
System Programming and Computer Architecture 1

🖥
System Programming and Computer
Architecture

❗ This and many more summaries can be found on https://n.ethz.ch/~dcamenisch. Feel free to
leave a comment in the document if you spot any mistakes! As always no guarantees for
completeness or correctness are made.

0. Table of Content
0. Table of Content
1. Introduction

1.3 Motivation - Five realities
2. Introduction to C

2.1 History and Toolchain
Workflow
GNU gcc Toolchain

2.2 Control flow in C
2.3 Basiy types in C
2.5 Arrays in C

Strings
3. Representing Integers in C

3.1 Recap: Encodings and operators
Integers

3.2 Integer ranges
Sign extensions

3.3 Integer addition and subtraction in C
Negation

3.4 Integer multiplication in C
3.5 Integer multiplication and division using shifts

4. C Pointers

https://n.ethz.ch/~dcamenisch

System Programming and Computer Architecture 2

4.1 Recap: the stack
4.2 Pointers in C
4.5 Arrays and pointers
4.6 Passing by reference

5. Dynamic Memory Allocation
5.1. The C memory API
5.3 Structured Data

Unions
5.4 Type definitions
5.5 Dynamic data structures

6. Wrapping up C (for now)
6.1 The C Preprocessor
6.2 Modularity
6.3 Function pointers
6.4 Assertions
6.6 setjmp() and longjmp()
6.7 Coroutines

7. Implementing dynamic memory allocation
Explicit vs implicit memory allocators
7.1 The problem

Constraints
Performance goal: peak memory utilization
Implementation issues
Challenge: fragmentation
Knowing how much to free

7.2 Implicit free lists
Example
Implicit list: finding a free block
Implicit list: allocating in a free block
Implicit list: freeing a block

7.3 Coalescing
Implicit list: coalescing

7.4 Explicit free lists
Explicit list: summary

7.5 Segregated free lists
7.6 Garbage collection
7.7 Memory pitfalls

8. Basic x86 Architecture
8.1 What is an instructions set architecture?
8.3 Basics of machine code

Compiling into assembly
Object code
Machine instruction example

8.4 x86 architecture
8.6 Condition codes

9. Compiling C Control Flow
9.1 if-then-else statements
9.2 do-while loops
9.3 while loops
9.4 for loops
9.5 Compact switch statements

Jump table structure

System Programming and Computer Architecture 3

9.6 Sparse switch statements
9.7 Procedure call and return

x86_64 Stack
Procedure control flow

9.8: x86_64 calling conventions
Full x86_64 / Linux stack frame

10. Compiling C Data Structures
10.1 One-dimensional arrays

Array allocation
Array access

10.2 Nested arrays
10.3 Multi-level arrays
10.4 Structures

Concept
10.5 Alignment
10.7 Unions

11. Linking
What do linkers do?
11.1 Object files
11.2 Linker symbols

Relocating code and data
The linker's symbol rules

11.3 Static libraries
Commonly-used libraries
Loading executable object files

11.4 Shared libraries
12. Code Vulnerabilities

12.1 Worms and Viruses
12.2 Stack overflow bugs
12.3 Stopping overrun bugs

System-level protections
12.4 Another example: XDR

13. Floating Point
13.1 Representing floating-point numbers

Fractional binary numbers
IEEE Floating Point
Floating point representation

13.2 Types of IEEE floating-point numbers
Precisions
Floating point in C

Normalized encoding example (exp 0)=
Denormalized values
Special values

13.3 Floating-point ranges
13.4 Floating-point rounding

Creating a floating point number
13.5 Floating-point addition and multiplication

Floating-point multiplication
Floating-point addition

13.7 SSE floating point
SSE3 register
SSE3 basic instructions

System Programming and Computer Architecture 4

x86-64 FP code example
Constants

14. Optimizing Compilers
14.1 Code motion and precomputation
14.2 Strength reduction
14.3 Common subexpressions
14.4 Optimization blocker: procedure calls
14.5 Optimization blocker: memory aliasing

How to remove aliasing
14.6 Blocking and unrolling

Moral: Help the compiler to help you
15. Architecture and Optimization

Cycle per Element (CPE)
Basic Optimizations
15.1 A bit about modern processor design

Superscalar processor
15.2 Superscalar processor performance

Recall: Data hazards
What does this mean for our previous example?

15.3 Reassociation
15.4 Combining multiple accumulators and unrolling

16. Caches
General cache concept
Cache performance metrics
Types of cache misses
16.1 Cache organization
16.2 Cache reads
16.3 The memory hierarchy

Cache writes
16.4 Cache optimizations
16.5 Blocking

17. Exceptions
17.1 Exception vectors and kernel mode
17.2 Synchronous exceptions
17.3 Asynchronous exceptions

Basic x86 interrupts
17.4 Interrupt controllers

18. Virtual Memory
18.1 Recap: Address Translation

Address translation with a page table
18.2 Uses of virtual memory

Problems of virtual memory
18.3 The address translation process

Page hit
Page fault

18.4 Translation lookaside buffers
TLB hit
TLB miss

18.6 Multi-level page tables
Linear page table size
2-level page table hierarchy
k-lebel page table hierarchy

System Programming and Computer Architecture 5

18.9 Caches revisited
Virtually indexed, virtually tagged
Virtually indexed, physically tagged
Physically indexed, physically tagged
Write buffers

18.10 Large pages
19. Multiprocessing and Multicore

Symmetric multiprocessing (SMP)
19.1 Consistency and Coherence

Cache coherency
Memory consistency

19.2 Sequential consistency
19.3 Cache coherence with snooping

MSI state machine: local processor transitions
MSI state machine: remote snooped transitions
MSI state machine: all transitions

19.4 The MESI cache coherence protocol
MESI state machine

19.5 Relaxing sequential consistency
Processor Consistency

19.6 Barriers and fences
Memory barriers on x86

19.7 Multicore synchronization: Test-and-Set
Test-And-Set (TAS)
Test and Test-And-Set

19.8 Compare-and-Swap
CAS for lock-free update
The ABA problem

19.9 Simultaneous multithreading
SMT or Hyperthreading

19.10 Non-Uniform Memory Access (NUMA)
Non-Uniform Memory Access (NUMA)

19.11 NUMA cache coherence
19.13 Optimization example: MSC locks

20. Devices
20.1 Device Registers

Registers
20.2 Dealing with caches
20.3 Direct Memory Access

DMA and Caches
20.4 Device drivers
Device and CPU communication
20.5 Buffer rings and descriptor rings

Overruns and underruns
20.6 More complex devices

Tulip descriptors (old network card)
Descriptor rings
Descripor rings - chain mode

20.7 Device initialization
20.8 I/O state machines (hardware side)

Sending packets
20.9 I/O state machines (software side)

System Programming and Computer Architecture 6

1. Introduction

1.3 Motivation - Five realities
Reality #1 - int and float are not numbers.

Reality #2 - You've got to know assembly.

Reality #3 - Memory matters. RAM is not a realistic abstraction.

Reality #4 - There's much more to performance than asymptotic complexity. Constant factors matter
too!

Reality #5 - Computers don't just execute programs. Programs don't just calculate values.

2. Introduction to C

2.1 History and Toolchain

Workflow

GNU gcc Toolchain

Sending packets
Receiving packets

20.10 Discoverable buses: PCI
Finding all the devices
PCI Interrupts

System Programming and Computer Architecture 7

2.2 Control flow in C
Similar to Java or other programming languages, C has Conditionals, Loops and Functions. What might
be new is, that C has Jumps:

break; // behaves similar to Java, but no Label
continue; // behaves similar to Java, but no Label
goto <Label> // resumes code execution at the line after the Label

2.3 Basiy types in C
Declarations work like any similar language, most of the base types are the same, but there are some
differences. Booleans where introduced really late, normaly one uses a short where 0 means false and
any other value is true . Further any statement in C is also an expression, hence we can have something
like this:

int rc;
if (rc = call_some_fn()) {
 fprintf(stderr, "Failed with return code %d\n", rc);
 exit(1);
}
// Carry on: call succeeded

Lastly C has a void type that has no value. It is used for untyped pointers and to declare functions
without return value.

2.5 Arrays in C
Arrays work similar to other languages, but one has to be carefull, the C compiler does not check for
array bounds! If we do not initialize an array, we can not be sure what values are stored in it.

int a[3] = {3, 7, 9} // declaring and initializing an array of 3 int

System Programming and Computer Architecture 8

Strings
C has no real string type. Instead, strings are arrays of char's terminated with null '\0' . Therefore the
following two expressions are the same:

char str[6] = {'h','e','l','l','o','\0'};
char str[6] = "hello";

We generally use string libraries to manipulate strings.

3. Representing Integers in C

3.1 Recap: Encodings and operators
First we remind ourself of endianess from DDCA. 0x1A2B3C4D5E6F7080:

Integers
Constants are by default considered to be signed integers. If a number is declared with a "U" suffix it's
considered unsigned.

When mixing unsigned and signed in a single expression, signed values are implicitly cast to
unsigned numbers!

When shifting, we differentiate between arithmetic shift and logical shift. While the logical shift fills with 0’s,
the arithmetic shift copies the shifted bit.

3.2 Integer ranges
For a -bit integer, we can have the following range:

 for unsigned

 for signed (two’s complement)

Sign extensions
Given a -bit signed integer x, convert it to a -bit integer with the same value.

We make copies of the sign bit and add them to the begining of x

3.3 Integer addition and subtraction in C

w

0...2 −w 1

−2 ...2 −w−1 w−1 1

w w + k

k

System Programming and Computer Architecture 9

Negation
Recall the following holds for 2's complement:

Furthermore we observe, that:

3.4 Integer multiplication in C
We notice, that we would need to keep expanding the word size with each product we compute, since the
product of two -bit numbers can have up to bits.

3.5 Integer multiplication and division using shifts
u << k gives (both signed and unsigned)

u >> k gives (both signed and unsigned)

The rounding is wrong on signed number if . It rounds down instead of "towards 0"

We therefore compute the division for signed negative integers the following way: → in
C: (u + (1 << k) - 1) >> k

4. C Pointers
The OS gives each process and address space, which contains process virtual memory. For example, on
a 64 bit machine, one can host bytes of virtual memory.

4.1 Recap: the stack
The stack is allocated in Frames containing local variables, return information and temporary space.
Furthermore they are required to manage the space allocated when the procedure is entered ("Set-up"
code) and the space deallocated when returning ("finish" code). Remember the stack grows from top →
bottom.

∼ x+ 1 == −x

∼ x+ x == −1

w 2w

u ⋅ 2k

⌊ ⌋2k
u

u < 0

⌊ ⌋2k
u+2 −1k

264

System Programming and Computer Architecture 10

4.2 Pointers in C
In C, you can produce the virtual address where the value of a variable x is stored with using &x .
Furthermore you can use %p in a printf() statement to print it out. For example:

#include <stdio.h>

int main(int argc, char **argv) {
 int x;
 int a[2];

 printf("x is at %p \\n", &x);
 printf("a[0] is at %p \\n", &a[0]);
 return 0;
}

Pointers are variables that store memory addresses. They are declared as follows:

int main(int argc, char *argv[]) {
 int x = 42;
 int *p = &x;

 return 0;
}

We can also dereference a pointer, i.e. access the memory referred to by a pointer;

int main(int argc, char *argv[]) {
 int x = 42;
 int *p = &x;

 int y = *p;
 *p = 99 //x is now 99

 return 0;
}

We can also have double pointers:

int x = 0 ;

int *p = &x ;

int **dp = &p ;

We notice that each time we start the same program, we get different addresse for the same variables!
This is called randomized address space layout. To visualize what is going on in the virtual memory, we
use so called box and arrow diagrams.

A pointer pointing to NULL is guaranteed to be invalid. In C on Linux, NULL referes to the memory address
0x0000000000000000. Any attempt to dereference NULL will result in a segmentation fault.

4.5 Arrays and pointers
Reminder: arrays are not pointers!

An array is a collection of homogeneous data elements stored at contiguous memory addresses.

A pointer is a variable that stores a memory address

System Programming and Computer Architecture 11

An array name in an expression is treated as a pointer to the first element of the array, except when:

The array is an operand of size of

int a[10];
assert(sizeof(a) == 10*sizeof(int));
assert(sizeof(&a[0]) == sizeof(int *));

The array's address is taken with '&'

int a[10];
assert(&a == a);

The array is a string literal initializer

char a[] = "Hello!";
char *b = "Hello!";

In fact, A[i] is always rewritten as *(A+i) in the compiler.

4.6 Passing by reference
In general, C passes function arguments by value. The callee gets a copy of the argument! If a calle
modifies an argument, the caller's copy isn't modified. We can solve this by passing the values by
reference (by pointers).

#include <stdio.h>

void swap(int *a, int *b) {
 int tmp = *a;
 *a = *b;
 *b = tmp;
}

int main(int argc, char **argv) {
 int a = 42, b = -7;

 swap(&a, &b);
 printf("a: %d, b: &d\\n", a, b);
 return 0;
}

5. Dynamic Memory Allocation
So far we have seen two ways of memory allocation:

statically: Globally defined variable, allocated when the program is loaded, deallocated when program
exits

automatically: Variables defined in functions, allocated when function is called, deallocated when
function returns (allocated on the stack)

But often we want memory that:

persists across multiple function calls, but not for the whole lifetime of the program

System Programming and Computer Architecture 12

is too big to fit on the stack

is allocated and returned by a function as a result whose size is not known to the caller

Dynamic memory allocation is the heart of C!

5.1. The C memory API
The function malloc() allocates a block of memory of the given size. It returns a void pointer to the first
byte of that memory (and NULL if the memory cannot be allocated). You should assume the memory
initially contains garbage.

long *arr = (long *)malloc(10*sizeof(long));
if(arr == NULL) {
 return ERRCODE;
}
arr[0] = 5L;

The calloc() function works in the same way as malloc() does, but zeroes the memory. It is therefore
slightly slower, but also less error-prone and more readable.

long *arr = (long *)calloc(10, sizeof(long));
if(arr == NULL) {
 return ERRCODE;
}
arr[0] = 5L;

To deallocate the memory, we can use the function free() . Remark: It's good practice to NULL the pointer
after freeing.

long *arr = (long *)calloc(10, sizeof(long));
if(arr == NULL) {
 return ERRCODE;
}
//do something...
free(arr);
arr = NULL;

With the function realloc() we can resize a memory allocation. realloc() must point to the first byte of
the malloc'ed block. The old pointer passed in is now longer valid, one has to use the pointer returned by
realloc() .

long *arr;
if(!(arr = (long *)malloc(10*sizeof(long)))) { //checks if pointer is NULL
 return ERRCODE;
}
//do something...
if(!(arr = (long *)realloc(arr, 20*sizeof(long)))) { //checks if pointer is NULL
 return ERRCODE;
}

A memory leak happens when code fails to deallocated memory that will no longer be used.

5.3 Structured Data

System Programming and Computer Architecture 13

A struct is a C type that contains a set of fields. It's a bit like a class but contains no methods or
constructors. Instances of struct can be allocated on a stack or heap.

// New strctured data type called "struct Point"
struct Point {
 int x;
 int y;
};

struct Point origin = {0,0};

We use " . " to refer to fields in a struct and " -> " to refer to fields through a pointer to a struct.

struct Point {int x, y;};

int main(int argc, char *argv[]) {
 struct Point p1 = {0,0};
 struct Point *p1_ptr = &p1;

 p1.x = 1;
 p1_ptr->y = 2;
 return 0;
}

Copy by assignment works for struct, i.e. one can assign the value of a struct from a struct of the same
type, which copies the entire contents.

Unions
Unions are like a struct, but holds only one of a set of alternative values. They are accessed like a struct.

union u {
 int ival;
 float fval;
 char *sval;
};

union u my_uval;

5.4 Type definitions
typedef introduces a new type definition. Using typedef can make code a lot easier to read, especially if
you are working with complicated types.

typedef unsigned uint32_t;
uint32_t ui;

typedef struct skbuf skbuf_t;
skbuf_t *sptr;

5.5 Dynamic data structures
Following an example of a generic linked list:

System Programming and Computer Architecture 14

struct node {
 void *element;
 struct node *next;
};

struct node *Push(struct node *head, void *e) {
 struct node *n = (struct node *)malloc(sizeof(struct node));

 assert(n != Null);
 n->element = e;
 n->next = head;

 return n;
}

We use a void pointer to make it generic, meaning we have to always convert to void * before pushing,
and cast it back from void * when accessing.

6. Wrapping up C (for now)

6.1 The C Preprocessor
Macro definitions: In C we have token-based macro substitution.

#define FOO BAZ
#define BAR(x) (x+3)
#define QUX

FOO will be replaced with BAZ and BAR(4) is replaced with BAR(4 + 3) (a string, 4 is not replaced with 7).
Notice that QUX would get replaced with 1 .

Macros can be large

#define SKIP_SPACES(p, limit)
 do { char *lim = (limit);
 while(p < lim) {
 if(*p++ != ' ') { p--; break; }
 }
 } while(0)

Be carefull, using larger marcos can introduce problems with null statements.

6.2 Modularity
Declaration vs. Definitions

A declaration says something exists, somewhere

A definition says what it is

C deals with so-called compilation units which is a C file, plus everything it includes. Declarations can
therefore be annotated with:

extern: Definition is somewhere else, either in this compilation unit or another

static: definition is in this compilation unit, and can't be seen outside of it

System Programming and Computer Architecture 15

Modularity in C

A module is a self-contained piece of a larger program. The modules interface consists of:

externally visible:

functions to be invoked

typedefs and perhaps global variables

cpp macros

internal functions, types, global variables

that clients should not look at

We implement those modules using C header files. For example, the module foo has the interface foo.h.
Clients of foo can use it with #include "foo.h" . The header file includes no definitions, but only external
declarations. The implementation is typically done in foo.c, which also includes foo.h, which contains no
external declarations, but only definitions and internal declarations.

Example: linked lists again

ll.h

// Note that the definition of the struct is in the header file!
struct node {
 void *element;
 struct node *next;
};

extern struct node *Push(struct node *head, void *element);

ll.c

#include "ll.h"

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

struct node *Push(struct node *head, void *element) {
 //implementation here
}

ll_test.c

#include "ll.h"

int main(int argc, char **argv) {
 struct node *list = NULL;
 char *hi = "hello";
 char *bye = "goodybe";

 list = Push(list, (void *) hi);
 list = Push(list, (void *) bye);
 return 0;
}

6.3 Function pointers

System Programming and Computer Architecture 16

In C we can write something like this:

int (*func)(int *, char);

Here, func is a pointer to a function which takes two arguments, a pointer to an int and a char , and
returns an int. As with all types it can be used with typedef .

6.4 Assertions
Assertions are of the following form:

assert(<scalar expression>);

At run time, the expression is evaluated. If the assertion evaluates to true, nothing happens, else the code
is aborted and the assertion failure is printed in the console. Assertions are makros.

6.6 setjmp() and longjmp()
setjmp(env) saves the current stack state / environment in env and returns 0.

#include <setjmp.h>

int setjmp(jmp_buf env);

longjmp(env, val) causes another return to the points saved by env . This new return returns val .

#include <setjmp.h>

void longjmp(jmp_buf env, int val);

6.7 Coroutines
Coroutines are general control structures where flow control is cooperatively passed between two
different routines without returning. In C, coroutines can be implemented with the help of setjmp() and
longjmp() . For further details on how the implementation exactly works, look at the slides.

7. Implementing dynamic memory allocation
Explicit vs implicit memory allocators

Explicit: application allocates and frees space (malloc() and free() in C)

Implicit: application allocates, but does not free (Freeing is done by Garbage Collector)

7.1 The problem

Constraints

System Programming and Computer Architecture 17

Applications:

Can issue arbitrary sequence of malloc() and free()

free() requests must be to a malloc() 'd block

Allocators:

Can't control the number or size of allocated blocks

Must respond immediately to malloc() requests (can't reorder or buffer requests)

Must allocate blocks from free memory

Must align blocks so they satisfy all alignment requirements (8 byte alignment for GNU malloc)

Can manipulate and modify only free memory

Can't move the allocated blocks once they are malloc() 'd

Performance goal: peak memory utilization
Given some sequence of malloc and free requests .

Def: Aggregate payload

malloc(p) results in a payload of bytes

after request has completed, the aggregate payload is the sum of currently allocated
payloads, i.e. all malloc() 'd stuff minus all free() 'd stuff

Def: Current heap size

assume is monotonically nondecreasing (reminder: it grows when allocator uses sbrk())

Def: Peak memory utilization after requests

Implementation issues
How to know how much memory is being free() 'd when it's given only a pointer and no length?

How to keep track of the free blocks?

What to do with extra space when allocating a block that is smaller than the free block it is placed in?

How to pick a block to use for allocation - many might fit?

How to reinsert a free() ’d block into the heap?

Challenge: fragmentation
Internal fragmentation
For a given block, internal fragmentation occurs if the payload is smaller than the block size. This is
caused by:

overhead of maintaining heap data structure

padding for alignment purposes

explicit policy decisions

External fragmentation
Occurs when there is enough aggregate heap memory, but no single free block is large enough.

R , R , ..., R , ..., R0 1 k n−1

Pk

p

Rk Pk

Hk

Hk

k

U =k (max P)i<k i

System Programming and Computer Architecture 18

Knowing how much to free
The standard method is to keep the length of a block in the word preceding the block (called header or
header field). This requires an extra word for every allocated block.

In the following sections, we’ll get to know different methods of how to keep track of free blocks.

7.2 Implicit free lists
For each block we only need to know the length of it and whether it's allocated or if it's free. We could
store this information in two words, which would be wasteful.

If the blocks are aligned, some low-order address bits are always , we therefore can use the lowest-
order bit as a flag to indicate if the block is allocated () or if its free (). This flag bit needs to masked out
when reading the size of the block.

Example

For this heap with have a 16 byte (2 word) alignment. This means, that each block must start at a
multiple of 16 bytes. The first word, which stores the size and the allocated-flag therefore starts one word
before the alignment.

Implicit list: finding a free block
First fit

Search the list from the beginning and choose the first free block that fits:

p = start;
while((p < end) && // not passed end
 ((*p & 1) || // already allocated
 (*p <= len))) { // too small
 p = p + (*p & -2); // goto next block (word addressed)
} // (-2 to mask of the flag bit)

Next fit: Like first-fit, but search list starting where previous search finished.

Best fit: Search the list, choose the best free block: fits, with fewest bytes left over

Implicit list: allocating in a free block
Since the space to be allocated might be smaller than the free space, we might want to split the block
into two/multiple blocks:

0
1 0

System Programming and Computer Architecture 19

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if(newsize < oldsize) {
 *(p+newsize) = oldsize - newsize; // set length in remaining part of block
 }
}

Implicit list: freeing a block
The simplest implementation is to only clear the "allocated" flag. But this can lead to false fragmentation.

7.3 Coalescing

Implicit list: coalescing
To overcome the previously mentioned problem of two blocks not being joined when freeing one, we need
to join (coalesce) the free'd block with the next or previous blocks, if they are free. We can do this the
following way:

void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find the next block
 if((*next & 1) == 0) {
 *p = *p + *next; // add to this block if not allocated
 }
}

This helps us with the next block, but what if we need to coalesce with the previous block? For this we
introduce bidirectional coalescing. Now we need to replicate the header at the end of the block (footer).

7.4 Explicit free lists
The idea is to maintain a list of only the free blocks, not all blocks. The next free block could be anywhere,
so we need to store forward and backward pointers, not just sizes. Our blocks are now similar to a linked
list, we still have header and footer, but additionally the second / third block are pointers to the next /
previous free block.

Here we could not allocate a block of size 5, even though we have enough space.

System Programming and Computer Architecture 20

For insertion we can either use LIFO, or we can use address-ordering, both have their own advantages.

Explicit list: summary
Allocating a block is done in linear time in number of free blocks instead of all blocks (as it is in implicit
lists). This is much faster when most of the memory is full. It is slightly more complicated to allocate and
free blocks since we need to splice blocks in and out of the list.

7.5 Segregated free lists
Segregated free lists (seglist) are based on the idea of explicit free lists, with the difference that we have
different free lists for different size classes.

System Programming and Computer Architecture 21

We often have separate classes for each small size, for larger sizes we often have one class for each
power-of-two size. Allocating is pretty straight forward, we simply look for a block with size larger than
what we want. Freeing is also simple, we first coalesce and then place the block on the appropriate list.

7.6 Garbage collection
Garbage collection automaticly reclaims heap-allocated storage that isn’t used anymore - the application
doesn’t have to free memory. There are multiple ways of doing this, we only looked at mark and sweep
collecting.

When we run out of space, we run our garbage collector:

Mark: Start at roots and set mark bit on each reachable block

Sweep: Scan all blocks and free blocks that are not marked

7.7 Memory pitfalls
These are some of the most common mistakes, that are made working with memory allocation.

Dereferencing bad pointers

Reading uninitialized memory

Overwriting memory

Referencing nonexistent variables

Freeing blocks multiple times

Referencing freed blocks

Failing to free blocks → Memory leaks

8. Basic x86 Architecture

System Programming and Computer Architecture 22

8.1 What is an instructions set architecture?
The architecture are the parts of a processor design that one needs to understand to write assembly
code (i.e. instruction set, registers, etc.). The microarchitecture is the implementation of the architecture
(i.e. cache sizes, core frequency, etc.).

Complex Instruction Set (CISC)

Stack-oriented instruction set

Arithmetic instructions can access memeory

Condition codes

Easy for compiler

Smaller code size

Reduced Instruction Set (RISC)

Fewer, simpler instructions

Register-oriented instruction set

No condition codes

Better for optimizing compilers

Run fast with simple chip design

8.3 Basics of machine code

Compiling into assembly
Given the following piece of C code:

int sum(int x, int y) {
 int t = x + y;
 return t;
}

If we run the following command in the terminal gcc -0 -S code.c we can produce the
file code.s containing the assembly code of the above written file.

sum:
 pushq %rbp
 movq %rsp, %rbp
 movl %edi, -20(%rbp)
 movl %esi, -24(%rbp)
 movl -24(%rbp), %eax
 movl -20(%rbp), %edx
 addl %edx, %eax
 movl %eax, -4(%rbp)
 movl -4(%rbp), %eax
 popq %rbp
 ret

Object code
The assembler does:

Translate .s into .o

Binary encoding of each instructions

Nearly-complete image of executable code

The linker does:

Resolves references between files

Combines with static run-time libraries

System Programming and Computer Architecture 23

Machine instruction example
C Code: Add two signed integers

int t = x + y;

Assembly: Add two 4-byte integers

addl 8(%rbp), %eax

Operands:

x: Register %eax

y: Memory M[%rbp+8]

t: Register %eax

Return function value at %eax

0x401046: 03 45 08

3-byte instruction

Stored at address 0x401046

8.4 x86 architecture

System Programming and Computer Architecture 24

Moving data

We can move data with movx Source, Dest where x is in {b, w, l, q}

movq Source, Dest - Move 8-byte "quad word"

movl Source, Dest - Move 4-byte "long word"

movw Source, Dest - Move 2-byte "word"

movb Source, Dest - Move 1-byte "byte"

Furthermore we have the following operand types:

Immediate: Constant integer data, example $0x400 or $-533

Register: One of 16 integer register, example %eax or %r14d

Memory: 1, 2, 4, or 8 consecutive bytes from memory at address given by register, example (%rax)

Simple memory addressing modes:

Normal - (R) - Mem[Reg[R]]

movq (%rcx), %rax

Displacement - D(R) - Mem[Reg[R] + D]

Register R specifies start of memory region and D specifies a offset

movl 8(%ebp), %edx

We can define the complete memory addressing mode in the most general form as follows:

D(Rb, Ri, S) which is somewhat equivalent to Mem[Reg[Rb] + S*Reg[Ri] + D] where

D: Constant displacement of 1, 2, or 4 bytes

Rb: Base register, any of 16 integer registers

Ri: Index register, any, except for %rsp

S: Scale, 1, 2, 4, or 8

Example: swap (without optimizer)

System Programming and Computer Architecture 25

8.6 Condition codes
Condition codes are single bit register that are set by arithmetic operations:

CF Carry Flag (for unsigned) - set if carry out from most significant bit

ZF Zero Flag - result = 0

SF Sign Flag (for signed) - set if negative result

OF Overflow Flag (for signed) - set if two’s complement overflow

These are not set by lea instructions.

Reading Condition Codes

With so called SetX Instructions we can set single bytes based on combinations of condition codes:

9. Compiling C Control Flow

9.1 if-then-else statements

 nt = !Test;
 if (nt) goto Else;
 val = Then-Expr;
 ...
 goto Done;

Else:
 val = Else-Expr;

Done:
 return

System Programming and Computer Architecture 26

9.2 do-while loops

Loop:
 ...
 if (Test) goto Loop:

9.3 while loops

 goto middle;
Loop:
 ...
middle:
 if (Test) goto Loop;

9.4 for loops

Init:
 if(!Test) goto Done;

Loop:
 ...
 Update;
 if(Test) goto Loop;

Done:

9.5 Compact switch statements

Jump table structure

System Programming and Computer Architecture 27

This transfers to the following assembly setup:

switch_eg:
 movq %rdx, %rcx
 cmpq $6, %rdi # x : 6 ?
 ja .L8 # if > goto default
 jmp *.L4(, %rdi, 8) # goto Jtab[x]

We differ between direct and indirect jumping:

Direct: jmp .L8 → Jump target is denoted by label .L8

Indirect: jmp .L4(, %rdi, 8) → Fetch target from effective address .L61 + rdi*8 , must scale by factor 8
(since labels are 64-bit = 8 Bytes on x86_64 machines)

9.6 Sparse switch statements
We look at the following piece of code:

/* Return x/111 if x is multiple && <= 999. -1 otherwise */
int div111(int x) {
 switch(x) {
 case 0: return 0;
 case 111: return 1;
 case 222: return 2;
 case 333: return 3;
 case 444: return 4;
 case 555: return 5;
 case 666: return 6;
 case 777: return 7;
 case 888: return 8;
 case 999: return 9;
 default: return -1;
 }
}

Here it wouldn't be practical to use a jump table, since this would require 1000 entries, of which 990
entries would not be meaningful at all (i.e. would be default cases). The compiler proposes the following
ordering and execution of the above code with if- statements:

System Programming and Computer Architecture 28

9.7 Procedure call and return

x86_64 Stack
A stack is a region of memory managed with stack discipline. Register %rsp (register stack pointer)
contains the lowest stack address, i.e. the address of the "top" element.

Push

In x86_64 we have a pushl Src function:

Fetches operand at Src

Decrements %rsp by 4

Writes operand at address given by %rsp

Pop

The popl Dest does the following:

Reads operand at address %rsp

Increments %rsp by 4

Writes operand to Dest

Procedure control flow
We use a stack to support procedure call and return.

Procedure call: call label

Push return address on stack

Jump to label

System Programming and Computer Architecture 29

Procedure return: ret

Pop address from stack

Jump to address

9.8: x86_64 calling conventions
When a procedure yoo calls a function who , we say that yoo is the caller and who is the callee. If we use
registers for temporary storage, we differ between two conventions:

Caller Save: Caller saves the temporary in its frame before calling

Callee Save: Callee saves the temporary in its frame before using

Registers:

%rax & %eax used without first saving

%rbx & %ebx used, but saved at beginning and restored at end

Arguments passed to functions via registers:

If more than 6 integral parameters are needed, then pass the rest onto the stack

These registers can be used as caller-saved as well

All references to stack frame via stack pointer

Full x86_64 / Linux stack frame

System Programming and Computer Architecture 30

We use the %rbp for cases where we have an unknown amount of arguments.

10. Compiling C Data Structures

10.1 One-dimensional arrays
Following a quick recap of basic data types we have already seen:

Stored and operated on in general integer registers

Signed vs. unsigned depends on instructions used

Stored and operated on in floating point registers

Array allocation

System Programming and Computer Architecture 31

Array access

10.2 Nested arrays
We take a look at the following example:

typedef int zip_dig[5];
#define PCOUNT 4

zip_dig pgh[PCOUNT] =
 {{1, 5, 2, 0, 6},
 {1, 5, 2, 1, 3},
 {1, 5, 2, 1, 7},
 {1, 5, 2, 2, 1}};

Allocated in memory the above defined array looks like this:

We can generalize the idea of multidimensional nested arrays as follows:

System Programming and Computer Architecture 32

10.3 Multi-level arrays
Example:

zip_dig cmu = {1, 5, 2, 1, 3};
zip_dig mit = {0, 2, 1, 3, 9};
zip_dig ucb = {9, 4, 7, 2, 0};

#define UCOUNT 3
int *univ[UCOUNT] = {mit, cmu, ucb};

Variable univ denotes array of 3 elements

Each element is a pointer (8 bytes)

Each pointer points to an array of int's

Element access on multi-level arrays is done with Mem[Mem[univ + 8*index] + 4*dig] . This is different to the
nested array, as the arrays here are not in consequtive memory locations.

System Programming and Computer Architecture 33

10.4 Structures

Concept
A struct is a contiguously-allocated region of memory. One refers to members within structures by
names and members may be of different types.

Accessing strcture member

void set_i(struct rec *r, int val) {
 r -> i = val;
}

set_i:
 movl %esi, (%rdi)
 ret

Generating pointer to structure member

int *find_a(struct rec *r, ind idx) {
 return &r -> a[idx]
}

find_a:
 movslq %esi, %rsi
 leaq 4(%rdi, %rsi, 4), %rax
 ret

Structure referencing

void set_p(struct rec *r) {
 r -> p = &r -> a[r -> i];
}

set_p:
 movslq (%rdi), %rax
 leaq 4(%rdi, %rax, 4), %rax
 movq %rax, 16(%rdi)
 ret

System Programming and Computer Architecture 34

10.5 Alignment
Primitive data types require K bytes → Address must be a multiple of K.

Satisfying alignment with structures

Each structure has an alignment requirement K, where K is the largest alignment of any element. The
initial address and structure length must be multiples of K. Inside the structure, every element has to be
aligned according to its own rules.

10.7 Unions
Unions are allocated according to the largest element.

11. Linking

System Programming and Computer Architecture 35

We consider the following example C program:

int buf[2] = {1, 2};

int main() {
 swap();
 return 0;
}

extern int buf[];

static int *bufp0 = &buf[0];
static int *bufp1;

void swap() {
 int temp;

 bufp1 = &buf[1];
 temp = *bufp0;
 *bufp0 = *bufp1;
 *bufp1 = temp;
}

Programs are translated an linked using a compiler driver gcc -O2 -g -o p main.c swap.c . Linking enables
us to write a program as a collection of smaller source files, rather than one monolithic mass.

What do linkers do?
Step 1: Symbol resolution

Programs define and reference symbols (variables and functions)

Symbols definitions are stored (by the compiler) in a symbol table

Linker associates each symbol reference with exactly one symbol definition

Step 2: Relocation

Merges separate code and data sections into single sections

Relocates symbols from their relative locations in the .o files to their final absolute memory locations
in the executable

Updates all references to these symbols to reflect their new positions

11.1 Object files
We distinguish between three types of object files (modules):

Relocatable object file (.o files)

Contains code and data in form that can be combined with other relocatable object files to form
an executable object file

Each .o file is produced from exactly one source file (.c file)

Executable object file

Contains code and data in a form that can be copied directly into memory and then be executed

Shared object file (.so file)

Special type of relocatable object file that can be loaded into memory and linked dynamically, at
either load time or run-time

Called Dynamic Link Libraries (DLLs) by Windows

The ELF format (executable and linkable format) is a standard binary format for object files. It looks like
follows:

System Programming and Computer Architecture 36

Elf header: Word size, byte ordering, file type,
machine type, etc.

Segment header table: Page size, virtual
addresses memory segments, segment sizes

.text section: Code

.rodata section: Read only data like jump
tables etc.

.data section: Initialized global variables

.bss section: Uninitialized global variables
etc.

.symtab section: Symbol table, procedure and
static variable names, section names and
locations

.rel.text section: Relocation info
for .text section, instructions for modifying

.rel.data section: Relocation info
for .data section

.debug section: Info for symbolic debugging
(gcc -g)

Section header table: Offsets and sizes of
each section

11.2 Linker symbols
We distinguish between three types of linker symbols:

Global symbols

Symbols defined by module m that can be referenced by other modules

e.g. non-static C functions and non-static global variables

External symbols

Global symbols that are referenced by module m but defined by some other module

Local symbols

Symbols that are defined and referenced exclusively by module m

e.g. C functions and variables defined with the static attribute

Local linker symbols are not local program variables! (e.g. temp in the example below)

System Programming and Computer Architecture 37

Relocating code and data
We can see how the relocation of code and data works with our swap-example:

For program symbols we furthermore distinguish
between strong and weak symbols:

Strong: procedures and initialized globals

Weak: uninitialized globals

System Programming and Computer Architecture 38

The linker's symbol rules
The linker has to check if there are multiple symbols with the same name.

1. Multiple strong symbols are not allowed

Each item can be defined only once

Otherwise we get a linker error

2. Given a strong symbol and multiple weak symbols, the linker chooses the strong symbol

References to weak symbols resolve to the strong symbol

3. If there are multiple weak symbols, the linkers picks an arbitrary one

Can override this with gcc -fno -common

This example shows some interesting behaviour. Since int x = 7 is a strong symbol, we will allocate 4-
byte of memory. Now if we would try to write to x from p2 , we would try to write a double ! Since we only
allocated 4-bytes and a double takes 8-bytes, we would overwrite the following symbol, in this case y .

11.3 Static libraries
We can describe static libraries (.a archive files) the following way:

Concatenate related relocatable object files into a single file with an index (called an archive)

Enhance linker so that it tries to resolve unresolved external references by looking for the symbols in
one or more archives

If an archive member file resolves a reference, link it into the executable

It is important that command line order matters when compiling a file. Always put the static libaries at the
end of the command!

Commonly-used libraries
libc.a : the C standard library

libm.a : the C math library

Loading executable object files

System Programming and Computer Architecture 39

11.4 Shared libraries
Static libraries have the following disadvantages:

Duplication in the stored executable

Duplication in the running executables

Minor bug fixes of system libraries require each application to explicitly relink

The solution to the above mentioned problems are shared libraries:

Object files that contain code and data that are loaded and linked into an application dynamically, at
either load-time or run-time

Also called: dynamic link libraries (DLLs) or .so files

We can either have dynamic linking when the executable gets loaded (load-time linking) or the linking
can also occure after the program has begun (run-time linking).

Such shared libaries, routines can be shared by multiple processes! E.g. printf() needs to be loaded
once and not by every program running. This is the reasons that mostly the standard C library (libc.so) is
dynamically linked.

❗ By default gcc / clang includes some standard C libaries, therefore we do not have to include it
in the command line.

12. Code Vulnerabilities

System Programming and Computer Architecture 40

12.1 Worms and Viruses
A Worm is a program that:

Can run by itself

Can propagate a fully working version of itself to other computers

A Virus is a code that:

Adds itself to other programs

Cannot run independently

→ Both are usually designed to spread among computers and to wreak havoc.

12.2 Stack overflow bugs
Consider the following code of gets() :

The problem here is that there is no way to specify
a limit on number of characters to read (buffer
overflow).

❗ Buffer overflow bugs allow remote
machines to execute arbitrary code on
victim machines. To achive this we load
such much data into the buffer until we
overwrite the return address, allowing
us to decide where to jump.

/* Get string from stdin */
char *gets(char *dest) {
 int c = getchar();
 char *p = dest;
 while(c != EOF && c != '\\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\\0';
 return dest;
}

12.3 Stopping overrun bugs
We can avoid overflow vulnerabilities by using functions that limit string lengths.

fgets() instead of gets()

strncpy() instead of strcpy()

System-level protections
Compiler-inserted checks on functions

Randomized stack offsets: At the start of a program, allocate a random amount of space on stack, this
makes it difficult to predict the beginning of inserted code.

Nonexecutable code segments, marking regions of memory as read-only or writeable.

12.4 Another example: XDR
The SUN XDR library is a widely used library for transferring data between machines (e.g. for Network
File Systems). A common use is to send an array of blocks to different machines:

System Programming and Computer Architecture 41

Notice that int ele_cnt is signed, but size_t ele_size is unsigned. What if, on a 32-bit machine, we have:

ele_cnt =

ele_size =

We will overflow the 32-bit limit and only allocate 1 byte, which in the end results in us overwriting a lot of
data!

13. Floating Point

13.1 Representing floating-point numbers

Fractional binary numbers
We represent rational numbers as:

We make the following observations:

Dividing by 2 can be done by shifting to the
right

Multiplying by 2 can be done by shifting to the
left

We can easily represent numbers of the form , but other rational numbers have repeating bit
representations and can’t be represented accuratly.

IEEE Floating Point
The IEEE Standard 754 was established in 1985 as an uniform standard for floating point arithmetic.

2 +20 1

4096 = 212

b ⋅
k=−j

∑
j

k 2k

x/2k

System Programming and Computer Architecture 42

Floating point representation
Numerical Form:

Sign bit determines whether the number is negative or positive

Significand is normally a fractional value in the range

Exponent weights value by power of two

Encoding

MSB is the sign bit

exp field encodes (but is not actually equal to)

frac field encodes (but is not actually equal to)

13.2 Types of IEEE floating-point numbers

Precisions

Floating point in C
C99 gruarantees two levels:

float → single precisions

double → double precisions

long double → can be double, extended, or quadruple precision

(−1) ∗S M ∗ 2E

S

M [1.0, 2.0)

E

s S

E E

M M

There are many more different types of representations, used for different applications.

System Programming and Computer Architecture 43

The exponent is coded as biased values: Exp - Bias

Exp: unsigned value exp

Bias , where is the number of exponent bits

Single precision: 127 (Exp: 1...254, E = -126...127)

Double precision: 1023 (Exp: 1...2046, E: -1022...1023)

The significand is coded with implied leading 1:

Normalized encoding example (exp 0)

Denormalized values
Condition: exp 000...0

Exponent value is Bias

Significand is coded with implied leading 0:

Special values
Condition: exp 111...1

frac 000...0 → ∞

frac 000...0 → NaN

❗ This is the best possible representation for floating point numbers we can get, if we want more
precision we end up with a lot more storage space used and way longer computation times.

13.3 Floating-point ranges

E =

= 2 −e−1 1 e

M = 1.xxx...x2

=

=

E = − +1

M = 0.xxx..x2

=

=

=

System Programming and Computer Architecture 44

Looking at a tiny 6-bit IEEE-like format with 3 exponent bits and 2 fraction bits, we see the following
distribution, where it becomes denser towards zero.

13.4 Floating-point rounding
The standard rounding mode in IEEE is nearest even. But there are also other rounding modes,
including: towards zero, round down, round up.

In binary even is when the least significant bit is 0. We round up if the bits to the right of the rounding
position are .

Creating a floating point number
We have the following steps:

1. Normalize to have leading 1

100...2

System Programming and Computer Architecture 45

2. Round to fit within fraction

3. Postnormalize to deal with effects of rounding

We examine the following example:

For rounding we divide the fraction bits into four different types:

-bits: the surviving bits

-bit (Guard): the last surviving bit

-bit (Round): the first bit to be removed

-bit (Sticky): the of the remaining bits

We the follow the round up conditions:

 round to even

B

G

R

S OR

R = 1 AND S = 1 ⇒> 0.5

G = 1 AND R = 1 AND S = 0 ⇒

System Programming and Computer Architecture 46

Rounding now might have caused overflow, if this is the case we need to postnomalize. This means we
shift once to the right and increment the exponent by 1.

13.5 Floating-point addition and multiplication

Floating-point multiplication
We consider the following multiplication:

The exact result of this multiplication is given by where:

Sign

Significand

Exponent

Possibly occuring problems can be fixed the following way:

If , shift to the right and increment

If is out of range, we have an overflow

Round to fit frac precision

Floating-point addition
W.L.O.G. we assume .

When adding two floating-point numbers, both the sign and the significand are given by signed
aligned addition. The exponent is equal to .

(−1) M 2 ⋅S1
1

E1 (−1) M 2S2
2

E2

(−1) M2S E

S = S1 S2 ̂

M =M ∗1 M2

E = E +1 E2

M ≥ 2 M E

E

M

E >1 E2

S M

E E1

System Programming and Computer Architecture 47

Possibly occuring problems can be fixed the following way:

If , shift to the right, increment

If , shift to the left positions and decrement by

If is out of range we have an overflow

Round to fit the frac precision

13.7 SSE floating point
SIMD (single-instructiom, multiple data) vector instructions allow for parallel operation on small (length 2-
8) vectors of integers or floats. Floating point vector instructions are available with Intel's SSE (streaming
SIMD extensions) family.

SSE3 register
All SSE3 registers are caller saved and 128 bit (= 2 doubles = 4 singles) wide. %xmm0 is used for floating
point return values.

Those registers do have different data types and associated instructions:

M ≥ 2 M E

M < 1 M k E k

E

M

System Programming and Computer Architecture 48

SSE3 basic instructions
We will focuse on scalar operations.

x86-64 FP code example
The task is to compute the inner product of two vectors.

float ipf(float x[], float y[], int n) {
 int i;
 float result = 0.0;

 for(i = 0; i < n: i++) {
 result += x[i]*y[i];
 }
 return result;
}

System Programming and Computer Architecture 49

ipf:
 xorps %xmm1, %xmm1 # result = 0.0
 xorl %ecx, %ecx # i = 0
 jmp .L8 # goto middle
.L10: # loop:
 movslq %ecx, %rax # icpy = i
 incl %ecx # i++
 movss (%rsi, %rax, 4), %xmm0 # t = y[icpy]
 mulss (%rdi, %rax, 4), %xmm0 # t *= x[icpy]
 addss %xmm0, %xmm1 # result += t
.L8: # middle
 cmpl %edx, %ecx # i:n
 jl .L10 # if <, goto loop
 movaps %xmm1, %xmm0 # return result
 ret

Constants

double cel2fahr(double temp) {
 return 1.8 * temp + 32.0;
}

cel2fahr:
 mulsd .LC2(%rip), %xmm0 # Multiply by 1.8
 addsd .LC4(%rip), %xmm0 # Add 32.0
 ret

.LC2:
 .long 3435973837 # Low order four bytes of 1.8
 .long 1073532108 # High order four bytes of 1.8
.LC4:
 .long 0 # Low order four bytes of 32.0
 .long 1077936128 # High order four bytes of 32.0

To check that corresponds to we first convert the number to hexadecimal:

We have exponent bits and 1 sign bit. The first 12 bits correspond to the first three digits of the hex
format, and since the sign bit is 0, corresponds to the exponential. The bias is given by

 and , we therefore have an exponential of . Assuming the leading for
normalized decimals:

14. Optimizing Compilers
The reality is that runtime performance is a lot more than asymptotic complexit! One can easily loose
100x in runtime or even more. To get the most out of our code we have to be familiar with the compiler
and what it does.

gcc can optimize code by giving it the specific -OX -flag. Good choices for gcc are:

O0 (no optimization!), -O2, -O3, -march=xxx (to specify the architecture), -m64 (to specify 64 bits)

1077936128 32.0

1077936128 ⇒ 0x40400000

11
404 2 −e−1 1 =

1023 0x404 = 1028 5 1

1077936128 ⇒ 1 ⋅ 2⁵ = 32

System Programming and Computer Architecture 50

One might also wants to try different compilers, icc is often faster than gcc .

14.1 Code motion and precomputation
The idea is to reduce the frequency with which a computation is performed. This is sometimes also
called precomputation. This is something that the compiler does for us!

The right one is better than the left one:

long j;
for(j = 0; j < n; j++) {
 a[n*i+j] = b[j];
}

long j;
int ni = n*i;
for(j = 0; j < n; j++) {
 a[ni + j] = b[j];
}

14.2 Strength reduction
Another thing that the compiler does is strength reduction. For example in the following code we can
replace a multiplication by an addition:

for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++) {
 a[n*i + j] = b[j];
 }
}

int ni = 0;
for(i = 0; i < n; i++) {
 for(j = 0; j < n; j++) {
 a[ni + j] = b[j];
 }
 ni += n;
}

The key idea is to replace costly operations with simpler ones. Another frequent example would be the
replacement of divisions or mutliplications by shifts.

14.3 Common subexpressions
Following an example of sharing common subexpressions:

up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

int inj = i+n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

This reduces the amount of multiplications vom 3 (Before) to just 1 (After)! This is something that we can
achieve with the compiler flag -O1, but keep in mind the compilar can eliminate some common
subexpressions, but not all.

System Programming and Computer Architecture 51

14.4 Optimization blocker: procedure calls

void lower(char *s) {
 int i;
 for(i = 0; i < strlen(s); i++) {
 if(s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

When we run the above code we observe that it's runtime is quadratic, i.e. in . But we only have
one loop, so why is that?

The problem is that strlen(s) is called in every iteration and the prcoedure itself is in !

A better version therefore would be:

void lower2(char *s) {
 int i;
 int len = strlen(s);
 for(i = 0; i < len; i++) {
 if(s[i] >= 'A' && s[i] <= 'Z') {
 s[i] -= ('A' - 'a');
 }
 }
}

The compiler does not optimize this by himself! This is caused by the fact, that procedure calls can have
side effect, that are not known to the compiler.

14.5 Optimization blocker: memory aliasing
Memory aliasing describes the situation when multiple memory references refer to the same location in
memory.

We consider the following example where we sum up the rows of an matrix into a vector of length
.

void sum_rows1(double *a. double *b, long n) {
 long i, j;
 for(i = 0; i < n; i++) {
 b[i] = 0;
 for(j = 0; j < n; j++) {
 b[i] += a[i*n + j];
 }
 }
}

sum_rows1 inner loop
.L53:
 addsd (%rcx), %xmm0
 addq $8, %rcx
 decq %rax
 movsd %xmm0, (%rsi, %r8, 8)
 jne .L53

O(n)2

O(n)

n× n

n

System Programming and Computer Architecture 52

The problem/observation here is that the code updates b[i] on every iteration. The compiler assumes
possible side effect and therefore will not be optimizing this away.

How to remove aliasing
The key idea/solution is to use scalar replacement, i.e. copy array elements that are reused
into temporary variables.

void sum_rows2(double *a, double *b, long n) {
 long i, j;
 for(i = 0; i < n; i++) {
 double val = 0;
 for(j = 0; j < n; j++) {
 val += a[i*n + j];
 }
 b[i] = val;
 }
}

.L66:
 addsd (%rcx), %xmm0
 addq $8, %rcx
 decq %rax
 jne .L66

14.6 Blocking and unrolling
We look at matrix multiplication :

void mmm(double *a, double *b, double *c, int n} {
 int i, j, k;
 for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 for(int k = 0; k < n; k++)
 c[i*n+j] += a[i*n+k] * b[k*n+j];
}

We should be thinking about data locality. Data that gets reused should still be in the cache! In this
example we have a lot of data that does not get reused.

Blocking (also called tiling) is partial unrolling of the loop. This assumes associativity, something the
compiler will never do. Optimizing this we end up with this rather complicated code:

C = A ∗ B + C

System Programming and Computer Architecture 53

Moral: Help the compiler to help you
Turn on optimization

Remove obstacles to optimizer

Do it yourself if necessary

15. Architecture and Optimization
The goal of this chapter is to understand how we can improve the performance of our code beyond the
compiler optimizations from chapter 14.

During this chapter we are going to use the following structure and function for benchmarks:

/* data structure for vectors */
struct vect {
 size_t len;
 data_t *data;
};

/* retrieve vector element and store at val */
int get_vec_element(struct vec* v, size_t idx, dat
a_t *val) {
 if(idx >= v -> len) {
 return 0;
 }
 *val = v -> data[idx];
 return 1;
}

The actual benchmark we are going to run looks as follows:

void combine1(struct vec *v, data_t *dest) {
 long int i;
 *dest = IDENT;
 for(i = 0; i < vec_length(v); i++) {
 data_t val;
 get_vec_element(v, i, &val);
 *dest = *dest OP val;
 }
}

We are going to do two different benchmarks, i.e. we are going to run the benchmark with the following
two pairs of IDENT and OP :

0 / + (addition)

System Programming and Computer Architecture 54

1 / * (multiplication)

Cycle per Element (CPE)
The CPE is a way to express the performance of a program that operates on vectors or lists.

The execution time can then be given by , where is equal to the slope of
the graph and the is equal to the -intercept. The first benchmark yields the following :

Basic Optimizations
1. Move vec_length out of the loop

2. Avoid bounds check on each
cycle

3. Accumulate in temporary

void combine4(struct vec *v, data_t *dest) {
 long i;
 long length = vec_length(v);
 data_t *d = get_vec_start();
 data_t t = IDENT;
 for(i = 0; i < length; i++) {
 t = t OP d[i];
 }
 *dest = t;
}

From ths optimization we get the following :

CPE ⋅ n+ overhead CPE
overhead y CPE

CPE

System Programming and Computer Architecture 55

Already a massive improvement! But can we do better?

15.1 A bit about modern processor design

Such a sequential processor is slow, this is due to the fact that a signal has to propagate through every
stage in one cycle. The clock therefore can’t go very fast and single hardware units are only active for a
fraction of the cycle.

System Programming and Computer Architecture 56

Pipelined processors are already a lot fast, but they introduce data / control hazards that need to be dealt
with.

For processor we can estimate the performance with the program execution time, which is euqal to
, where:

 is the instruction count

 are the cycles per instruciton ()

 is the clock cylce time ()

Superscalar processor

IC ⋅CPI ⋅CCT

IC

CPI 1/IPC

CCT 1/Frequency

System Programming and Computer Architecture 57

A superscalar processor can issue and execute multiple instructions in one cycle. The instructions are
retrieved from a sequential instruction stream and are usually scheduled dynamically. This has the
benefit, that without any programming effort, superscalar processor can take advantage of the instruction
level parallelism that most programs have.

15.2 Superscalar processor performance

System Programming and Computer Architecture 58

Recall: Data hazards
We distinguish the following types of data hazard:

Read after Write (RAW)

Write after Write (WAW)

Write after Read (WAR)

The two last types of data hazards can be avoided with register renaming.

What does this mean for our previous example?
We can state the following about performance bound:

Performance is latency bound when operations must execute sequentially.

Performance is throughput bound when operations can execute in parallel. (typically faster)

Comparing our benchmarked CPE with an Intel Haswell as an example, we can see that we, in most
cases, reached our latency bound.

This is the case because we execute all our computations in the for-loop sequentially. What happens if we
do a 2x1 loop unrolling?

void unroll2a_combine(struct vec *v, data_t *dest) {
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x = IDENT;

System Programming and Computer Architecture 59

 long i;
 /* combine 2 elements at a time */
 for(i = 0; i < limit; i+=2) {
 x = (x OP d[i]) OP d[i+1];
 }
 /* finish any remaining elements */
 for(; i < length; i++) {
 x = x OP d[i];
 }
 *dest = x;
}

This only improves integer addition, since the other operations are still sequentialy dependent.

15.3 Reassociation
Lastly we take a lookt a 2x2 loop unrolling:

void unroll22_combine(struct vec *v, data_t *dest) {
 long length = vec_length(v);
 long limit = length-1;
 data_t *d = get_vec_start(v);
 data_t x0 = IDENT;
 data_t x1 = IDENT;
 long i;
 /* combine 2 elements at a time */
 for(i = 0; i < limit; i+=2) {
 x0 = xo OP d[i];
 x1 = x1 OP d[i+1];
 }
 /* finish any remaining elements */
 for(; i < length; i++) {
 x0 = x0 OP d[i];
 }
 *dest = x0 OP x1;
}

This can change the result for floating point numbers. This helps to break up the sequential dependencies
that we encountered bevor. These changes yields the following performance:

System Programming and Computer Architecture 60

15.4 Combining multiple accumulators and unrolling
The idea is that we can unroll to any degree and accumulate results in parallel, where has to be a
multiple of . When doing this we will encounter the limitations of diminishing return with growing
overhead. With some trial and error we can find the sweet spot and find up to more performance
compared to the original, unoptimized code. Using vector instructions we can imrove this number again by
a drastic factor.

16. Caches
Historically the time it takes to load data from memory to the processor has always been a bottleneck.
The solution for this problem is caches.

General cache concept

L K L

K

42×

System Programming and Computer Architecture 61

Cache performance metrics
We have three different metrics for cache performance:

Miss rate: Fraction of memory references not found in cache

Hit time: Time to deliver a line in the cache to the processor. Typical numbers are:

1-2 cycles for L1

5-20 cycles for L2

Miss penalty: Additional time required because of a miss, typically 50-200 cycles for main memory.

When looking at these numbers we see that there is a huge difference between hit and miss rate, 99% hit
rate is twice as good as 97%!

Types of cache misses
We differ between different types of cache misses:

Cold (compulsory) miss: occurs on first access to a block

Conflict miss: caches limit the placement to a small subset of available slots

Capacity miss: occurs if the set of active cache blocks (i.e. the working set) is larger than the cache

Coherency miss: occure in multiprocessor systems - see later in the course

16.1 Cache organization

1 − hit rate

System Programming and Computer Architecture 62

16.2 Cache reads
For a cache read we performe the following steps:

1. Locate the set

2. Check if any line in the set has a matching tag

3. If yes and the line is valid we have a cache hit

4. Locate the datat starting at the offset

There are different types of caches:

Direct mapped cache (E = 1): only one line per set

-way set-associavtike cache (E =): lines per set

16.3 The memory hierarchy

k k k

System Programming and Computer Architecture 63

Cache writes
What should we do on a write-hit? We have two solutions:

Write-through: write immediately to memory

Write-back: introduce a dirty bit, write to memory when the line is evicted

Similar on a write-miss, we can either directly write to memory (no-write-allocate) or load the block into the
cache (write-allocate).

16.4 Cache optimizations
Programs tend to use data and instructions with addresses near or equal to those they have used
recently. We can therefore make use of the following two things:

Temporal locality: Recently referenced items are likely to be referenced again in the near future.

Spatial locality: Items with nearby addresses tend to be referenced close together in time.

16.5 Blocking
Blocking and loop unrolling, as seen in previous chapters, can help to reduce chase misse, by exploiting
temporal and spatial locality.

17. Exceptions
In general, processors only do one thing:

From startup to shutdown, a CPU simply reads and executes a sequence of instructions, one at a
time.

This sequence of instructions is the CPU's control flow.

Up to now we have only seen two mechanisms for changing the control flow:

Jumps and branches

Call and return

We now introduce exceptional control flow. An exception is a transfer of control to the OS in response to
some event (i.e. change in processor state).

System Programming and Computer Architecture 64

We can classify exceptions into a few different categories:

A synchronous exception occurs as a result of executing an instruction.

An asynchronous exception occurs as a result of events that are external to the processor.

17.1 Exception vectors and kernel mode
At boot time, the OS allocates and initializes the exception table. Each type of event has a unique
exception number with which we can index into the exception table (aka. interrupt vector).

Exceptions cause a switch to the kernel mode (supervisor mode). The kernel mode has some special
things, it can access system state and has many more privileges.

k

System Programming and Computer Architecture 65

17.2 Synchronous exceptions
We categorise synchronous exceptions into the following categories:

Traps: Intentional; Example: system calls, breakpoint traps; Returns control to "next" instruction

Faults: Unintentional but possibly recoverable; Example: page faults, protection faults, floating point
exceptions; Either re-executes faulting instruction or aborts

Aborts: Unintentional and unrecoverable; Examples: parity error, machine check; Aborts the current
program

17.3 Asynchronous exceptions
Asynchronous exceptions (interrupts) are caused by events external to the processor. Common
examples are:

I/O interrupts

Hard reset interrupt

Soft reset interrupt

Basic x86 interrupts
In x86 we have two interrupt pins:

INTR: interrupt request

NMI: non-maskable interrupt

If NMI is asserted, the CPU completes the current instruction and then issues the exception. This cannot
be disabled by the processor.

If INTR is asserted, an interrupt request is issued. It can be disabled by the CPU. If it is enabled, we
complete the current instruction, and then:

1. CPU acknowledges via the ITNA pin.

2. The interrupt vector is then supplied to the CPU via the data bus.

3. The CPU issues the exception from the vector.

17.4 Interrupt controllers
To handle multiple errors at the same time from different devices, we use so called programmable
interrupt controllers (PIC):

System Programming and Computer Architecture 66

The PIC does:

Map physical interrupt pins to interrupt vectos

Buffer simultaneous interrupts

Prioritize interrupts

Selectively masks any individual device's interrupts

18. Virtual Memory

18.1 Recap: Address Translation

Address translation with a page table

System Programming and Computer Architecture 67

18.2 Uses of virtual memory
The main reasons for using virtual memory are:

Efficient use of limited main memory, only active part of virtual address space is kept in memory

Simplifies memory management for programmers (Each process gets the same full, private linear
address space)

Isolates address spaces (One process can't interfere with another's memory)

Problems of virtual memory
Problem 1: Limited physical memory capacity

64-bit addresses allow for 16 Exabyte of storage, but physical memory is usually only a few
Gigabytes big.

Why does this work? Because of locality. At any point in time, programs tend to acess a set of active
virtual pages called the working set.

Problem 2: Memory management

Each process has a stack , heap , .text , etc. and the computer needs to somehow manage what
data goes where in the physical main memory.

Each process has its own virtual address space which is viewed as a simple linear array. A mapping
function then scatters those addresses through physical memory.

One can share code and data among different processes by simply mapping virtual pages to the same
physical page.

Problem 3: Protection

Different processes might access the same physical page.

System Programming and Computer Architecture 68

We extend the page table entries with permission bits. The page fault handler checks these before
remapping and if it's violated, sends a segmentation fault.

18.3 The address translation process

Page hit

Page fault

System Programming and Computer Architecture 69

18.4 Translation lookaside buffers
Page table entries (PTEs) are cached in L1 like any other memory word. This means that PTEs might be
evicted by other data references. The solution to this problem is the translation lookaside buffer (TLB):

Small hardware cache in MMU

Maps virtual page numbers to physical page numbers

Contains complete page table entries for small number of pages

TLB hit

TLB miss

System Programming and Computer Architecture 70

18.6 Multi-level page tables
Given 4KB page size, 48-bit address space and 8-byte page table entry (PTE). How big of a page table
do we need?

Linear page table size
We have a 48-bit () address space and each page has a size of 4KB , we therefore need

 page table entries. Since each entry is 8 bytes () bytes big, we need
bytes of space which equals to . This is a problem! To circumvent this, we introduce multi-level
page tables.

2-level page table hierarchy

248 (2)12

2 /248 12 23 2 /2 ⋅48 12 2 =3 239

512 GB

System Programming and Computer Architecture 71

k-lebel page table hierarchy

We notice that the VPO is the same as the PPO, if we now use this address to access the cache and the
CI is part of the PPO, we can already start the process before the address translation is finished. But this
depends on the addressing scheme of the cache.

18.9 Caches revisited
We differ between four cache addressing schemes:

Virtually indexed, virtually tagged (VV)

Virtually indexed, physically tagged (VP)

Physically indexed, virtually tagged (PV) (not covered)

Physically indexed, physically tagged (PP)

Virtually indexed, virtually tagged

System Programming and Computer Architecture 72

We search the cache and do the address translation parallel. Virtually indexed cache has the following
issues:

Homonyms: same names for different data

VA used for indexing is context dependent, the same VA refers to different PAs

Homonyms can be prevented by flushing the cache on a context switch, forcing non-overlapping
address-space layouts or tagging the VA with the address-space ID

Virtually indexed, physically tagged

System Programming and Computer Architecture 73

Physically indexed, physically tagged

Only uses physical addresses

Translation must complete before cache access can start

Typically used off-core

Slowest access time

System Programming and Computer Architecture 74

Easy to manage (no homonyms or synonyms)

Write buffers

We want to avoid stalling the CPU for memory writes. We introduce a FIFO queue to buffer writes. When
we want to read a address that has a yet completed write, we can directly read out of the write buffer.

18.10 Large pages
For 4KB pages we have seen the following x86-64 setting:

System Programming and Computer Architecture 75

But what if we need larger pages? (We can save some memory if we have larger data chunks and it’s
easier on the TLB). We define a large page as a page of size 2MB. We can reuse the "old" hardware to
support those pages in the following way:

The same idea applies to huge pages of size 1GB.

System Programming and Computer Architecture 76

19. Multiprocessing and Multicore
Symmetric multiprocessing (SMP)
Due to the power wall + ILP wall + memory wall, we are at the end of the road for serial hardware. A
solution for this are multicore processors.

The first idea of multiprocessing is to attach multiple processors to the same bus (but each processor still
has its own cache), so calles shared memory multiprocessors:

19.1 Consistency and Coherence
With several processors, memory can change under a cache. This fact leads to two important concepts:

Coherency: Values in caches all match each other, processors all see a coherent view of memory.

Consistency: The order in which changes to memory are seen by different processors.

Cache coherency
Most CPU cores on a modern machine are cache coherent. They behave as if all cores are accessing a
single memory array.

The big advantage of this is the ease of programming, i.e. shared-memory programming models work.
But they are complex to implement at memory is slower as a result.

Memory consistency
Terminology

Program order: order in which a program on a processor apperas to issue reads and writes

Refers only to local reads and writes

Visibility order: oder in which all reads and writes are seen by one or more processors

Refers to all operations in the machine

19.2 Sequential consistency
1. Operations from a single processor appear to all other processors in program order

2. Every processor's visibility order is the same interleaving of all the program orders

System Programming and Computer Architecture 77

This has the following requirements:

Each processor issues memory operations in program order

RAM totally orders all operations

Memory operations are globally atomic

19.3 Cache coherence with snooping
Cache snoops/listens into on reads and writes from other processors. If a line is valid in local cache, we
initiate a remote write to line, i.e. invalidate local line.

Cache lines can now be dirty/modified. This requires a cache coherency protocol.

The simplest form is MSI:

Each line has 3 states: Modified, Shared, Invalid

A line can only be dirty in one cache

The cache logic must respond to processor reads and writes aswell as remote bus reads and writes.

MSI state machine: local processor transitions

MSI state machine: remote snooped transitions

System Programming and Computer Architecture 78

MSI state machine: all transitions

MSI assumes that we can distinguish remote processor read and writes misses, this is not allways the
case! Another problem is that we have unnecessary bus messages.

System Programming and Computer Architecture 79

19.4 The MESI cache coherence protocol
Compared to the MSI protocol, the MESI protocol adds a new line state:

Modified: This is the only copy, it's dirty

Exclusive: This is the only copy, it's clean

Shared: This might be one of several copies, all are clean

Invalid: This is one of several copies and not valid

It basically allows us to be sure that one processor is the only owner of a cache block. We introduced the
HIT signal, informing another processor that its cache block is present in local cache. The protocol
furthermore adds a new bus signal RdX, which corresponds to a read exclusive.

MESI state machine

Intel and AMD have their own similar protocols MESIF / MOESI that have another state, but these were
mentioned only shortly.

19.5 Relaxing sequential consistency
There are many different ways of relaxing sequential consistency. Some of them are:

Write-to-read: later reads can bypass earlier writes

Write-to-write: later writes can bypass earlier writes

Break write atomicity (no single visibility order)

Weak ordering: no implicit order guaranteed at all

Following that we need some kind of synchronization at chosen points in our program. Therefore x86
provides explicit synchronization instructions:

System Programming and Computer Architecture 80

lfence (load fence)

sfence (store fence)

mfence (memory fence)

Processor Consistency
One of the most common way of relaxation is the processor consistency. It is standard for 64-bit x86
processors, sometimes also called Total Store Ordering (TSO). It implements the write-to-read relaxation:

All processors see writes from one processor in the order they were issued

Processors can se different interleavings of writes from different processors

There are many more consistency models for different processors. Even portable languages like Java
have to define their own memory model.

19.6 Barriers and fences
It generally holds that the weaker the consistency model is, the faster & cheaper it goes into hardware.
We have seen that the visibility order is essential for correct functioning of some algorithms, but is really
difficult to guarantee with many compilers and memory models.

A solution to this problem are so-called barriers (also named fences):

Compiler barriers: prevents the compiler from reordering state ments

Memory barriers: prevents the CPU from reordering instructions

Memory barriers on x86
One x86 we have the mfence instruction which prevents the CPU from reordering any loads or stores past
it:

19.7 Multicore synchronization: Test-and-Set

System Programming and Computer Architecture 81

There are two ways to synchronize across processors:

Atomic operations on shared memory

Test-and-set, compare-and-swap

Interprocessor interrupts (IPIs)

Invoke interrupt handler on remote CPU

Very slow (500+ cycles), often avoided except in the OS

Test-And-Set (TAS)
TAS is one of the simplest non-trivial atomic operations. We can for example use TAS to acquire a mutex:

void acquire(int *lock) {
 while(TAS(lock) == 1);
}

This is also called a spinlock: We keep trying in a tight loop until we can acquire it. Releasing a spinlock
is simple:

void release(int *lock) {
 *lock = 0;
}

It turns out that TAS can be very expensive. The memory must be locked while a long operation occurs.
Also it must do a read, followed by a write, while no one else can access the memory.

Test and Test-And-Set

void acquire(int *lock) {
 do {
 while(*lock == 1);
 } while(TAS(lock) == 1);
}

This way, most of the spinning cycles are replaced with simple reads (and not both read and write).

19.8 Compare-and-Swap

CAS(location, old, new) atomically {
 1. Load location into value
 2. If value == "old" then store "new" to location
 3. Return value
}

Some interesting features of CAS are:

It's theoretically more powerful than TAS, FAA, etc.

It can implement almost all wait-free data structures

CAS follows a general structure:

System Programming and Computer Architecture 82

readers all read the same datastructure

Writers take a copy, modify it, then write back the copy

Old version is deleted when all the readers are finished

CAS for lock-free update

System Programming and Computer Architecture 83

The ABA problem
1. CPU A reads value as x

2. CPU B writes y to value

3. CPU B writes x to value

4. CPU A reads value as x → concludes that nothing has changed

A simple solution to this problem is to make sure that the value always changes, for example by including
a counter.

19.9 Simultaneous multithreading
Cache-coherent SMP still has memory as a bottleneck, all accesses to main memory stall the processor.

SMT or Hyperthreading
We can label instructions in hardware with their thread id. This way we have multiple independent
instruction streams. We differ between two types of multi-threading:

Fine-grained multithreading: select from threads on a per-instruction basis

Coarse-grained multithreading: switch between threads on memory stall

Hyperthreading can be unpredictable in term of performance improvements. We can either have
performance improvements or a decrease in performance!

19.10 Non-Uniform Memory Access (NUMA)
We have seen the following SMP architecture:

System Programming and Computer Architecture 84

From what we have seen until now, we can end up with many coherency messages on the bus. In this
part we want to look at solutions for this. We can now introduce a distributed memory
architecture, where RAM is shared between smaller groups of CPUs and we can send messages in
these local groups:

Non-Uniform Memory Access (NUMA)

System Programming and Computer Architecture 85

NUMA does:

Remove bottleneck: Multiple, independent memory banks, processors have independent paths to
memory

Interconnect is not a bus anymore, it's a network link: carries messages between nodes (usually
processor sockets)

All memory is globally addressable

19.11 NUMA cache coherence
One problem of NUMA is that one cannot snoop one the bus anymore, since it isn't a bus.

Solution 1: Bus emulation

Similar to snooping

Each node sends a message to all other nodes ("Read exclusive")

Waits for a reply from all other nodes

Solution 2: Cache directory

The idea is to augment each node's local memory with a cache directory. Then each "home node"
maintains the set of nodes that may have a line. Now if we modify data in a cache line, we only need to
notify the locations where this cache line is present.

System Programming and Computer Architecture 86

19.13 Optimization example: MSC locks
MSC locks are possibly the best known locking system for multiprocessors. They have excellent cache
properties:

Only spin on local data

Only one processor wakes up on release()

A general problem for locks is that a cache line containing a lock is a hot spot. It is continuously
invalidated as every processor tries to acquire it. The solution to this problem is, that when acquiring, a
processor enqueues itself on a list of waiting processors, and spins only on its own entry in the list. When
releasing, only the next processor is awakened.

struct qnode {
 struct qnode *next;
 int locked;
typedef struct qnode *lock_t;

void acquire(lock_t *lock, struct qnode *local) {
 local->next = NULL;
 struct qnode *prev = XCHG(lock, local);
 if (prev) { // queue was non-empty
 local->locked = 1;
 prev->next = local;
 while (local->locked); // spin
 }
}

void release (lock_t *lock, struct qnode *local) {
 if (local->next == NULL) {
 if (CAS(lock, local, NULL)) { return; }
 while (local->next == NULL); // spin
 }
 local->next->locked = 0;
}

System Programming and Computer Architecture 87

20. Devices
Specifically, to an OS programmer, a device is:

A piece of hardware visible from software

Occupies some location on a bus

Has a set of registers

Is a source of interrupts

Something that may initiate a Direct Memory Access transfer

20.1 Device Registers

Registers
A CPU can load and store device registers. Registers are memory mapped, i.e. they appear as memory
locations and can therefore be accessed using loads and stores (movb , movw , movl , mowq). There are
also I/O instructions. Those are different 16 bit address spaces for older I/O devices.

It is important to note that register are not memory, they don't behave like RAM:

Register contents may change without writes from CPU (status words, incoming data)

Writes to registers are used to trigger actions (sending data, resetting state machines)

We don’t what that read / writes get “optimized” away. Often, registers are sets of bitfields. The
definitions of those fields is usually given in a datasheet. When all data passes through the CPU, i.e. it
explicitly reads and writes, we call it Programmed/IO, this is not very efficient!

20.2 Dealing with caches
Reads can't come from the cache, because if the register value changes, the cache becomes
inconsistent. Write-back caches and write buffers cause problems since you don't know when the line will
be written.

Therefore, device register access must bypass the cache. This is handled in the MMU where the
corresponding PTEs have a "no cache" flag.

Other challenges are:

How to avoid polling all the time, i.e. how does the CPU know when the device is ready? → interrupts

How to avoid the CPU from copying all the data? → direct memory access (DMA)

Where do these register locations come from? → dicoverable buses (PCI)

20.3 Direct Memory Access
DMA bypasses the CPU to transfer data directly between I/O device and memory. This is important, since
the amount of data that is transfered can be huge and they should be transfered fast. This requires
a DMA Controller, those are generally built-in these days.

System Programming and Computer Architecture 88

Pros:

Decoupling of data transfer from processing

CPU doesn't need to copy data to / from the
device

Doesn't pollute CPU cache

Higher performance: CPU and device work in
parallel

Cons:

Higher setup overhead for very small transfers

DMA and Caches
DMA means that memory becomes inconsistent with CPU caches. There are several options to fix this
problem:

CPU can map DMA buffers that are non-cacheable

Cache can snoop DMAC bus transactions → does not scale well

OS can explicitly flush / invalidate cache regions

20.4 Device drivers
The basic model for device drivers looks as follows:

System Programming and Computer Architecture 89

Diver and device are both state machines

Data must be transferred between them

Events signal a state transition

Device and CPU communication
There are four main types of device-CPU communication:

Writing a device register: CPU → device, synchronous

Reading a device register: CPU ↔ device, synchronous

Device requests interrupt: Device → CPU, synchronous

Shared memory, asynchronous

CPU writes to memory, DMA reads

DMA writes to memory, CPU reads

20.5 Buffer rings and descriptor rings
For actual data transmition, we can use descriptor rings (think of circular data structure). Normaly there is
one ring for receiving data and one for sending data.

System Programming and Computer Architecture 90

Here we see a receive ring:

Overruns and underruns
Transmitting

Device has no more packets to send → it must wait

Could continue to poll memory until next descriptor is owned by it or could go to sleep and signal
the software to wake it up

CPU has no more slots to send packets → must wait

Signals the device to interrupt it when a packet has been sent

Receiving

Device has no buffers for received packets → starts discarding packets

System Programming and Computer Architecture 91

Not as bad as it sounds, will start copying them to memory when a buffer is free

CPU reads all received packets → it must wait

Signals the device to interrupt it when a new packet has been received

Notice that these descriptor rings are producer-consumer queues!

20.6 More complex devices

Tulip descriptors (old network card)
This is how a single descriptor ring can look like:

Descriptor rings
CSR3 / CSR4 are the base addresses of the descriptor rings

Descripor rings - chain mode

System Programming and Computer Architecture 92

20.7 Device initialization
We do the following steps on device initialization:

1. Wait for the hardware to settle down

2. Stop the device from doing anything, just to be sure

3. Create shared data structures (i.e. descriptor rings)

4. Write registers to start the device running

20.8 I/O state machines (hardware side)

Sending packets

We therefore have the following DMA transactions:

1. DMA Read: descriptor

2. If decsriptor.owner = OS then enter state "stopped"

System Programming and Computer Architecture 93

3. DMA Read: buffer

4. Send packet

5. DMA Write: descriptor.owned ← "OS"

6. Calculate next descriptor address

7. Goto 1.

20.9 I/O state machines (software side)

Sending packets

We have to avoid cache problems, in x86 hardware the CPU takes care of this, but no everwhere this is
the case, hence:

DMA read (device reads from memory):

Before: CPU should flush the cache for that address

After: CPU should invalidate cache for that address

DMA writes (device writes to memory):

Before: CPU should flush or invalidate cache

After: CPU invalidates cache

Receiving packets

System Programming and Computer Architecture 94

20.10 Discoverable buses: PCI
The PCI is a Peripheral Component Interconnect:

An electrical standard for connecting devices

A standard for physical connectors

A set of “bus protocols” for communication between devices

A software-visible interface to I/O hardware

The PCI tries to solve the following problems:

Device discovery: Finding out which devices are in the system

Address allocation: Which addresses should each device's register appear at?

Interrupt routing: Which interrupt signals from the device should map to which exception vectors?

Intelligent DMA: “Bus mastering” devices no longer need a DMA controller → devices can issue read /
write transactions

PCI is a tree / hierarchy:

System Programming and Computer Architecture 95

Each PCI device asks for a set of address ranges. The bridges up the tree remap addresses to the
device. As a result each device appears as a set of contiguous address ranges.

Finding all the devices
PCI devices are self-describing, meaning they all come with a configuration header, that has the most
important informations. To find all devices, all the configurations are read in a recursive way, starting at
the PCI root bridge.

PCI Interrupts
There are four interrupt line INTA, INTB, INTC, INTD . The bridge allows arbitrary wiring of device lines to
bridge lines. PCI Express introduced MSI (message-signalled interrupts), these are interrupt signals
encoded as PCI writes to specified address range, giving us more flexibility to individually steere
interrupts to particular cores.

