major shortcoming of polynomial interpolation, that small perturbations of 
measurements gives huge errors in the function we construct.

For measuring the size of pertubations we need norms on data and result spaces. For the value vectors 
 we can use any vector norm, for instance the maximum norm . However 

the result space is a vector space of continuous functions  and so we also need norms on the 
vector space of continuous functions . The following norms are the most relevant:

Now let  be a linear problem map between two normed spaces, the data space (with norm 
) and the result space  (with norm ). Thanks to linearity, pertubations of the result 

 for the input  can be expressed as follows:

Hence, the sensitivity can be measured by the operator norm

Given a mesh  with generalized Lagrange polynomials  and fixed , the 
norm of the interpolation operator satisfies

Definition: We define the Lebesgue constant of  as follows:

5.3 Shape-Preserving Interpolation
When reconstructing a quantitative dependence of quantities from measurements, first principles from 
physics often stipulate qualitative constraints, which translate into shape properties of the function , e.g. 

y := [y , ..., y ] ∈0 n
T Rn+1 ∣∣y∣∣∞

I ⊂ R → R
C (I), I ⊂0 R

supremum norm ∣∣f∣∣ :=L (I)∞ sup{∣f(t)∣ : t ∈ I}

L -norm ∣∣f∣∣ :=2
L (I)2
2 ∣f(t)∣  dt∫

I
2

L -norm ∣∣f∣∣ :=1
L (I)1 ∣f(t)∣ dt∫

I

L : X → Y X

∣∣ ⋅ ∣∣X Y ∣∣ ⋅ ∣∣Y y :=
L(x) x ∈ X

L(x+ δx) = L(x) + L(δx) = y+ L(δx).

∣∣L∣∣ :=X→Y sup .δx∈X∖{0} ∣∣δx∣∣X

∣∣L(δx)∣∣Y

T ⊂ R L , i =i 0, ..., n, I ⊂ R

∣∣I ∣∣ :=T ∞→∞ sup =y∈R ∖{0}n+1
∣∣y∣∣∞

∣∣I (y)∣∣T L (I)∞

∣L ∣ ,
∣
∣
∣
∣

i=0

∑
n

i ∣
∣
∣
∣
L (I)∞

∣∣I ∣∣ :=T 2→2 sup ≤y∈R ∖{0}n+1
∣∣y∣∣2

∣∣I (y)∣∣T L (I)2

( ∣∣L ∣∣ ) .
i=0

∑
n

i L (I)2
2 2

1

T

λ :=T ∣L ∣ =
∣
∣
∣
∣

i=0

∑
n

i ∣
∣
∣
∣
L (I)∞

∣∣I ∣∣ .T ∞→∞

f
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when modelling the material law for a gas:

→  pressure values,  densities  positive and monotonic

Notation: given data is 

5.3.1 Shape Properties of Functions and Data
Definition: The data  are called monotonic when  or  for 

Definition: The data  are called convex (concave) if

5.3.2 Piecewise Linear Interpolation
There is a very simple method of achieving perfect shape preservation by means of a linear interpolation 
operator into the space of continuous functions. Given the following data: 

Then the piecewise linear interpolant   is defined as

The piecewise linear interpolant is also called a polygonal curve. It is continuous and consists of  line 
segments.

Theorem: Let  be the piecewise linear interpolant of  for 
every subinterval :

if  are positive / negative   is positive / negative

if  are monotonic   is monotonic

if  are convex/concave  is convex/concave

5.3.3 Cubic Hermite Interpolation
Aim: local shape-preserving (linear) interpolation operator that fixes short-coming of piecewise linear 
interpolation by ensuring -smoothness of the interpolant.

5.3.3.1 Definition and Algorithms

Given: Mesh points .

Goal: build function  satisfying the interpolant conditions .

Definition: Given data points  with pairwise distinct ordered notes , 
and slopes  , the piecwise cubic Hermite interpolants   is defined by the 
requirements

Locally, we can write a piecewise cubic Hermit interpolant as a linear combination of generalized cardinal 
basis functions with coefficients based on  and  (representing the slope at point ).

ti yi ⇒ f

(t , y ) ∈i i R , i =2 0, ..., n, n ∈ N, t <0 t <1 ... < t .n

(t , y )i i y ≥i yi−1 y ≤i yi−1 i = 0, ..., n

{(t , y )}i i i=0
n

Δ ≤j (≥) Δ , j =j+1 1, ..., n− 1, Δ =j , j =
t − tj j−1

y − yj j−1 1, ..., n.

(t , y ) ∈i i R , i =2

0, ..., n, n ∈ N, t <0 t <1 ... < t .n

s : [t , t ] →0 n R

s(t) =  for t ∈
t − ti+1 i

(t − t)y + (t− t )yi+1 i i i+1 [t , t ].i i+1

n

s ∈ C([t , t ])0 n (t , y ) ∈i i R , i =2 0, ..., n,
I = [t , t ] ⊂j k [t , t ]0 n

(t , y )∣i i I ⇒ s∣I

(t , y )∣i i I ⇒ s∣I

(t , y )∣i i I ⇒ s∣I

C1

(t , y ) ∈i i R , i =2 0, ..., n, t <0 t <1 ⋯< tn

f ∈ C ([t , t ])1
0 n f(t ) =i y , i =i 0, ..., n

(t , y ) ∈i i R× R, j = 0, ..., n tj
c ∈j R s : [t , t ] →0 n R

s ∈∣[t , t ]i−1 i
P , i =3 1, ..., n, s(t ) =i y , s (t ) =i

′
i c , i =i 0, ..., n.

yi ci i
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The basis functions  are defined as follows:

By some computation we find that the following holds for :

However, the data only specifies  and not . Thus to compute a interpolant, we need to supply a way of 
computing these . One way of doing so would be to use the following linear mapping:

5.3.3.2 Local Monotonicity-Preserving Hermite Interpolation

When choosing the slopes like above, th Hermite interpolation does not preserve monotonicity. Therefore 
we introduce an alternative way of choosing the slopes, that preserves monotonicity.

H ,k =k 1, 2, 3, 4

Hk

yi ci
ci



Numerical Methods for CS 27

Theorem: If, for fixed node set  an interpolation scheme  is linear as 
a mapping from data values to continuous functions on the interval covered by the nodes, 
and monotonicity preserving, then  for all  and .

5.4 Splines
Definition: Given an interval  and a knot sequence 

 the vector space  of the spline functions of degree  (or order ) is defined 
by

The  dimension of a splice space can be found by a counting argument: We count the number of 
"degrees of freedom" possessed by a -piecewise polynomial of degree , and subtract the number 
of linear constraints:

5.4.2 Cubic-Spline Interpolation
Task: Given a mesh  "find" a cubic spline  that compiles 
with the interpolation conditions

When comparing the cubic spline interpolation to the cubic Hermit interpolation, we find that the cubic 
Hermit interpolation allows for  degrees of freedom, while the cubic spline interpolation only allows  
degrees of freedom. This is due to the fact that the interpolant has to be in  and not only in .

To saturate the remainign two degree of freedom the following three approaches are popular:

1. Complete cubic spline interpolation:  prescribed

2. Natural cubic spline interpolation: 

3. Periodic cubic spline interpolation: 

https://www.youtube.com/watch?v=pLfifROQ-MM

5.4.3 Structural Properties of Cubic Spline Interpolation
For a function , the term

models the elastic bending energy of a rod, whose shape is described by the graph of . We will show the 
cubic spline interpolants have minimal bending energy among all -smooth interpolating functions.

Given: mesh  of  with knots 

{t } , n ≥j j=0
n 2, I : R →n+1 C (I)1

I(y) (t ) =′
j 0 y ∈ Rn+1 j = 1, ..., n− 1

I := [a, b] ⊂ R M := {a = t <0 t <1 ... <
t =n b}, n ∈ N, Sd,M d d+ 1

S :=d,M {s ∈ C (I) :d−1 s :=j s∣[t , t ] ∈j−1 j P ∀j =d 1, ..., n}.

M d

dimS =d,M n ⋅ dimP −d #{C  continuity constraints} =d−1 n ⋅ (d+ 1) − (n− 1) ⋅ d = n+ d.

M := {t <0 t <1 ⋯< t }, n ∈n N, s ∈ S3,M

s(t ) =j y , j =j 0, ..., n.

n+ 1 2
C2 C1

s (t ) =′
0 c , s (t ) =0

′
n cn

s (t ) =′′
0 s (t ) =′′

n 0

s (t ) =′
0 s (t ), s (t ) =′

n
′′

0 s (t )′′
n

Great video explaining cubic splines and some of their properties, including how to fix the remaining two degrees of freedom.

f : [a, b] → R, f ∈ C ([a, b])2

E (f) :=bd ∣f (t)∣ dt,
2
1

∫
a

b
′′ 2

f

C2

M := {a = t <0 t <1 ... < t =n b} [a, b] tj

https://www.youtube.com/watch?v=pLfifROQ-MM
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Set  := natural cubic spline interpolant of data points .

Theorem: The natural cubic spline interpolant  minimizes the elastic curve energy among all interpolating 
functions in  that is

5.6 Trigonometric Interpolation
We consider time series data , obtained by sampling a time-dependent 
scalar physical quantity . We know that  is a T-periodic function with period , that is 

 for all . In the spirit of shape preservation an interpolant  of the time series 
should also be -periodic:  for all .

Assumption: We assume the period  to be known and  for all interpolation nodes 
.

In the sequel, for the case of simplicity, we consider only .

Task: Given  and data points  find a T-periodic function  
(the interpolant),  that satisfies the interpolation conditions

5.6.1 Trigonometric Polynomials
The most fundamental periodic functions are derived from the trigonometric functions  and  and 
dilations of them. A dilation of a function  is a function of the form  with some .

Definition: The vector space of -periodic trigonometric polynomials of degree  is given by

We can rewrite  given in the form

Further manipulations give us:

5.6.2 Reduction to Lagrange Interpolation

We can reuse the already known algorithms for Lagrange polynomial interpolation.

5.6.3 Equidistant Trigonometric Interpolation
Often timeseries data for a time-periodic quantity are measured with a constant rhythm over the entire 
period of duration , that is, . In this case, the formulas for 

s ∈ S3,M (t , y ) ∈i i R , i =2 0, ..., n

s

C ([a, b]),2

E (S) ≤bd E (f)∀f ∈bd C ([a, b]), f(t ) =2
i y , i =i 0, .., n.

(t , y ), i =i i 0, ..., n, t ,y ∈i i R
t→ ϕ(t) ϕ T > 0

ϕ(t) = ϕ(t+ T ) t ∈ R f

T f(t+ T ) = f(t) t ∈ R
T > 0 t ∈i [0, T [

t , i =i 0, ..., n

T = 1

T > 0 (t , y ), y ∈i i i K, t ∈i [0, T [ , f : R → K
f(t+ T ) = f(t)∀t ∈ R,

f(t ) =i y , i =i 0, ..., n.

sin cos
t→ ϕ(t) t→ ϕ(ct) c > 0

1 2n, n ∈ N,

P :=2n
T Span{t→ cos(2πjt), t→ sin(2πjt)}j = 0 ⊂n C (R).∞

q ∈ P2n
T

q(t) = α +0 α cos(2πjt) +
j=1

∑ j β sin(2πjt), α ,β ∈j j j R.

q ∈ P ⇒2n
T q(t) = e ⋅−2πint p(e ) with p(z) =2πt γ z ∈

j=0

∑
2n

j
j P ,2n

T > 0 t =j jΔt, Δt = , j =
n+1
T 0, ..., n
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computing coefficients of the interpolating trigonometric polynomial become special versions of 
the discrete Fourier transfrom (DFT). Efficient implementation can thus harness the speed of FFT.

Now we consider trigonometric interpolation in the -periodic setting with  uniformly 
distributedinterpolation nodes , and associated data values . Existence and 
uniqueness of an interpolating trigonometric polynomial  was established earlier. We 
rely on the following relation ship:

to arrive at the following  linear system of equations for computing the unknown 
coefficients :

5.7 Least Squares Data Fitting
When looking at interpolations, we find that having a interpolating polynomial of a high degree is often not 
recommendable, since it causes large fluctuations. Therefore we might want a polynomial of degree , 
that approximates  data points, where . This is equivalent to a overdetermined system of 
equations.

The most general task of multidimensional, vector-valued least squares data fitting can be described as 
follows:

Least square data fitting

Given: data points .

Objective: Find a continuous function  in some set  of admissible functions 
satisfying

Such a function  is called a best least squares fit for the data in .

Consider a special variant of the general least squares data fitting problem: The set  of admissible 
continuous functions is now chosen as a finite-dimensional vector space 
.

Choose a basis of ,  continuous.

→ The best least squares fit  can be represented by a finite linear combination of the basis 
functions :

It can be furthermore be recast to the following problem:

General linear least squares fitting problem

1 2n+ 1
t =k , k =2n+1

k 0, ..., 2n yk
q ∈ P , q(t ) =2n

T
k y ,k

q ∈ P ⇒2n
T q(t) = e ⋅−2πint p(e ) with p(z) =2πt γ z ∈

j=0

∑
2n

j
j P ,2n

(2n+ 1) × (2n+ 1)
γj

c =F2n+1 b, c = [γ , ..., γ ] ⇒0 2n
T c = F b.

2n+ 1
1

2n+1

n

m n < m

(t , y ), i ∈i i {1, ..., m}, m ∈ N, t ∈i D ⊂ R , y ∈k
i R , d ∈d N

f : D → Rd S ⊂ C (D)0

f ∈ argmin ∣∣g(t ) −g∈S
i=1

∑
m

i y ∣∣ .i 2
2

f S

S

V ⊂n C (D), dimV =0
n n ∈ N

Vn V =n Span{b , ..., b }, b :1 n j D → Rd

f ∈ Vn
bj

f(t) = x b (t), x ∈
j=1

∑
n

j j j R.
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Given: data points  and basis functions 

Sought: coefficients  such that

Theorem: The solution  of the linear least squares fitting problem is the least squares 
solution of the overdetermined linear system of equations

with

Lemma: The scalar one-dimensional linear least squares fitting problem with  the vector 
space of admissible functions, has a unique solution, if and only if there are  such that

which is independent of the choice of basis of .

8. Iterative Methods for Non-Linear Systems of 
Equations

8.1 Introduction
Non-linear systems naturally arise in mathematical modelsof electrical circuits, once non-linear 
circuitelements are introduced. A non-linear system of equations is a concept almost too abstract to be 
useful, because it covers an extremely wide variety of problems.

For a function , there are no general results existence and uniqueness of 
solutions of .

8.2 Iterative Methods

8.2.1 Fundamental Concepts
We try to find a solution to the system , by creating a sequence of smart guesses . A -
point iterative method means that the next value in our sequence depends on the last  values. This 
also means that we need  initial guesses. 

(t , y ) ∈i i R ×k R , i =d 1, ..., m b :j D ⊂ R →k R, j =
1, ..., n, n < m.

x ∈j R, j = 1, ..., n,

x := [x , ..., x ] :=1 n
T argmin z b (t ) −z ∈Rj

d

i=1

∑
m

∣
∣
∣
∣

j=1

∑
n

j j i y .i ∣
∣
∣
∣
2

2

[x , ..., x ] ∈1 n
T Rn

x =
⎣

⎡A1

⋮
Ad
⎦

⎤
,

⎣

⎡b1

⋮
bd⎦

⎤

A :=r ∈
⎣

⎡ (b (t ))1 1 r

⋮
(b (t ))q m r

⋯

⋯

(b (t ))n n r

⋮
(b (t ))n m r

⎦

⎤
R , b :=m,n

r ∈
⎣

⎡ (y )1 r

⋮
(y )m r

⎦

⎤
R , r =m 1, ..., d.

dimV =n n, Vn
t , .., ti1 in

∈
⎣

⎡b (t )1 i1

⋮
b (t )1 in

⋯

⋯

b (t )n i1

⋮
b (t )n in

⎦

⎤
R  is invertible,n,n

Vn

F : D ⊂ R →m R, n ∈ N
F(x) = 0

F(x) = 0 xi m

m

m
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Such a sequence has the following properties,

and

An iterative method converges (for fixed initial guess(es)) iff  and .

8.2.2 Speed of Convergence
We define the convergence as the speed that the sequence converges to . We measure this “speed” by 
the following definition:

A convergent sequence  with limit  converges with order , , if 

if  and , we call it linear convergence. We can approximate the order  by the following 
equation, where  is the norm of the iteration error:

8.2.3 Termination Citeria / Stopping Rule
The termination criteria is used to determine when to stop calculating new elements of our sequence . 
There are three general methods for termination:

1. A priori (number of steps)

2. Residual based ( we stop when  is small)

3. Correction based (we stop when the difference between  and  is small)

Often the 3rd criteria is used, since it stops as soon as we don’t make any progess anymore.

For  we have one more criteria: 

8.3 Fixed-Point Iteration
In this part we look at 1-point stationary iterations, also called fixed point iterations. We can observe 
that generally a small derivative of  is good for the convergence. A first lemma gives us a condition for 
local convergence, that is at least linear.

x =(k+1) ϕ (x ,…,x )F
(k) (k−m+1)

ϕ (x ,…,x ) =F
∗ 3 x ⇔∗ F(x ) =∗ 0

x →(k) (k→∞) x∗ F(x ) =∗ 0

x∗

x(k) x∗ p p ≥ 1

∃C > 0 : ∣∣x −(k+1) x ∣∣ ≤∗ C ⋅ ∣∣x −(k) x ∣∣ ∀k ∈∗ p N ,0

C < 1 p = 1 p

ϵ :=k ∣∣x −(k) x ∣∣∗

≈
log ϵ − ϵk k−1

log ϵ − log ϵk+1 k
p

xi

F(x) = 0 ⇒ ∣F(x )∣i

xi xi+1

p = 1 ∣∣x −(k+1) x ∣∣ ≤∗ ⋅1−L
L ∣∣x −(k) x ∣∣, 0 <k L < 1

ϕ(x)
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A second Lemma gives us a lower bound for the order of convergence.

8.4 Finding Zeros of Scalar Functions

8.4.1 Bisection
This method is based on the idea of finding  by shrinking the interval in each iteration in half.

We start of with two points  that have different signs. From there we can use the intermediate 
value theorem, to conclude that in between  and  there has to be a zero value. By testing the sign at the 
midpoint and shrinking the interval acordingly, we can find a  that is close to . This method is 
foolproof and works without any derivatives, but the drawback is, that it is only of “linear-type”. 

8.4.2 Model Funtion Methods
This is a class of methods for finding zeroes of , based on the following idea:

x∗

a, b ∈ R
a b

x(k) x∗

F
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💡 Given recent iterates , replace  with a -dependent model 
function . Now  zero of .

8.4.2.1 Newton Method in Scalar Case

The Newton Method is one of the most important Methods in Numerical Methods. Its formula is:

We define our model function as . This is equal to the tangent at 
 in .  is now equal to the zero of the tangent and we get the Newton iteration:

When investigating the convergence, we find that Newton’s method locally 
converges quadratically to a zero  of , if .

8.4.2.3 Multi-Point Methods

The secant method is the simplest representative of model function multi-point methods. We just 
approximate the function linearly by drawing a line through the last two points we have in our 
approximation sequence . Then we use a similar formula to the Newton method.

x ,…,x , m ∈(k) (k−m+1) N F k

Fk
~

x :=(k+1) Fk
~

x :=k+1 x −k
F (x )′ k

F(x )k

(x) :=Fk
~

F(x ) +(k) F (x )(x−′ (k) x )(k)

F x(k) x(k+1)

x :=(k+1) x −(k)

F (x )′ (k)

F(x )(k)

x∗ F F (x ) =′ ∗  0

xi
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Analysing the convergence, we find that the order of convergence is fractional, with .

Another class of multi-point methods are inverse interpolation. The approach here is, to interpolate the 
inverse function. We see that we can construct an interpolant of the inverse function by interpolating the 
points  (inverted tuple!). 

Where  is a polynomial of degree . Then we can evaluate the interpolate for the inverse function at 
the point 0,  . Which then is an approximation of the solution  we are looking for.

As an example we have seen the case for :

Here the interpolation and evaluation is done in one explicit formula. For such quadratic inverse 
interpolation, we find the fractional order of convergence to be .

8.4.3 Asymptotic Efficiency of Iterative Methods for Zero Finding

x :=(k+1) x −(k)

F(x ) − F(x )(k) (k−1)

F(x )(x − x )(k) (k) (k−1)

p ≈ 1.62

(y , t )i i

p(F(x ) =(k−j) x , j =(k−j) 0,…,m− 1

p m− 1
x :=(k+1) p(0) x∗

F(x ) =∗ 0 ⇔ F (0) =−1 x∗

m = 3

p ≈ 1.8
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We can compare different methods in terms of efficiency. We define efficiency as the number of digits 
gained , divided by the effort  to achieve the result.

Let  be the number of steps to achieve a relative reduction of the error by a factor of  (gain). Then 
we have

Now we adopt an asymptotic perspective and require a large reduction of the error, that is . 

When using this to compare the secant method with Newton’s method, we find that the secant methos is 
more efficient, despite having a lower order of convergence.

8.5 Newton’s Method in R^n

8.5.1 The Newton Iteration
The Newton iteration seen in 8.4.2.1 can be generalized for  by using the Jaccobian of the function (We 
assume that  is continuously differentiable). This gives us the formula

Since we want to avoid calculating the inverse, we solve the LSE

and then compute . The generalized Newton iteration has the same quadratic order of 
convergence as the 1-D Newton iteration.

log(ρ) W

k(ρ) ρ

Efficiency := =
total work required
#digits gained

k(ρ) ⋅W
∣ log ρ∣

ρ << 1

Rn

F

DF(x ) ⋅(k) s = F(x )(k)

x =(k+1) x −(k) s
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We also looked at a special variant of the Newton iteration, where we replace the derivative of the -th 
iteration, by the derivative of the -th iteration. This is conveniant, since we don’t have to calculate the 
derivative for every step.

When using the same Jaccobian for all steps, we can reuse the LU-decomposition. As a drawback we end 
up with only linear convergence.

Remark: This image serves as a remainder, that reading the lecture document is a worthwhile endeavour. 
Especially, since it contains funny images like this.

8.5.3 Termination of Newton Iteration
In 8.5.2 we saw that Newton’s method enjoys (asymptotic) quadratic convergence, which means rapid 
decrease of the relative error of the iterates, once we are close to the solution, which is exactly the point, 
when we want to stop. We use the correction based termination criterion (8.2.3), to determine when to 
stop.

This is uneconomical, as we have one needless update, because  would already be accurate enough. 
Since  during the final steps, we can use the more economical termination 
criterion 

k

0

x =(k+1) x −(k) DF(x ) ⋅(0) −1 F(x )(k)

x(k)

DF(x ) ≈(k−1) DF(x )(k)
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8.5.4 Damped Newton Method
One big drawback of the Newton method is that it only converges locally! This can make it useless if the 
guess is not already close to the exact solution. In this section we explore a method to enlargen the region 
of convergence, at the expense of the quadratic convergence.

We observe a kind of “overshooting” of the Newton correction. To try and fix this, we introduce a 
dampening factor .

To find this dampening factor, we use the following formula: 

8.6 Quasi-Newton Method
Computing the Jaccobian is expensive, therefore we look at a method to replace the derivative by some 
approximation of it. In the 1-D case, we can simply choose some similar method, like the secant method. 
In the general case we want to do something similar.

λ ∈(k) ]0, 1]

x =(k+1) x −(k) λ ⋅(k) DF(x ) ⋅(k) −1 F(x )(k)
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Instead of calculating  for every step, we want to reuse . In the end we get the Broyden quasi-
Newton method.

To initialize  we can for example use the exact Jacobi matrix .

To improve the range of local convergence, we can use the same ideas as we used for the dampened 
Newton iteration.

Instead of calculating the inverse  in every step, we can use a faster but less stable approach. This is 
further explained in the lecture document, but since it is mostly complicated formulas, I left it out of this 
summary.

8.7 Non-Linear Least Squares
We want to increase our scope to include overdetermined non-linear systems of equations. For this we 
reuse many concepts from linear least squares. 

Given , we call  a non-linear least 
squares solution of , if

We often write 

It has to be noted that the factor  is simply a convention.

8.7.1 (Damped) Newton Method 

Jk Jk−1

J0 DF(x )(0)

Jk
−1

F : D ⊂ R ↦n R , n,m ∈m N, n < m x∗

F(x) = 0

x =∗ argmin ∣∣F(x)∣∣x∈D 2
2

2
1
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We assume that  is twice continuously differentiable. Then the non-linear least squares solution  has 
to be a zero of the derivative of .

We use the Newton interation to solve the  x  sytem of equations . We get the following 
iteration:

The compution of the gradiant and the Hessian matrix of the gradiant can be seen in the video or lecture 
document.

8.7.2 Gauss-Newton Method
The Gauss-Newton method is an alternative, that is not dependent on the second derivative. It is based on 
the idea of linearization.

We end up with the following iterative method:

This can be solved with the techniques for linear least squares problems from chapter 3. 

10. Additional Content
Ending this summary with one of the greatest copy pastas.

The Hiptmair knows where he is at all times. He knows this, because he knows 
where he isn't.  
By iterating where he isn't from where he is, or where he is from where he isn't -- 
whichever is the supremum -- he obtains a difference or deviation. The guidence 

F x∗

x↦ Φ(x)

n n grad Φ(x) = 0
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subsystem uses discrete deviations to generate Piecewise Polynomial corrective 
commands to drive the Hiptmair from a node set where he is to a mesh interval 
where he isn't and arriving at a position where he wasn't, currently he is. 
Consequently, the Chebychev Nodes that he has are now the nodes that he hadn't 
and it follows that the Cardinal Basis that he computed is now the basis that he 
didn't. In the event that the Fixed-Point Approximation that he derived is not 
consistent with the n-th root of unity, the system has acquired a variation. The 
variation being the Least Squares between where the Hiptmair is and where his 
Orthogonal Complement wasn't. If the Eigenvalue of the variation is considered to 
be a significant roundoff error, it too may be corrected by the Basic Linear Algebra 
Subprograms(BLAS); however, the Hiptmair must also know where he was.  
The Hiptmair guidence computer scenario works as follows; because a periodic 
quadrature formula has modified some of the information the Hiptmair has 
obtained, he is not sure just where he is; however, he is sure where he isn't (within 
reason) and he knows where he was, in case the QR-Decomposition of the Cosine 
Transform is regular. He now subtracts where he should be from where he wasn't, 
or vice versa, and by differentiating the inverse of the Newton Correction from the 
algebraic sum of where he shouldn't be and where he was, he is able to obtain the 
exponential convergence and it's hermetic variation, which is called Matrix 
Multiplication.


