
Rigorous Software Engineering
by dcamenisch

1 Introduction

This document is a summary of the 2023 edition of the
lecture Rigorous Software Engineering at ETH Zurich.
I do not guarantee correctness or completeness, nor is
this document endorsed by the lecturers. If you spot
any mistakes or find other improvements, feel free to
open a pull request at https://github.com/dcamenisch/
rse-summary. This work is published as CC BY-NC-SA.

cbna

2 Documentation

Source code alone is not enough to document larger
projects. Developers need additional information, such as
possible results or side effects of a method, and consistency
conditions of data structures. Therefore documentation is
key to ensure that software is reliable and maintainable
over time.

2.1 What to document

There are two stakeholders, clients and implementors. For
clients it is important to document the interface, how to
use the code. For stakeholders it is important to docu-
ment how the code works. For the clients document the
methods and constructors that can be used to interact with
the software, as well as any preconditions and postcondi-
tions that must be met. For implementors, documentation
should include the algorithms and data structures used in
the software, as well as any invariants and assertions that
must be maintained.

2.2 How to document

Documentation does not only consist of comments. Using
type annotations, modifiers, assertions and effect systems
can also be considered documentation. Still, comments are
a large part of good documentation. They provide simple,
flexible way of documenting interfaces and implementa-
tions. A good documentation using comments can look as
follows:

Using diagrams and examples to illustrate complex con-
cepts can further help to make the documentation easier
to understand. Consistent formatting and naming conven-
tions can further improve the documentation. Finally, reg-
ular reviews and updates ensure that it remains accurate
and up-to-date.

3 Modularity

The idea of modularity is to partition the overall develop-
ment effort, support independent testing and analysis of
components, decouple parts so they can be modified indi-
vidually and dividing a large system in mind-sized chunks.

3.1 Coupling

Coupling measures interdependence between different
modules. A thigh / high coupling means that modules can-
not be developed, tested, changed, understood or reused in
isolation. Therefore, we want low coupling for correct and
maintainable software.

3.1.1 Data Coupling

Modules that expose their internal data representation
become tightly coupled to their clients (representation ex-
posure). It prevents modules from maintaining strong in-
variant and concurrency requires complex synchronization.
Similarly, data representations often include sub-objects,
exposing these can lead to unexpected side effects.

One way of preventing this is to restrict the access to data
- forcing clients to access the data representation through

a narrow interface. Avoid exposure of sub-objects and
prevent the leaks of any references to these sub-objects.

Modules also get coupled by operating on shared data
structures (e.g. compiler working on syntax tree). This
can be avoided by making the data structure immutable,
however changing the data representation remains a prob-
lem and having to copy it can lead to run-time and memory
overhead.

The flyweight pattern is one example that tries to maxi-
mize sharing of immutable objects, it is for example used
in Java for constant strings.

3.1.2 Procedural Coupling

Modules are coupled to other modules whose methods they
call. Callers cannot be reused without the callee modules
and changing a signature in the callee requires changing
the caller.

This can be prevented by moving code and even duplicat-
ing functionality to avoid dependency. Another solution
could be to change to a event based system. Components
may generate events and register for events from other
components using a callback. Event generators do not
know which components will be affected by their events
(loss of control).

One common event based architecture is Model-View-
Controller. The model contains the core functionality and
data, the view is responsible for displaying information and
the controller handles user inputs. All communication hap-
pens via events, the models and the views are decoupled
through the controllers.

1

https://github.com/dcamenisch/rse-summary

3.1.3 Class Coupling

Inheritance couples the subclass to the superclass, changes
in the superclass may break the subclass. To solve this, we
can replace (multiple) inheritance by subtyping and dele-
gation.

Using class names in declarations of methods, fields, and
local variables couples the client to the used class. To
avoid this, one can replace class names by supertypes (in-
terfaces). Using the most general supertype that offers all
required operations.

Lastly, allocations couples the client to the instantiated
class. We fix this by using dedicated classes called abstract
factories to handle allocation.

3.2 Adaption

Changes often erode the structure of the system. Modules
can be prepared for change by allowing clients to influ-
ence their behavior. This is done by making the module
parametric in:

• The value they manipulate

• The data structures they operate on

• The types they operate on

• The algorithms they apply

In object-oriented programs, behaviors can be specialized
via overriding and dynamic method binding. Dynamic
method binding is a case distinction on the dynamic type
of the receiver object.

3.3 Design Patterns

These are some of the most common design patterns in
object oriented programming:

• Factory - is an object for creating other objects; for-
mally, it is a function or method that returns objects
of a varying prototype or class from some method
call.

• Flyweight - is useful when dealing with a large num-
ber of objects with simple repeated elements that
would use a large amount of memory if individu-
ally stored. The shared data is stored in external
data structures and pass it to the objects temporar-
ily when they are used.

• Observer - is a software design pattern in which an
object, named the subject, maintains a list of its de-
pendents, called observers, and notifies them auto-
matically of any state changes, usually by calling one
of their methods.

• Strategy - is a behavioral software design pattern
that enables selecting an algorithm at runtime, de-
pending on the client or other factors.

• Visitor - separates the algorithm from the object
structure. Because of this separation new operations
can be added to existing object structures without
modifying the structures.

4 Testing

Testing is the process of executing a program with the
intent of finding errors. An error is a deviation of the ob-
served behavior from the required behavior. Testing can
only show the presence of bugs and not their absence.

4.1 Testing Stages

Unit testing is used to test individual subsystems (collec-
tion of classes, or a single class). To achieve a reasonable
test coverage, one has to test each method with several in-
puts. Parameterized test methods take arguments for test
data and help to decouple the test driver (logic) from the
data. They also help to avoid boiler-plate code, they are
most useful when test data can be generated automatically.

4.2 Testing Strategies

There are different strategies to testing:

• Exhaustive testing - check the unit under test for all
possible inputs.

• Random testing - select test data uniformly at ran-
dom. Can be automized but it treats all inputs as
equally valuable.

• Functional testing - use requirement knowledge to
derive test cases. The goal is to cover all require-
ments. Does not effectively detect design and coding
errors or errors in the specification.

• Structural testing - use design knowledge about the
systems structure, algorithms, and data structures
to derive test cases that exercise a large portion of
the code. Focuses on covering all the code. Not well
suited for system tests, due to high redundancy.

4.3 Functional Testing

Functional testing black-box tests a unit against its re-
quirements.

4.3.1 Partition Testing

Divide the inputs into equivalence classes and choose test
cases for each equivalence class. An example for this would
be to divide months into equivalence classes, based on the
number of days they have.

2

4.3.2 Selecting Representative Values

After partitioning, we need to select the input values from
each class. A large amount of errors tend to occur at the
boundaries of the input domain (overflows, comparisons
< instead of ≤, wrong number of iterations, or missing
emptiness checks). Boundary testing selects elements at
the edge of each equivalence (in addition to values in the
middle).

4.3.3 Combinatorial Testing

Combining equivalence classes and boundary testing can
lead to combinatorial explosion. To reduce the amount of
test cases, one can use semantic constraints, combinatorial
selection or random selection. Semantic constraints use
domain knowledge to remove unnecessary combinations.

Empirical evidence suggests that most errors do not de-
pend on the interaction of many variables (mostly two or
three variables). Therefore, it might be useful to only focus
on all possible combinations of each pair of inputs.

4.4 Structural Testing

Detailed design and coding introduce many behaviors that
are not present in the requirements, this comes down to
the choice of data structures, algorithms and optimiza-
tions. Functional testing generally does not thoroughly
exercise these behaviors. This is where structural testing
comes in handy.

Basic blocks are a sequence of statements such that the
code has one entry point and one exit point. Whenever
the first instruction in a basic block is executed, the rest
of the instructions are also executed.

An intraprocedural control flow graph (CFG) of a proce-
dure p is a graph (N,E) where N is the set of basic blocks
and E contains the edges from one basic block to another.

Statement coverage assesses the quality of a test suite by
measuring how much of the CFG it executes:

Statement Coverage =
#Executed Statements

#Statements

Still, 100% statement coverage does not guarantee that we
detect all the bugs, since we might not execute all edges.
This is why we introduce branch coverage:

Branch Coverage =
#Executed Branches

#Branches

Branch coverage leads to more thorough testing than state-
ment coverage and is the most widely-used adequacy crite-
rion in industry. Still, it does not guarantee that there are
no bugs. Therefore, we introduce path coverage. The idea
behind path coverage is to test all possible paths through
the CFG:

Path Coverage =
#Executed Paths

#Paths

However, if for example the number of loop iterations is not
known statically, an arbitrary large number of test cases is
needed for complete path coverage. This leads to the final
idea, loop coverage:

Loop Coverage =
#Executed Loops w. 0, 1 and >1 iter.

#Loops ∗ 3

5 Analysis

The goal is to build an automatic analyzer, which takes
as input an arbitrary program and an arbitrary property,

such that the analyzer can answer if the property holds or
not. However, this problem is undecidable, so we have to
make some sacrifices. Therefore, we only want the analyzer
to decided if the property holds for sure.

Static program analysis can run the program without giv-
ing a concrete input and does not need any manual anno-
tations such as loop invariants.

5.1 Abstract Interpretation

Abstract interpretation works by:

1. Selecting / defining an abstract domain

2. Defining abstract semantics for the language w.r.t.
to the domain

3. Iterate the abstract transformers over the abstract
domain until a fixed point is reached

It is important to remember that abstract transformers
are defined per programming language once and for all,
and not per program. A correct abstract transformer
should always produce results that are a superset of what
a concrete transformer would produce. In general it is easy
to be sound and imprecise, being sound and precise is hard.

One example for this type of interpretation uses the inter-
val domain given by:

3

When we have two abstract elements A and B, we can
join them to produce their (least) upper bound, denoted
by A ⊔B. For this we have to define the join operation.

With the interval abstraction we can have cases where we
cannot reach a fixed point, e.g. loop that always counts
up. To fix this we introduce the widening operator, it en-
sures termination at the expense of precision. If the bound
of an interval is increasing, we simply go to ∞ instead of
widening the interval multiple times.

5.2 Mathematical Concepts

5.2.1 Structures

A partial order is a binary relation ⊑ ⊆ L× L on a set L
with the properties of being reflexive, transitive and anti-
symmetric. The intuition is that it captures implications
between facts. Later, we will say that if p ⊑ q, then p is
more precise than q. Given a poset, we can construct a
Hasse diagram.

Given a poset (L,⊑), an element ⊥ ∈ L is called the least
element if it is smaller than all other elements. The great-
est element ⊤ is defined analogous. The least and greatest
elements may not exist, but if they do they are unique.
Given a poset (L,⊑) and Y ⊆ L, u ∈ L is an upper bound
of Y if ∀p ∈ Y : p ⊑ u.

Y ∈ L is a least upper bound of

Y if it is an upper bound of Y and

Y ⊑ u whenever u

is another upper bound of Y . We define the lower bound
and greatest lower bound analogously.

A complete lattice (L,⊑,

) is a poset where

Y and

Y

exist for any Y ⊆ L. The interval domain from above is a
complete lattice.

5.2.2 Functions

A function f : A → B between two posets (A,⊑) and
(B,≤) is increasing (monotone) if:

∀a, b ∈ A : a ⊑ b ⇒ f(a) ≤ f(b)

For a poset (A,⊑), a function f : A → A, and element
a ∈ A, a is a fixed point iff f(a) = a. Further a is a
post-fixedpoint iff f(a) ⊑ a. The set of all fixed points
is denoted by Fix(f) and the set of all post-fixedpoints is
denoted by Red(f).

For a poset (A,⊑) and a function f : A → A, we say that
lfp ⊑ f ∈ A is a least fixed point of f if lfp ⊑ f is a fixed
point and ∀a ∈ A : a = f(a) ⇒ lfp ⊑ f ⊑ a.

If (A,⊑),

,

,⊥,⊤) is a complete lattice and f : A → A

is a monotone function, then lfp ⊑ f exists and
lfp ⊑ f =

Red(f) ∈ Fix(f).

Given a poset of finite height, a least element ⊥, and a
monotone f , then the iterates f0(⊥), f1(⊥), f2(⊥), ... form
an increasing sequence which eventually stabilizes.

lfp ⊑ f = fn(⊥)

5.2.3 Approximating Functions

Let [[P]] be the set of reachable states of a program P . Let
function F (I is the initial state and → is the transition
relation) be:

F (S) = I ∪ {c′ | c ∈ S ∧ c → c′}

Then, [[P]] is a fixed point of F , in fact it is the least
fixed point of F . In static program analysis we want to

approximate a programming language. For this, we define
a function F# that approximates F . Then, using existing
theorems, approximate the least fixed point of F by com-
puting the least fixed point of F#.

A function F# : C → C approximates F : C → C if:

∀x ∈ C : F (x) ⊑c F
#

If F : C → C and F# : A → A, we need to connect the
concrete C and abstract A. We do this via two function
α : C → A (abstraction function) and γ : A → C (con-
cretization function). If we know that α and γ form a Ga-
lois Connections, then we can use the following definition
of approximation:

∀z ∈ A : α(F (γ(z))) ⊑ F#(z)

To approximate F , we can always define F#(z) = ⊤. This
solution is always sound, however it is too imprecise.

The most precise approximation is given by F#(z) =
α(F (γ(z))). The problem is that we often cannot im-
plement such a F#(z). However, we can come up with
a F#(z) that has the same behavior but a different im-
plementation. Any such F#(z) is referred to as the best
transformer.

4

Least Fixed Point Approximation - If we have the
following properties:

1. monotone functions F : C → C and F# : A → A

2. α : C → A and γ : A → A form a Galois Connection

3. ∀z ∈ A : α(F (γ(z))) ⊑A F#(z) (that is, F# approx-
imates F)

Then α(lfp(F)) ⊑A lfp(F#). This is important as it goes
from local function approximation to global approxima-
tion.

If α and γ do not form a Galois connection, then we can
use the following definition of approximation:

∀z ∈ A : F (γ(z)) ⊑C γ(F#(z))

If we have the following properties:

1. monotone functions F : C → C and F# : A → A

2. γ : A → A is monotone

3. ∀z ∈ A : F (γ(z)) ⊑C γ(F#(z)) (that is, F# approx-
imates F)

Then lfp(F) ⊑C γ(lfp(F#))

So what is F# then? F# is to be defined for the particu-
lar abstract domain A. The domain A can be Sign, Parity,
Interval, Polyhedra, and so on. In our setting, we simply
keep a map from every label in the program to an abstract
element in A. Then F# simply updates the mapping from
labels to abstract elements.

F# : (Lab → A) → (Lab → A)

5.3 Applications of Analysis: Intervals

In this part, we will put these things together to build
static analyzers. For this we first select a abstract domain,
define the abstract semantics and then iterate the abstract
transformer over a program until a fixed point is reached.

Our starting point is a domain where each element of the
domain is a set of states. The domain of states is a com-
plete lattice:

(P(Σ),⊆,∪,∩, ∅,Σ) Σ = Lab× Store

5.3.1 Select Abstract Domain

If we are interested in properties that involve the range of
values that a variable can take, we can abstract the set of
states into a map that captures the range of values each
variable can take.

Let the interval domain be:

(Li,⊑i,⊔i,⊓i,⊥i, [−∞,∞])

We denote Z∞ = Z ∪ {−∞,∞} and Li = {[x, y] |x, y ∈
Z∞, x ≤ y} ∪ {⊥i}. Further we define a max and min
function. Lastly, we can define the operations:

• [a, b] ⊑i [c, d] if c ≤ a and b ≤ d

• [a, b] ⊔i [c, d] = [min(a, c),max(c, d)]

• [a, b] ⊓i [c, d] = wdi[min(a, c),max(c, d)] where wdi
(well-defined interval) returns [a, b] if a ≤ b

The Li domain defines intervals, but to apply it we need to
take program labels and program variables into account.
Therefore, for programs, we use the domain: Lab → (Var
→ Li). This domain is also a complete lattice. The oper-
ators are lifted directly to both domains.

αi : P(Σ) → (Lab → (Var → Li))

γi : (Lab → (Var → Li)) → P(Σ)

Using αi, we abstract a set of states into a map from pro-
gram labels to interval ranges for each variable. Using γi,
we concretize the intervals maps to a set of states.

5.3.2 Define Abstract Semantics

We still need to compute αi[[P]] or an over approximation
of it. We want a function:

F i : (Lab → (Var → Li)) → (Lab → (Var → Li))

With the property αi(lfp F) ⊑ lfpF i.

Generic Template for F#:

F#(m)l =

⊤ if l is initial label

(l′,action,l)[[action]](m(l′)) otherwise

This results in the following F i which approximates the
best transformer but only works on the abstract domain.

F i(m)l =

λv.[−∞,∞] if l is initial label

(l′,action,l)[[action]]i(m(l′)) otherwise

(l′, action, l) are the edges in the CFG, an example could
be (1, x := 5, 2). Next we would need to define all the
effects for these.

5.3.3 Iterate the Transformer

In the final step, we now compute the least fixed point for a
given program. However, especially with loops we can en-
counter the problem where a variable indefinitely changes
(always counts up or down). To avoid this we have to use
widening. The widening operator ∇ : L×L → L is defined
as:

• ∀a, b ∈ L : a ⊔ b ⊑ a∇b

• if x0 ⊑ x1 ⊑ ... ⊑ xn ⊑ ... is an increasing sequence
then y0 ⊑ y1 ⊑ ... ⊑ yn stabilizes after a finite num-
ber of steps

5

Note that widening is completely independent of F i, simi-
lar to join it is defined for a specific domain. If∇ and F are
monotone then the sequence y0 = ⊥, y1 = y0∇F (y0), ...
will stabilize after a finite number of steps n with yn being
a post-fixed point of F .

For the interval domain, we define the widening operator
∇i as [a, b]∇i[c, d] = [e, f] where e = −∞ if c < a and
f = ∞ if b < d.

Iteration does not have to be in-order, there is also chaotic
(asynchronous) iteration.

5.4 Applications of Analysis: Pointers

Pointer and alias analysis is fundamental to reasoning
about heap manipulation programs. First we define the
concrete store:

• Objs is the set of all possible objects

• PtrVal = Objs ∪ {null}

• p ∈ PrimEnv : Var → Z

• r ∈ PtrEnv : PtrVar → PtrVal

• h ∈ Heap : Objs → (Field → {PtrVal ∪ Z})

A store is now:

σ =< p, r, h >∈ Store = PrimEnv× PtrEnv×Heap

Before the store was only p. As before we have:

Σ = Lab× Store

Aliases are two pointers p and q that point to the same
object. A points-to pair (p, A) means that p holds the
address of object A. If (p, A) and (r, A) are points-to
pairs, then p and r are aliases.

A program can create an unbounded number of objects.
Therefore, we need to use some abstraction when allocat-
ing a new object. That is, we need some static naming
scheme for dynamically allocated objects.

Allocation sites divide the heap into fixed partitions based
on the statement label. All objects allocated at the same
program point (label) get represented by a single abstract
object.

If this is too imprecise, we can also use the calling context.
If we use allocation sites (labels), we can now define the
abstract objects as:

AbsObj = {l | statement is p := allocl}

This is just those labels in the program where allocation
of an object occurs. Here allocl is just the name of the
allocation instruction.

5.4.1 Flow Sensitive Pointer Analysis

This type of analysis respects the program control flow.
This leads to a separate set of points-to pairs for every
program point. Further, the set at a program point rep-
resents possible maybe-aliases on some path from entry to
the program point.

We use the same step-by-step approach as before. The
abstract domain is a complete lattice:

Labs → ((PtrVar → P(AbsObj)) ×
(AbsObj× Field → P(AbsObj)))

The abstract domain keeps two maps at every program
label. The first one contains a mapping from a pointer
variable to a set of abstract objects. The second map con-
tains a mapping from the fields of abstract objects to the
set of abstract objects they point to. Since this lattice is
of finite height, we will not need widening. The operations
⊑,⊔,⊓,⊥,⊤ are all lifted appropriately.

Using α, we abstract a set of states into the two kinds of
maps. Similarly, using γ, we concretize the pointer maps
to a set of states.

We now need to define the effect of program statements
manipulating pointers on the abstract domain. This can
be summarized as:

Let us take a look at the most tricky one, pointer heap
store. Given p.f := q and p → {A}, A.f → {B}, and
q → {C}. Is A.f → {C} the correct result? No, it is
not. The correct solution would be A.f → {B, C}, this is
called weak updates.

5.4.2 Flow Insensitive Pointer Analysis

This type of analysis assumes all execution orders are
possible, it abstracts away the order between statements.
This is good for concurrency, but it may be too imprecise.

The abstract domain does not keep information per label,
essentially ignoring the control flow of the program.

(PtrVar → P(AbsObj)) ×
(AbsObj× Field → P(AbsObj))

To account for the loss of control-flow, all updates are
weak. This can lead to imprecise results. To avoid this,
we can initialize local variables with null instead of ⊤.

5.5 Application of Analysis:
Static Concurrency Checker

Another use case is to check if parallel algorithms are de-
terministic. However, since proving determinism is hard,
we prove a stronger property. We prove data-race freedom.

For static analysis there are three sources of unbound-
edness we have to deal with. These are the heap, the
range of array indices, and the number of threads. For
the heap we can use flow-insensitive points-to analysis and
for the range of array indices we use numerical abstraction.

We first perform sequential analysis on a per thread ba-
sis. We then take the cartesian product of these states and
filter out all the ones that are not possible. Leaving us

6

with the concrete program states. Now, we can check the
property we are interested in proving.

6 Symbolic & Concolic Execution

If we compute the symbolic constraints per path, and then
solve these constraints we will have all concrete inputs that
explore all paths. This is the core idea of symbolic execu-
tion.

A symbolic store σ maps variables to symbolic expressions,
which are updated by assign statements. Path conditions π
are the conditions under which a path is taken. Combined
we have a symbolic state per program point.

Solving the final constraint sets, we can conclude which
path will be taken for an input.

Eagerly exploring all paths up-front may include many
infeasible paths and can be too time consuming. Symbolic
execution engines therefore apply different exploration
strategies.

SMT solvers combine SAT-solving with theory reasoning.
They can produce models, satisfying assignments. How-
ever, there are limits. Many theories are not decidable,
e.g. non-linear integers. Let us assume the solver fails to

find a model for b1 or !b1, therefore we will not get concrete
test inputs and cannot determine if the branch is infeasible.

Concolic execution combines concrete and symbolic exe-
cution. The high-level idea is that the concrete execution
drives the symbolic one. Programs are executed with con-
crete inputs, but additionally maintain a symbolic state.
Concrete values are used to simplify path conditions.

A concolic execution may not be able to explore all paths,
but any additionally explored path increases the chances
of uncovering bugs. We use concolic execution to expand
sets of manually determined test inputs.

Symbolically executing native code is difficult if not im-
possible. Concolic execution can help by invoking the
functions with concrete values. Still, it might not be able
to explore all paths.

Further, one has to consider that symbolic expressions can
become large, in particular along deep paths. Optimiza-
tions typically employed by compilers are subexpression
elimination and constant folding.

6.1 Fuzzing and Symbolic Execution for
Smart Contracts

The idea behind fuzzing is to run programs on abnormal
inputs (e.g. randomly generated). This should help find-
ing potential exploits that attackers could use.

We want to find transactions that thoroughly explore the
state space. The problem is the exponential number of
block states. Both, symbolic execution and fuzzing, have
their drawbacks. Imitation learning based fuzzers try to
solve these problems.

A neural network is used to learn to fuzz from symbolic
execution.

This approach performs better than anything comparable.

7 Modeling and Specification

Formal modeling use notations and tools from mathe-
matics to be precise. Formal models enable the use of
automatic analysis. They are good at finding ill-formed
examples and checking properties.

Alloy is a formal modeling language based on set theory.
An alloy model specifies a collection of constraints. The
alloy analyzer takes the constraints of a model and tries to
find a structure that satisfies them. There are three levels
of abstraction in alloy: the object oriented paradigm, set
theory, and atoms and relations.

There are four key ideas:

• Everything is a relation. All data types and struc-
tures are relations. A key operator is dot join.

• Non-specialized logic. No special constructs for state
machines, traces, synchronization, concurrency etc.

• Counterexamples & Scope. Observations about de-
sign analysis: most assertions are wrong and most
flaws have small counterexamples.

• Analysis by SAT. SAT is easy, so reduce the problem
to SAT.

7

7.1 Logic

Atoms are alloy’s primitive entities (indivisible, immutable
and uninterpreted). Relations are use to associate atoms
with one another. Every value in alloy logic is a relation.

Sets are unary relations, scalars are singleton sets and
binary relations are sets of two columns. For these rela-
tions it holds that rows are unordered while columns are
ordered but unnamed. Further, all relations are first order
relations, meaning they cannot contains other relations
(no set of sets).

We have the following constants: none is the empty set,
univ is the universal set and iden is the identity relation.

7.1.1 Operators

Set Operators

+ union
& intersection
- difference
in subset
= equality
-> cross product

Join Operators
. dot join, column that is joind on is left out of the result
[] box join, a.b.c[d] = d.(a.b.c)

Restriction and Override

Unary Operators

Boolean Operators

Quantifiers

If and Let

Cardinalities

7.2 Static Models

A signature declares a set of atoms (can be thought of like
a class) sig FSObject{}, extends-clauses declare subset
relations sig File extends FSObject{}. Like classes,
signatures can be abstract. Further, they may constrain
the cardinality of the declared set by one, lone, some

(singleton, singleton or empty, none empty set).

Fields declare relations on atoms sig A { f: e}. f is
a binary relation on domain A and the range given by e.
Range expressions may denote multiplicities one, lone,

some, set. Fields may range over relations, with the
relation declaration may including multiplicities on both
sides enrollment: Student set -> one Program.

Predicates are named, parameterized formulas: pred

p[x1:e1, ..., xn:en]{F}.

Functions are named, parameterized expressions: fun

f[x1:e1, ..., xn:en]:e {F}

Facts add constraints that always hold, they express value
and structural invariants on the model.

The alloy analyzer can search for structures that satisfy
a constraint C in a model using run C. The existence of
structures that satisfy constraints in a model is generally
undecidable. The alloy analyzer searches exhaustively for
structures up to a given size, therefore the problem be-
comes finite and decidable (e.g. run show for 5).

Exploring by manual inspection can be cumbersome. Alloy
supports searching for structures that violate a given prop-
erty by using assert a {F} and check a scope. Under-
constraint models permit undesirable structures, while
over-constraint models exclude desired ones.

7.3 Dynamic Models

Alloy 6 has a built-in notion of time based on Linear Tem-
poral Logic (LTL). This allows us to model things like a
game of ping pong.

LTL is boolean logic augmented with two temporal oper-
ators next (X or ◦) and until (U or ∪).

8

From this we can derive two more operators eventually
(F or ♦) and always (G or □).

Combined with mutable fields, dynamic behavior in Alloy
can be summarized like this:

Alloy specifications are purely declarative, they describe
what is done, not how it is done. Traces define the tempo-
ral behavior of the model. A first state is initialized and
subsequent states are constraint using LTL operators.

7.4 Analyzing Models

An Alloy model specifies a collection of constraints C that
describe a set of structures.

A formula F is consistent (satisfiable) if it evaluates to
true in at leas one of these structures:

∃s : C(s) ∧ F (s)

A formula F is valid is it evaluates to true in all of these
structures:

∀s : C(s) ⇒ F (s)

Validity and consistency checking for Alloy is undecidable.
The Alloy analyzer sidesteps this problem by only checking
within a given scope, defining a finite bound on the size of
the sets in the model.

In practice, SAT solvers are extremely efficient at check-
ing consistency (performed using the run command). A
satisfying assignment can be translated back to relations
and then visualized. However, if the SAT solver returns
unsatisfiable, there may exist larger structures that satisfy
the conditions.

For validity instead of checking directly, the Alloy analyzer
checks for invalidity, that is, it looks for counterexamples
(performed using the check command).

8 SAT/SMT-based Analysis

8.1 SAT Solving Algorithms

The process of SAT solving looks as follows:

As the standard form we use the conjunctive normal form
(CNF). A formula F is in CNF iff it is a conjunction of
clauses. A clause is a disjunction of literals (a literal being
a variable or its negation). A formula in CNF cloud look
like this:

(p ∨ ¬q) ∧ (q ∨ r ∨ ¬p) ∧ (s ∨ p)

Simple conversion to CNF works as follows:

1. Rewrite all A ⇒ B to ¬A ∨ B and A ⇔ B to
(¬A ∨B) ∧ (A ∨ ¬B)

2. Push all negations inwards

3. Rewrite all ¬¬A to A

4. Eliminate ⊤ and ⊥

5. Distribute disjunctions over conjunctions, e.g.
rewrite A ∨ (B ∧ C) to (A ∨B) ∧ (A ∨ C)

6. Remove duplicate clauses and duplicate literals from
clauses

The CNF formula can be rewritten until the set is empty or
a clause is empty, by using the Davis-Putman-Logemann-
Loveland (DPLL) Algorithm. If the set is empty return
SAT (and a model M , if a clause is empty return UNSAT.
The rules are as follows:

• Pure Literal: If p occurs only positively in F , delete
the clauses in which p occurs, M = M ∪ {p} (similar
if p only occurs negatively.

• Unit propagation: If u is a unit clause in F , delete
the clauses in which u occurs, update all clauses con-
taining ¬u as a disjunct by removing that disjunct,
M = M ∪ {u}.

• Decision: If p occurs both positively and negatively
in F:

– apply the algorithm to F ∧p,M ∪{p}: if we get
(SAT, M) then return this result

– otherwise, apply the algorithm to F ∧ ¬p,M ∪
{¬p} and return the result

8.2 Encoding Integers into SAT

Alloy supports integers. Bounded integers are encoded us-
ing bit-blasting. The idea is that a 32-bit integer is a se-
quence of 32 individual bits. This is similar to how a circuit
defines integer operations. In Alloy the bit width defines
the bound for the maximum size of an integer.

8.3 Universal Quantifiers in SMT

When dealing with uninterpreted (user-defined) functions,
the idea is to find a candidate model M for the non-
quantified part of the formula F and check if M satis-
fies all the universal quantifiers from F . This is called
Model-Based Quantifier Instantiation (MBQI). In general,
termination is not guaranteed when using MBQI.

9

9 Modeling and Analysis of
Memory Models using Alloy

Memory models are the interface between programs and
their possible executions. They determine which behavior
the memory and thus a program is allowed to have. In
particular: from which writes can the read operations read
from. A memory model would be sequential consistency
or x86 Total Store Order (TSO) (a superset of sequential
consistency).

9.1 Axiomatic Semantics

A rigorous description of the memory model. Axiomatic
semantics defines events, relations, and rules. For x86 TSO
we consider the following events: read, write, fence.

Program order relations po orders the events in the same
thread (given by program). Reads from relations rf as-
sociate each read event which exactly one write. Happens
before relations hb guarantee that the effect of e1 are visi-
ble to e2. This leads us to the following axiomatic semantic
rules for x86 TSO:

w
rf−→ r

w
hb−→ r

e1, e2 access same variable

e1
hb−→ e2 ∨ e2

hb−→ e1

w, r, w′ access same variable w
rf−→ r ∧ w

hb−→ w′

w
rf−→ r ∧ w

hb−→ w′ ∧ r
hb−→ w′

e1
po−→ e2 e1, e2 access same variable

e1
hb−→ e2

e1
po−→ f f is a fence

e1
hb−→ f

f
po−→ e1 f is a fence

f
hb−→ e1

With these rules we can check if a given execution is al-
lowed, by iteratively applying the rules until no new rela-
tions are added. The execution is allowed iff hb is acyclic.

9.2 Axiomatic Semantics in Alloy

The events and axiomatic rules over the po, rf and
hb relations can be encoded in the Alloy solver:

From there we can add all the rules as constraints.

9.3 Memory Model Evaluation
Framework

Based on documentation, we can build a formal Remote
Memory Access (RMA) model in Alloy. Then automati-
cally generate tests, together with their allowed executions
by the formal RMA model. After running the tests on real
RMA networks we can compare the real executions with
executions allowed by the model.

10

