
Computer Systems
by dcamenisch

1 Introduction

This document is a summary of the 2022 edition of the lec-
ture Computer Systems at ETH Zurich. I do not guarantee
correctness or completeness, nor is this document endorsed
by the lecturers. If you spot any mistakes or find other
improvements, feel free to open a pull request at https:

//github.com/DannyCamenisch/systems-summary. This
work is published as CC BY-NC-SA.

cbna

Operating Systems

2 Naming

Naming is a fundamental concept, it allows resources to be
bound at different times. Names are bound to objects, this
is always relative to a context. One example of this would
be path names, e.g. /usr/bin/emacs. Name resolution can
be seen as a function from context and name to some ob-
ject. The resolved object can be a context in itself. This
gives us a naming network.

Both synonyms (two names bound to the same object) and
homonyms (the same name bound to two different objects)
can occur.

3 The Kernel

There are three main functions to an OS. Commonly they
are referred to from a designer’s view, but the user’s view

can be much more helpful to actually understand how it
works.

3.1 Bootstrapping

The term bootstrapping refers to pulling himself up from
his own boots. In computer systems it is what we call the
process of starting up a computer (booting). This boot
process looks like this:

1. CPU starts executing code at a fixed address (Boot
ROM)

2. Boot ROM code loads 2nd stage boot loader into
RAM

3. Boot loader loads kernel and optionally initials file
system into RAM

4. Jumps to kernel entry point

The first few lines are always written in assembly, but gen-
erally we want to switch to C as soon as possible.

3.2 Mode Switch

One of our main goals is to protect the OS from applica-
tions that could harm it (intentionally or not). For this
purpose we introduce two different modes:

• Kernel Mode - execution with full privileges,
read/write to any memory, access and I/O, etc. Code
here must be carefully written

• User Mode - limited privileges, only those granted
by the OS kernel

These two (or more) modes are already implemented in
hardware. The main reason for a mode switch is when we
encounter a processor exception (mode switch from user to
kernel mode). If this is the case, we want the following to
happen:

1. Finish executing current instruction

2. Switch mode from user to kernel

3. Look up exception cause in exception vector table

4. Jump to this address

Further we may also want to save the registers and switch
page tables. When switching between the modes we also
have to change our address space, but we might want to ac-
cess some informations from the user mode address space.
One way of doing this is to use a so called trampoline,
which is a part of the address space that gets mapped to
the same location in user and kernel mode.

Mode switches can also occur the other way around (from
kernel mode to user mode). The main reasons for this are:

• New process / thread start

• Return from exception

• Process / thread context switch

• User-level upcall (UNIX signal)

This leads us to the following perspective:

1

https://github.com/DannyCamenisch/systems-summary

The mode switch is fundamental to modern computers:

• It enables virtualization of the processor

• It creates the illusion of multiple computers

• It referees access to the CPU

3.3 General Model of OS Structure

• Kernel: The kernel consists of software run in priv-
ileged mode. There might be more than one kernel
in an OS. It can handle system calls, h/w interrupts
etc.

• System Libraries: They are part of any application
run on the machine and should provide an interface
for the kernel.

• Daemon: This is a process running as part of the
OS. Its not run in privileged mode and may use sys-
tem libraries. An example might be a file system.

We can differentiate between monolithic kernels and micro-
kernels, depending on the amount of code in kernel mode.

3.4 System Calls

System calls are the only way for user mode programs to
enter kernel mode. System calls are a type of exception,
but they try to look a lot more like a procedure call. There-
fore the kernel system call handler has to first locate argu-
ments, copy these arguments into kernel memory, validate
these arguments and then copy the results back into user
memory after execution. An example of such a system call
would be write().

3.5 Hardware Timers

What happens if a user mode program does not cause any
exception and does not give control back to the kernel?
Hardware timers are a solution for this problem, the hard-
ware device periodically interrupts the processor and re-
turns control to the kernel handler, which sets the time of
the next interrupt.

4 Processes

When you run a program, the OS creates a process to ex-
ecute the program in. A process is an illusion created by
the OS, it creates an execution environment for a program.
This environment gives the program limited rights (access,
name spaces, threads, etc.) and therefore it is both a se-
curity and a resource principal.

4.1 Creating a Process

There are two main approaches to creating new processes:

• Spawn - constructs a running process from scratch

• Fork / Exec - creates a copy of the calling process
or replaces the current program with another in the
same process

Spawn

• Create and initialize the process control block (PCB)
in the kernel

• Create and initialize a new address space

• Load the program into the address space

• Copy arguments into memory in the address space

• Initialize the hardware context to start execution at
”start”

• Inform the scheduler that the new process is ready
to run

Spawn is very complex, we have to specify everything
about the new environment. If we omit a key argument
a new process might have insufficient rights or resources or
it might fail to function due to a security fault.

Fork
Fork on the other hand is less complex. The child pro-
cess is almost an exact copy of the parent, with a different
PID. We know which process we are in from the return
value of the fork() call (0 for child, > 0 for parent, < 0 for
error). The complete UNIX process management API also
includes:

• exec() - system call to change the program being run
by the current process

• wait() - system call to wait for a process to finish

• signal() - system call to send a notification to another
process

In contrast to spawn(), here the child revokes rights and
access explicitly before exec(), further we can use the full
kernel API to customize the execution environment.

4.2 The Process Control Block

The PCB is the main kernel data structure used to repre-
sent a process. It has to hold or refer to the page table, trap
frame, kernel stack, open files, program name, scheduling
state, PID, etc.

4.3 Process Context Switching

Context switching is the process of switching between dif-
ferent processes running in user mode or kernel mode. It
is one of the key elements of the illusion that multiple pro-
grams can run in parallel.

2

There are two main reasons for the kernel to switch pro-
cesses: either when a process has run for too long and gets
interrupted by a hardware timer or when a process blocks.
The second case happens when a system call can not com-
plete immediately. The process then often calls sleep() and
other processes can be executed.

4.4 Process Hierarchy

By forking and spawning new processes we create sort of a
hierarchy. If a child process dies, but the parent does not
call wait(), the child process becomes a zombie - it is dead,
but still around since nobody asked for the return code. If
a parent dies, but the child does not, the child becomes an
orphan and gets reparented to the first process (PID #1,
init).

The init process is basically an infinite loop calling
wait(NULL), it gets rid of any zombies.

4.5 Threads

Threads are used as an abstraction for concurrency. They
allow the usage of parallel hardware, e.g. multiple cores. A
thread basically consist of a stack and some register values.

There is a distinction between user threads and kernel
threads. The former are implemented entirely in users
process. If a user thread is about to block (e.g. when exe-
cuting a system call), the thread library usually interrupts
this call and does something non blocking instead while
the system call is served. Kernel threads are implemented
by the OS kernel directly. They thus appear as different
virtual processors to the user process. In this model, a set
of threads share a virtual address space together. Each
thread is now scheduled by the kernel itself, which keeps
track of threads are part of which process. However, this
makes the kernel more complicated.

5 Inter-Process Communication

It is often the case, that we want different processes to
work together, e.g. DB and web-scraper. For this we need
ways to exchange information between processes, we call
this inter-process communication or IPC.

One of the most basic ways to exchange information is sys-
tem calls. We save our data on the stack or in a register
and execute the system call, the kernel then switches ex-
ecution to the other process with the information about
the data that should be exchanged. This is a really flawed
approach some reasons are that context switches are ex-
pensive and it is unsafe to introduce new system calls for
each task.

5.1 Shared Memory

We introduce shared memory that can only be accessed
by the processes that communicate with each other. This
requires us to define a common interface between the pro-
cesses. The main building blocks for this are:

• Shared area: registers, memory - define the layout of
the memory

• Indicating status: shared variables, signals

• Updating status: changing variables

• Consistency: use synchronization primitives

When checking the state of a shared variable polling can
be very inefficient. As an alternative we can use a signal
handler. When the first process calls the signal handler,
the kernel notifies the second process of the update. When
the kernel issues such a system call to a process, we call
it an upcall. To guarantee consistency, we use synchro-
nization primitives that are already known from previous
lectures (spin locks with CAS, TAS, etc.).

A more modern approach is to use transactional memory,
hereby we work with transactions that can fail on race
condition.

6 Scheduling

Scheduling is the problem of deciding which process/thread
on every core in the system is currently executing. This
decision must be dynamically, not static. First we need
to introduce some terminology. Notice how the wait time
is defined as the combination of hold time and execution
time.

The important metrics for scheduling are throughput (rate
of completing jobs) and overhead (time spent without a job
executing).

In the following part we will look at various scheduling
algorithms, starting from a very simple approach.

6.1 Non-Preemptive Batch Oriented

There are two basic algorithms:

• First Come First Served

• Shortest Job First

Both are algorithms are very simple to implement but their
applications are limited.

3

6.2 Preemptive Batch Oriented

We introduce preemption, meaning that we interrupt the
execution after some finite time interval. After such an
interrupt we decide which program to run next.

Modified SJF: Go through the sorted list of jobs and ex-
ecute each until interrupted. Note that the length of a job
does not get recomputed after an execution.

6.3 Interactive Scheduling

When running interactive workload, we can encounter
events that block the execution (I/O, page-faults, etc.).
During this time we would like to run another program
instead of wasting execution time.

Round Robin Scheduling: Let R be a queue and q be
the scheduling quantum:

1. Set an interval timer for an interrupt q seconds in
the future

2. Dispatch the job at the head of R

3. If blocking happens or the timer runs out, return to
the scheduler

4. Push the previously running job to the tail of R

Priority Based Scheduling: We assign a priority to each
task and dispatch the highest priority task first, if we have
ties we use RR to break them. To avoid starvation we
might want to use dynamic priorities (increased priority
depending on wait time). An even more complex approach
is to introduce multi-level queues, meaning that we have a
fixed number of queues that assign priorities within each
queue. Then we use RR scheduling between the queues to
execute tasks.

Priority scheduling runs into problems when a high priority
process has to wait for a lock from a low priority process
(Priority Inversion). To fix this, we can either introduce
inheritance - the holder of the lock acquires the priority of
the highest waiting process - or ceiling - the holder of the
lock runs at the highest priority.

6.4 Linux o(1) Scheduler

Linux uses 140 multilevel feedback queues, each with a dif-
ferent priority. Multilevel feedback queues penalize CPU
bound tasks and prioritize I/O operations, as I/O tasks
will eventually block.

The priority range 0-99 is used for high priority, static tasks
and it uses FCFS or RR scheduling. The range 100-139 is
for user tasks and uses RR together with priority ageing
for I/O tasks.

7 Input / Output

Every OS has an I/O subsystem, which handles all inter-
action between the machine and the outside world. The
I/O subsystem abstracts individual hardware devices to
present a more or less uniform interface, provides a way to
name I/O devices, schedules I/O operations and integrates
them with the rest of the system, and contains the low-level
code to interface with individual hardware devices.

To an OS programmer, a device is a piece of hardware
visible from software. It typically occupies some location
on a bus or I/O interconnect, and exposes a set of hard-
ware registers which are either memory mapped or in I/O
space. A device is also usually a source of interrupts, and
may initiate Direct Memory Access (DMA) transfers.

The device driver for a particular device is the software in
the OS which understands the specific register and descrip-
tor formats, interrupt models, and internal state machines
of a given device and abstracts this to the rest of the OS.

7.1 Data Transfer

Programmed I/O consists of causing input/output to
occur by reading/writing data values to hardware regis-
ters. This is the simples form of communication. It is fully
synchronous, so the CPU always has to be involved. Fur-
ther it is polled, the device has no way to signal that new
data is ready.

Interrupts can be used to signal the availability of new
data and solve the polling problem. But the problem of
CPU involvement still persists.

Direct Memory Access or DMA, a device can be given
a pointer to buffers in main memory and transfer data to
and from those buffers without further involvement from
the CPU. A single interrupt is used to signal the end of
data transfer. DMA is, for the most part, physical (not
virtual) access to memory. Further DMA transfers to and
from main memory may or may not be coherent with pro-
cessor caches.

7.2 Asynchrony

Device drivers have to deal with the fundamentally asyn-
chronous nature of I/O: the system must respond to unex-
pected I/O events, or to events which it knows are going
to happen, but not when.

The First-level Interrupt Service Routine (FLISR) is
the code that executes immediately as a result of the in-
terrupt. It runs regardless of what else is happening in the
kernel. As a result, it can’t change much since the normal
kernel invariants might not hold.

Since I/O is for the most part interrupt-driven, but data is
transferred to and from processes which perform explicit
operations to send and receive it. Consequently, data must
be buffered between the process and the interrupt handler,
and the two must somehow rendezvous to exchange data.
There are three canonical solutions to this problem:

A deferred procedure call, is a program closure cre-
ated by the 1st-level interrupt handler. It is run later by
any convenient process, typically just before the kernel is
exited.

A driver thread, sometimes called an interrupt handler
thread, serves as an intermediary between ISR and pro-
cesses. The thread starts blocked waiting for a signal either
from the user process or the ISR. When an interrupt occurs

4

or a user process issues a request, the thread is unblocked
(this operation can be done inside an ISR) and it performs
whatever I/O processing is necessary before going back to
sleep. Driver threads are heavyweight: even if they only
run in the kernel, the still require a stack and a context
switch to and from them to perform any I/O requests.

The third alternative, is to have the FLISR convert the
interrupt into a message to be sent to the driver process.
This is conceptually similar to a DPC, but is even simpler:
it simply directs the process to look at the device. How-
ever, it does require the FLISR to synthesize an IPC mes-
sage, which might be expensive. In non-preemptive kernels
which only process exceptions serially, however, this is not
a problem, since the kernel does not need locks.

Bottom-half handler - the part of a device driver code
which executes either in the interrupt context or as a result
of the interrupt.

Top-half handler - the part of a device driver which is
called ”from above”, i.e. from user or OS processes.

7.3 Device Models

The device model of an OS is the set of key abstractions
that define how devices are represented to the rest of the
system by their individual drivers. It includes the basic
API to a device driver, but goes beyond this: it encom-
passes how devices are named throughout the system, and
how their interconnections are represented as well.

UNIX device model:

• Character Devices - used for unstructured I/O and
present a byte-stream interface with no block bound-
aries.

• Block Devices - used for structured I/O and deal with
blocks of data at a time.

• Network Devices - correspond to a network interface
adapter. It is accessed through a rather different
API.

• Pseudo Devices - a software service provided by the
OS kernel which it is convenient to abstract as a de-
vice, even though it does not correspond a physical
piece of hardware (e.g. /dev/random).

7.4 Protection

Another function of the I/O subsystem is to perform pro-
tection. Ensuring that only authorized processes can ac-
cess devices or services offered by the device driver and
that a device can’t be configured to do something harmful.

UNIX controls access to the drivers themselves by repre-
senting them as files, and thereby leveraging the protection
model of the file system. DMA-capable devices are in prin-
ciple capable of writing to physical memory anywhere in
the system, and so it is important to check any addresses
passed to them by the device driver. Even if you trust the
driver, it has to make sure that its not going to ask the
device to DMA somewhere it should not. One approach
is to put a memory management unit (MMU) on the path
between the device and main memory, in addition to each
core having one.

8 Virtual Memory

From previous courses we know MMUs, TLBs and basic
paged virtual memory operations. The uses for address
translation include: Process Isolation, Shared Code Seg-
ments, Dynamic Memory Allocation and many more.

8.1 Segments

Before paging, there were segments. Before segments there
where base and limit registers. These contained two ad-
dresses B and L. A CPU access to an address a is permit-
ted iff B ≤ a < L. Relocation registers are an enhanced
form of base register. All CPU accesses are relocated by
adding the offset: a CPU access to an address a is trans-
lated to B + a. This allows each program to be compiled
to run at the same address (e.g. 0x0000).

A segment is a triple (I, BI , LI) of values specifying a con-
tiguous region of memory address space with base BI , limit
LI , and an associated segment identifier I which names the
segment. Memory in a segmented system uses a form of
logical addressing: each address is a pair (I,O) of segment
identifier and offset. A Segment Table is an in-memory ar-
ray of base and limit values (BI , LI) indexed by segment
identifier, and possibly with additional protection informa-
tion.

This enables sharing code/data segments between pro-
cesses, further it adds protection and allows transparently
growing stack/heap as needed. The principal downside of
segmentation is that segments are still contiguous in phys-
ical memory, which leads to external fragmentation.

8.2 Paging

This is a short recap of paging. Virtual memory is di-
vided into (virtual) pages of the same size having a VPN,
physical memory gets divided into frames / physical pages
having a PFN / PPN. Then a page table gets used to map
VPNs to PFNs. This is implemented in hardware as the
MMU. To speed up translation the TLB is used. Getting
data from memory can work as follows (in this case we
have a TLB miss):

5

We have also seen how multi-level page tables work. Multi-
level translation allows us to allocate only page table en-
tries that are in use and makes memory allocation simpler.

On a context switch we need to store/restore the pointer
to the page table and its size. One of the downsides of
paging is if our page is very small and we do not need all
of the space, this leads to internal fragmentation.

8.3 Paged Segmentation

It is possible to combine segmentation and paging. A
paged segmentation memory management scheme is one
where memory is addressed by a pair (segment.id, offset),
as in a segmentation scheme, but each segment is itself
composed of fixed-size pages whose page numbers are then
translated to physical page numbers by a paged MMU.

One of the main benefits here is that each segment can
have its own size of page table.

8.4 Zero-on Reference

The question how much physical memory is needed, is dif-
ficult to answer. So when a program runs out of memory,
the system does the following:

1. Page fault into OS kernel

2. Kernel allocates some memory

3. Zeroes the memory

4. Modify page table

5. Resume process

8.5 Fill On Demand

Most programs do not need all their code to start running
and might never use some code in its execution. There-
fore we want to do something similar, we want to start a
program before its code is in physical memory:

1. Set all page table entries to invalid

2. On first page reference, kernel trap

3. Kernel brings page in from disk

4. Resume execution

5. Remaining pages can be transferred in the back-
ground while the program is running

8.6 Copy On Write

Remember that we said fork() copies the entire address
space. This can be expensive and might not feasible in
performance. On fork() we copy the page table and set all
mappings to read-only in both address spaces. Reads are
now possible for both processes. If a write in either process
causes a protection fault the kernel allocates a new frame
and copies the referenced frames content into it. The fault-
ing process now maps to the new copy and the protection
changes to read/write (also for the non-faulting process).

8.7 Managing Caches and the TLB

8.7.1 TLBs

A problem with TLBs on context switches is that they
can hold content inaccessible to the new process. To avoid
having to flush the TLB, we introduce tags. Each TLB
entry has a 6-bit tag and the OS keeps track of a mapping
between processes and tags.

8.7.2 Caches

Remember the different types of caches:

• Virtually indexed, virtually tagged - simple and fast,
but context switches are hard

• Physically indexed, physically tagged - can only be
accessed after address translation

• Virtually indexed, physically tagged - overlap cache
and TLB lookups

• Physically indexed, virtually tagged

Also remember the different write (write through, write
back) and allocate (write allocate, non-write allocate)
policies. In virtually tagged caches we can encounter
homonyms, the same virtual address maps to multiple
physical address spaces. To avoid this we can use physical
tags, add address space identifiers, try to ensure disjoint
address spaces or flush the cache on a context switch.

6

There is also a synonyms problem, where two virtual ad-
dresses map to the same physical address. This leads to
inconsistent cache entries. The solutions to the homonym
problem do not help here. To solve this problem we re-
strict VM mappings, so that synonyms map to the same
cache set.

8.8 Demand Paging

Demand paging solves the problem how to find a frame to
use for missing pages. The goal is to minimize the page
fault rate p (0 ≤ p ≤ 1). The metric we are interested in
is the effective access time (1 − p) ∗ lm + p ∗ lf , where lm
is the latency of a memory access and lp the latency of a
page fault handling. Generally speaking the performance
of a paging system depends on how many frames it has,
but there is a diminishing return on adding new frames.

8.8.1 Page Replacement Policies

If a page has to be evicted, which one should be choose?
We have already seen Least Recently Used (LRU) and First
In First Out (FIFO). Both of these are not optimal, LRU
is too expensive and FIFA works poorly for most work-
loads. A good compromise is the Clock or 2nd Chance
algorithm. It approximates LRU but much cheaper. It re-
quires a linear table of all PFNs, with associated referenced
bits. This can be best visualized as a circular buffer.

It works as follows:

• Mark each frame when referenced for the first time

• If we want to replace a frame, process as follows:

– If marked, unmark and advance the clock hand

– If unmarked, allocate this frame and mark it

8.8.2 Frame States

This only works if the corresponding bits are present in
the page table and are properly set, in RISC-V for exam-
ple these bits are present but do not have to be set. We
can emulate these bits using faults.

9 File System

9.1 Abstractions

File systems are a very important concept and it makes
sense to define an abstract file system. The main task of
a file system is to virtualize, this means it should allow for
multiplexing, have the same abstraction for multiple file
systems implementation.

9.1.1 Access Control

We want to enforce some access control for our files. We
call user or group of users a principal and files objects.
One of the simplest way of representing this information
would be in a matrix format. Each row would be a prin-
cipal and columns correspond to objects. A entry in this
matrix describes the rights the principal has in regards to
the object. The problem with this idea is that such a ma-
trix would become too large.

Another idea would be access control lists, a more compact
representation. For each file you need to specify user and

its access right, so you do not have to save any information
on principals that do not have any rights to a file. If a new
file gets created we use mandatory access control (MAC)
to set the rights to a file. MAC defines the access policy
centrally, so the principals cannot make policy decisions.
This is easy to implement but hard to customize if you
need special permissions.

A third idea would be to use capabilities, this means that
there are tokens that give the holder of the token specific
rights.

POSIX access control uses a hybrid approach. As princi-
pals there exist users but also groups. Access rights are
divided into read, write and execute (rwx).

9.1.2 File Abstraction

Files consist of two parts. The first part is the data, con-
sisting of unstructured bytes or blocks. The second part
is the metadata, containing informations like type (struc-
tures or unstructured), time stamps, location, permissions,
etc. The filename is not part of its metadata.

The filename is part of the namespace. Depending on the
OS there are different restrictions on the filename, e.g. al-
lowed characters. Filenames can be thought of as pointers
to a file, meaning a file does not need a name or it could
even have multiple names. The POSIX namespace results
in a tree like structure, where each filename is preceded by
the directories it is contained in. There are other location
based bindings ’.’ meaning the current location and ’..’
being the parent directory. The challenge with this tree
structure is to prevent cycles.

9.1.3 File Descriptors

File descriptors are used to open files and then perform
operations on it. A file descriptor is basically an id that the
OS give to a process to access a file (a FD comes with some
metadata, e.g. type of access). Each processor has its own
file descriptors. This concept is similar to capabilities.

There are different access types:

• Direct - unrestricted access to the file without offset,
curser starts at zero

7

• Sequential - access without rights to move the curser,
writing happens at the end of the file

• Structured - defined agreement on how data gets
written

9.1.4 Memory-Mapped Files

Alternatively, we can open files by mapping its content
to virtual memory. This allows for anonymous memory,
meaning we can treat memory regions as files even though
this is not the case. It also allows us to have shared mem-
ory, by loading the same file on different processes. But
if we use memory-mapped files, we have to take care of
synchronisation between the memory and the file system.

9.1.5 Executable Files

Executing a file creates a new process, checks if the file is
valid and then uses the ELF format to load the file and
start execution.

9.2 Implementations

After having specified how an interface for a file system
might look like, we know want to have a look at the im-
plementations.

First we introduce an additional abstraction, volumes. A
volume is a generic name for a storage device, consisting of
a contiguous set of fixed-size blocks. To access blocks, we
need logical block addresses (LBA), these are numbers
for blocks on a volume. Closer to the hardware, there are
disk partitions. Partitions are physical volumes divided
into contiguous regions. For this to work we need to store
a partition table at the start of the physical volume.

A file system implementation consists of a set of data struc-
tures. These are stored on a volume and allow for naming
and protection. These things together form the FS API.

This API allows us to mount several file systems on top of
each other. At the top we have the root file system and all
other mount points are under the root (e.g. /dev/sda1).

From the OS point of view, it implements a virtual file
system layer in the kernel. This layer tries to resolve the
type of file system that is being used. This allows for dif-
ferent file system implementations to coexist.

The main goals of concrete file system implementations
depend on the device it is used on. Often they are a mix-
ture of performance and reliability. In a typical file system
implementation we will see the following things:

• Directories and Indexes - where on the disk is the
data for each file?

• Index Granularity - what is the unit of allocation for
files?

• Free Space Maps - how to allocate more sectors on
the disk?

• Locality Optimizations - how to make it go fast in
the common case?

9.2.1 The FAT File System

FAT (file allocation table) is a very basic file system.

For naming, the FAT system uses the filename and the ex-
tension. It then remembers the first block of that file. The
file allocation table itself works like a linked list of blocks,
where at the end of each block there is a pointer to the next
block. To allocate new space, we simply need to scan the
table. This can lead to very poor locality (fragmentation).

9.2.2 The Berkeley Fast Filing System

This system uses an index node (inode) for each file in the
file system. The inode consists of the metadata and block
pointers (or data directly if it fits). To allocate blocks it
uses a bitmap indicating if a block is free or not.

Block groups are continuous subset of disk track where
related inodes, directories, free space map and file data
blocks are gathered together. A superblock then holds all
the informations about the overall layout and where the
block groups are.

9.2.3 Windows NTFS

NTFS treats everything as a file, e.g. files system and file
metadata. The master file table contains file entries for
each file and is itself a file with the very first entry in the
table. A MFT entry consists of metadata and a list of vari-
able length attributes. One attribute is all the names for
a file. If the data is small enough, it gets stored as part of
the attributes, else it is stored in an extent. If works very
similar to Berkeley FFS.

In NFTS file descriptors are basically pointers to extents.
Additionally there are basic file descriptors.

10 Network Stack

In this part we want to look at what happens in the OS
when we do networking on a low level. The role of the OS
network stack is to handle all network related I/O. This in-
cludes delivering and transmitting packets, multiplex and
demultiplex packets, and processing protocols.

The following parts play a role in the networking stack:

• the NIC (networking interface card)

• first-level interrupt handlers

8

• NIC driver bottom half, e.g. deferred procedure calls

• NIC driver top half, kernel code

• app libraries, daemons, utils

Together they provide the following functionalities:

• Multiplexing - taking packets from the user space,
deciding the protocol to use and sending them out

• Encapsulation - taking raw data from an application
and encapsulate it in a packet

• Protocol State Processing - advance the state of a
protocol to process packets arriving

• Buffering and Data Movement - store data until the
application decides to process it

10.1 Header Space

The header space is the set of all possible packet headers.
The OS needs to process these headers as fast as possible
and deliver them to the applications. Part of processing
the header is to decide if the header is valid.

10.2 Protocol Graphs

Some OS maintain a protocol graph. The protocol graph of
a network stack is the directed-graph representation of the
forwarding and multiplexing rules. Nodes in the graph rep-
resent a protocol acting on a communication channel and
perform de-/encapsulation and possibly de-/multiplexing.

If a node has multiple outgoing edges, its probably demul-
tiplexing packets (vice versa for multiplexing). Note that
this graph can well be cyclic due to tunnelling.

10.3 Network I/O

If the NIC receives a packet it copies it to a OS buffer,
enqueues it on a descriptor ring and returns the buffer to
the OS. If the OS wants to send a packet it enqueues it
on a descriptor ring, notifies the NIC and after processing

the NIC returns the buffer to the OS. A simplified imple-
mentation of the first-level- interrupt handler for packet
receive looks as follows:

Algorithm 1: First-level interrupt handler for re-
ceiving packets

/* Inputs */

/* rxq: the receiver description queue */

1 Acknowledge interrupt
2 while not(rxq.empty()) do
3 buf = rxq.dequeue()
4 sk buf = sk buf allocate(buf)
5 enqueue(sk buf) for processing
6 post a DCP (software interrupt)

7 end
8 return

Note that this only copies the packet and does not process
it. This allows the OS to free the space for the NIC to re-
ceive new packets with deferring the processing the packet
to later.

10.4 Top-Half Handling

In the top half of the stack, a socket interface is used: we
can call bind(), listen(), connect(), send(), recv() etc. from
user space.

Some protocol processing happens in the kernel directly as
a result of top half invocations, but for the most part the
top half is concerned with copying network payload data
and metadata between queues of protocol descriptors in
the kernel and user-space buffers.

10.5 Polling

To increase performance, instead of the conventional
interrupt-driven descriptor queues, a network receive
queue can be serviced by a processor polling it contigu-
ously. This eliminates the overhead of interrupts, context
switches and maybe even kernel entry/exit. It requires a
dedicated processor spinning, waiting for packets.

But even polling is insufficient to handle modern high-
speed networks. Its not clear how to scale this approach
to multiple cores. Thus one relies on hardware support.

10.6 Hardware Acceleration

Today many operations are accelerated using dedicated
hardware, e.g. by smart NICs. This works by having mul-
tiple physical queues for each connection. The OS then
can bind an application to a hardware queue when needed.
These smart NICs have dedicated hardware to perform op-
erations on these queues, e.g. calculate checksums or ap-
plying filtering rules.

RDMA devices allow for direct memory accesses between
different devices. This is extremely fast and specially useful
in a datacenter context. On a downside allowing a remote
devices to access a devices memory can be dangerous.

10.7 Routing and Forwarding

An OS also implements the core functionality of routers
(forwarding and routing). For forwarding a set of hard-
ware tables is used. Forwarding a packet on a receive queue
essentially involves reading its header, then using this in-
formation to transfer the packet to one or more transmit
queues to be sent. The forwarding tables are a result of the
routing calculations, which mostly happen in user space.

11 Virtual Machines

A virtual machine monitor (VMM) virtualizes an en-
tire system. The execution environment of the VMs well
look at provide a simulation of the raw machine hardware.

While a VMM is the functionality required to create the
illusions of real hardware, the hypervisor is the software
that runs on real, physical hardware and supports multiple
VMs (each with its associated virtual machine monitor).
There is one hypervisor on which many VMMs can run.
We call a hypervisor running on bare metal a type-1 (na-
tive) hypervisor and one running on a real OS a type-2
(hosted) hypervisor.

OS-level virtualization uses a single OS to provide the illu-
sion of multiple containers of that OS. Code running in a
container have the same system call interface as the under-
lying OS, but cannot access any device. This is achieved by
limiting the file system namespace (by changing the root
for each container) and the process namespace, so pro-
cesses can only see processes which share their container.

9

In general, using containers is more efficient than using
hypervisors.

11.1 The Uses of Virtual Machines

When multiple applications contend for resources the per-
formance of one or more may degrade in ways outside the
control of the OS. Resource isolation guarantees to one
application that its performance will not be impacted by
others, this is done by running the application in a VM.

Cloud computing is the business of renting computing
resources as a utility to paying customers rather than sell-
ing hardware. They are primarily based on renting com-
puting resources in the form of a VM (similar to resource
isolation).
The term server consolidation refers to taking a set of
services, each running on a dedicated server, and consol-
idating them onto a single physical machine so that each
runs in a VM.

Backward compatibility is the ability of a new machine
to run programs (including OSes) written for an old ma-
chine.

11.2 Virtualizing the CPU

To run an OS inside a VM, we need to completely virtu-
alize the processor, including the kernel (else we simply
could use threads). The processor in the VM clearly can-
not execute a privileged instruction ”for real”. Instead, the
default result is a trap/fault:

Trap-and-emulate is a technique for virtualization which
runs privileged code in non-privileged mode. Any privi-
leged instruction causes a trap to the VMM, which then
emulates the instruction and returns to the VM guest code.

The problem is that there might be some instructions
which do not cause a trap when run in non-privileged mode
but have a different behavior when executed in kernel mode
(e.g. POPF in x86). This cannot happen with a strictly
virtualizable ISA.

An ISA is strictly virtualizable iff it can be perfectly
emulated over itself with all non-privileged instructions ex-
ecuted naively and all privileged instructions emulated via
traps.

There are different approaches to dealing with non strictly
virtualizable ISA:

• Full software emulation: Creates a virtual ma-
chine by interpreting all kernel-mode code in soft-
ware. This is very slow, especially for many I/O
operations.

• Paravirtualization: A paravirtualized guest OS is
one which has been specifically modified to run in-
side a VM. Critical calls are replaced with explicit
trap instructions.

• Binary rewriting: Scans compiled kernel code for
unvirtualizable instructions and rewrites them es-
sentially patching the kernel on the fly. This is done
on demand: All kernel pages are first protected and
when first accessed (i.e., the protection trap occurs),
they get scanned and rewritten.

• Virtualization extensions: Convert ISA by
adding virtualization extensions. This typically takes
the form of a new processor mode. Today, both ARM
and x86 do have hardware support for virtualization.

11.3 Virtualizing the MMU

With virtualization, there is a second level of indirection
with memory addresses. Now, a physical memory address
is not unique in the machine, but in one VM (guest OS
thinks it is physical). Thus, we define the machine ad-
dress to be a real address on the machine which gets trans-
lated from the guest OSs physical address. From the view
of the hypervisor, the machine address is the physical ad-
dress.

The hypervisor thus needs to translate a guest virtual ad-
dress not to a guest physical address but to a machine
address instead. There are several ways to do so:

• Directly writable tables: The guest OS creates the
page tables that the hardware uses to directly trans-
late guest virtual to machine addresses. This re-
quires paravirtualization. The VMM needs to check
all writes to any PTE in the system. To change a
PTBR, a hypercall is needed.

• A shadow page table is a page table maintained by
the hypervisor which contains the result of translat-
ing virtual addresses through the guest OSs page ta-
bles, and then the VMMs physical-to-machine page
table. The guest OS thus sets up its own PT,
but they get never used. The VMM maintains the
shadow PT which maps directly from guest VAs to
machine addresses.

The VMM must keep the shadow table consistent
with both the guests PT and the hypervisors own
physical-to-machine table. It achieves this by write-
protecting all the guest OS’s PT and trapping writes
on them. When a write happens, it applies the up-
date to the shadow page as well.

• Nested Paging/2nd level page translation is an en-
hancement to the MMU hardware that allows it
to translate through two page tables (guest virtual
to guest physical and guest physical to machine),
caching the result (virtual to machine) in the TLB.
This can be fast, but a TLB miss is costly.

11.4 Virtualizing the Physical Memory

How can the hypervisor allocate memory to a guest OS?
The guest OS expects a fixed area of physical memory
which does not change dynamically. In theory, this prob-
lem can be solved with paging. However, there is a phe-
nomenon called double paging. Consider the following
sequence of events:

1. The hypervisor pages out a guest page P to storage

2. A guest OS decides to page out the virtual page as-
sociated with P and touches it.

3. This triggers a page fault in the hypervisor, hence P
gets paged back in memory.

10

4. The page is immediately written out to disk and dis-
carded by the guest OS.

So to throw away a page in a guest OS, there are three I/O
operations and one extra page fault! We could solve this
problem with paravirtualization, but this introduces more
complexity.

Memory ballooning is an elegant solution to this prob-
lem. It allows hypervisors to reallocate machine memory
between VMs without incurring the overhead of double
paging. A device driver, the balloon driver, is installed
in the guest kernel. This driver is VM-aware, i.e. it can
make hypercalls and receive messages from the VMM. The
principle is to block a large area of physical memory in the
guest OS, which then can be allocated to the OS by un-
blocking it.

Memory can also be reclaimed from a guest OS (inflating
the balloon):

1. The VMM asks the balloon driver to return n phys-
ical pages from the guest OS to the hypervisor.

2. The balloon driver notifies the OS to allocate n pages
of memory for its private use.

3. It communicates the guest-physical addresses of
these frames to the VMM using a hypercall.

4. The VMM unmaps these pages from the guest OS
kernel and reallocates them elsewhere.

Reallocating machine memory to the VM (deflating the
balloon) can be done similarly:

1. The VMM maps the newly allocate machine pages
into guest-physical pages inside the balloon.

2. The VMM then notifies the balloon driver that these
pages are now returned.

3. The balloon driver returns these guest-physical pages
to the rest of the guest OS.

11.5 Virtualizing the Devices

To software, a device is something that the kernel com-
municates using memory mapped I/O registers, interrupts
from the device to the CPU and DMA access by the device

to/from main memory. The hypervisor needs to virtualize
all of this, too.

A device model is a software model of a device that can be
used to emulate a hardware device, using trap-and-emulate
to catch CPU writes to device registers. Interrupts from
the emulated device are simulated using upcalls from the
hypervisor into the guest OS kernel at its interrupt vector.

A paravirtualized device is a hardware device design
which only exists as an emulated device. The driver of the
device in the guest OS is aware that it is running in a VM
and can communicate efficiently with the hypervisor using
shared memory buffers and hypercalls.

For the device drivers talking to the real devices, we have
the option to put them in the hypervisor kernel. Alterna-
tively, one could use device passthrough, mapping a real
hardware device into the physical address space of a guest
OS. However, this does not solve the problem of sharing a
real device among multiple virtualized guest OSes.

A driver domain is a virtual machine whose purpose it
is to provide drivers for devices using device passthrough.
With this, we can share devices across multiple VMs, by
exporting a different to these devices using inter-VM com-
munication channels. They are great for compatibility, but
can be very slow, due to the communication overhead.

A self-virtualizing device is a hardware device which is
designed to be shared between different VMs by having dif-
ferent parts of the device mapped into each VMs physical
address space. SR-IOV is one form of this.

Single-Root I/O Virtualization (SR-IOV) is an extension
to the PCIe standard which is designed to give VMs fast,
direct but safe access to real hardware. An SR-IOV capa-
ble device appears initially as a single PCI device. This
device can be configured to make further virtual functions
appear in the PCI device space: each of this is a restricted
version, but otherwise looks like a completely different,
new device.

11.6 Virtualizing the Network

A soft switch is a network switch implementation inside
a hypervisor which switches network packets sent from
paravirtualized network interfaces in VMs to other VMs
and/or one or more physical network interfaces.

The soft switch can be quite powerful but it needs to be
fast. We can address a network interface inside a VM by
giving each virtual network interface a MAC address on its
own and letting DHCP do the rest.

Distributed Systems
Today almost all computer systems are distributed, for dif-
ferent reasons:

• Geography

• Parallelism - speed up computation

• Reliability - prevent data loss

• Availability - allow for access at any time, without
bottlenecks, minimizing latency

Even though distributed systems have many benefits, such
as increased storage or computational power, they also in-
troduce challenging coordination problems.

12 Fault Tolerance and Paxos

In this section we want to create a fault-tolerant dis-
tributed system. We start out with a simple approach
and improve our solution until we arrive at a system that
works even under adverse circumstance, Paxos.

A node is a single actor in the system. In the message
passing model we study distributed systems that consist
of a set of nodes, where each node can perform local com-
putations and send messages to every other node. Message
loss means that there is no guarantee that a message will
arrive safely at the receiver. This leads us to the first al-
gorithm

Algorithm 2: Naive Client-Server Algorithm

1 Client sends commands one at a time to server
2 Server acknowledges every command
3 If the client does not receive an acknowledgment

within a reasonable time, it resends the command

This simple algorithm is the basis of many reliable pro-
tocols, e.g. TCP. The algorithm can easily be extended
to work with multiple servers: The client sends each com-
mand to every server, and once the client received an ac-
knowledgment from each server, the command is consid-
ered to be executed successfully.

11

In practice, messages might experience different transmis-
sion times, even if they are being sent between the same
two nodes. A set of nodes achieves state replication, if
all nodes execute a sequence of commands in the same or-
der. Since state replication is trivial with a single server,
we can desig- nate a single server as a serializer.

Algorithm 3: State Replication with a Serializer

1 Client sends commands one at a time to the
serializer

2 Serializer forwards commands one at a time to all
other servers

3 Once the serializer received all acknowledgments,
it notifies the client about the success

The downside of this algorithm is that the serializer is a
single point of failure.

12.1 Two-Phase Protocol

Algorithm 4: Two-Phase Protocol

/* Phase 1 */

1 Client asks all servers for the lock
/* Phase 2 */

2 if client receives lock from every server then
3 Client sends command reliably to each server

and gives the lock back
4 else
5 Clients gives the received locks back
6 Client waits, and then starts with Phase 1

again
7 end

Instead of directly establishing a consistent order of com-
mands, we can use a different approach: We make sure that
there is always at most one client sending a command; i.e.,
we use mutual exclusion, respectively locking.

Still there are quite some problems with this algorithm.
What happens if the node holding the locks crashes?

12.2 Paxos

A ticket is a weaker form of a lock, with the following
properties:

• Reissuable: A server can issue a ticket, even if previ-
ously issued tickets have not yet been returned.

• Ticket expiration: If a client sends a message to a
server using a previously acquired ticket t, the server
will only accept t, if it is the most recently issued
ticket.

There is no more problem with crashes: If a client crashes
while holding a ticket, the remaining clients are not af-
fected. (At this point the naive ticket protocol is left out)

Algorithm 5: Paxos Client / Proposer

/* Initialization */

1 c /* command to execute */

2 t = 0 /* ticket number to try */

/* Phase 1 */

3 t = t+ 1
4 Ask all servers for ticket t

/* Phase 2 */

5 if a majority answers ok then
6 Pick(Tstore, C) with largest Tstore

7 if Tstore > 0 then
8 c = C
9 end

10 Send propose(t, c) to same majority

11 end

/* Phase 3 */

12 if a majority answers success then
13 Send execute(c) to every server
14 end

Algorithm 6: Paxos Server / Acceptor

/* Initialization */

1 Tmax = 0 /* largest issued ticket */

2 C = ⊥ /* stored command */

3 Tstore = 0 /* ticket used to store C */

/* Phase 1 */

4 if t > Tmax then
5 Tmax = t
6 Answer with ok(Tmax, C)

7 end

/* Phase 2 */

8 if t = Tmax then
9 C = c

10 Tstore = t
11 Answer success

12 end

Unlike previously mentioned algorithms, there is no step
where a client explicitly decides to start a new attempt
and jumps back to Phase 1. This has the advantage that
we do not need to be careful about selecting good values
for timeouts, as correctness is independent of the decisions
when to start new attempts. The performance can be im-
proved by letting the servers send negative replies in Phase
1 or 2 if the ticket expired. Using randomized backoff we
can eliminate contention between clients.

Theorem: If a command c is executed by some servers,
all servers (eventually) execute c.

Note that Paxos cannot make progress if half (or more)
of the servers crash, as clients cannot achieve a majority
anymore.

For state replication we need to be able to execute multiple
commands, we can extend each instance with an instance
number, that is sent around with every message. Once
the 1st command is chosen, any client can decide to start
a new instance and compete for the 2nd command. If a
server did not realize that the 1st instance already came
to a decision, the server can ask other servers about the
decisions to catch up.

12

13 Consensus

13.1 Two Friends

A protocol used in a network with unreliable connections
that relies on ACKing might not terminate: If A sends to
B and expects an ACK, B also needs A to ACK the ACK
message and so on. This cannot terminate.

13.2 Consensus

There are n nodes, f of which might crash. n − f nodes
are correct. Each node i starts with an input vi. All nodes
must decide on one of those values, satisfying the following:

• Agreement: all correct nodes decide for the same
value

• Termination: all correct nodes terminate in finite
time

• Validity: the decision value must be the input value
of some node

We assume that the links are reliable and that each node
can send to each other node. However there is no broad-
cast, a node can only send individual messages. If we study
Paxos carefully, we will notice thatPaxos does not guar-
antee termination.

13.3 Impossibility of Consensus

We restrict the input values to be either 0 or 1. Even with
this simplification, there is no algorithm which solves the
consensus problem.

In the asynchronous model, algorithms are event based
(upon receiving msg, do ...). Nodes cannot access a syn-
chronous clock. A message from a node to another will
arrive in finite but unbounded time. This is a formaliza-
tion of the variable message delay model.

For algorithms in the asynchronous model, the runtime
is the number of time units from the start of the execution
to its completion in the worst case (assuming a delay of at
most one time unit).

We say that a system is fully defined (at any point during
the execution) by its configuration C. The configuration
includes the state of every node, and all messages that

are in transit. A configuration if univalent, if the deci-
sion value is determined independently of what happens
afterwards, else we call it bivalent. We might also call a
configuration that is univalent for a value v v-valent.

Lemma: There is at least one selection of input values V
such that the according initial configuration C0 is bivalent,
if f > 1. (We are gonna omit the proofs)

A transition from configuration C to a following config-
uration Cτ is characterized by an event τ = (u,m), where
node u receives a message m.

The configuration tree is a directed tree of configura-
tions. Its root is C0 which is fully characterized by the
input values V . The edges of the tree are transitions; ev-
ery configuration has all applicable transitions as outgoing
edges. Leaves are terminal configurations.

Lemma: Assume two transitions τ1, τ2 for u1 ∕= u2 which
are both applicable to C. It holds that Cτ1τ2 = Cτ2τ1 .

A configuration is critical if C is bivalent, but all config-
urations that are direct children of C are univalent. Infor-
mal we can say that C is the last moment in the execution
where the decision is not yet taken.

Lemma: If a system is in a bivalent configuration, it must
reach a critical configuration within finite time, or it does
not always solve consensus.

Lemma: If a configuration tree contains a critical config-
uration, crashing a single node can create a bivalent leaf.

From these lemmas we derive that there is no determinis-
tic algorithm which always achieves consensus in the asyn-
chronous model, while f > 0. If f = 0 all nodes can
simply send their value to all other nodes and then choose
the minimum.

13.4 Randomized Consensus

As there exists no deterministic solution, we use random-
ness. In the following we assume f < n/2.

The basic idea of a possible algorithm is that each node
chooses vi at random until a majority gets the same re-
sulting value.

Algorithm 7: Randomized Consensus (Ben-Or)

1 vi ∈ [0, 1] /* input bit */

2 round = 1
3 decided = false

4 Broadcast myValue(vi, round)

5 while true do

/* Propose */

6 Wait until a majority of myValue messages of
the current round arrived

7 if all messages have the same value v then
8 Broadcast propose(v, round)
9 else

10 Broadcast propose(⊥, round)
11 end

12 if decided then
13 Broadcast myValue (vi, round+1)
14 Decide for vi and terminate

15 end

/* Vote */

16 Wait until a majority of propose messages of
current round arrived

17 if all message propose the same value v then
18 vi = v
19 decided = true

20 else
21 if there is at least on proposal for v then
22 vi = v
23 else
24 Choose vi randomly, with Pr[vi = 0] =

Pr[vi = 1] = 1/2
25 end

26 end
27 round += 1
28 Broadcast myValue(vi, round)

29 end

As long as no node decides and terminates, the algorithm
will never get stuck, independent of which nodes crash.
Further the algorithm satisfies the validity, the agreement
and the termination requirement (expected O(2n)).

There is no consensus algorithm for the asynchronous
model that tolerates f ≥ n/2.

13

We have seen that the algorithm solves consensus with op-
timal fault-tolerance but it is awfully slow. The reason for
this is the individual coin tossing. We can improve this by
tossing a so-called shared coin.

13.5 Shared Coin

Instead of picking each value with probability 1/2, we use
the shared coin to introduce randomness.

Algorithm 8: Shared Coin

1 Choose local coin cu = 0 with probability 1/n, else
cu = 1

2 Broadcast myCoin(cu)

3 Wait for n− f coins and store them in a local coin
set Cu

4 Broadcast myCoinSet(Cu)

5 Wait for n− f coin sets
6 if at least one coin is 0 among all coins in the coin

sets then
7 return 0
8 else
9 return 1

10 end

If f < n/3, the algorithm implements a shared coin. Plug-
ging this into our randomized algorithm, we get a con-
sensus algorithm which terminates in a constant expected
number of rounds tolerating up to f < n/3 crash failures.

14 Byzantin Agreement

In some sort, byzantine agreement is the generalization of
consensus. A node which can have arbitrary behavior is
called byzantine. This includes sending wrong messages,
different messages to different neighbors lying about input
values and crashing.

Fining consensus in a system with byzantine nodes is called
byzantine agreement. An algorithm is f -resilient if it
still works correctly with f byzantine nodes. If a algo-
rithms solves the byzantine agreement, it solves consensus,
too.

For an byzantine agreement, we need agreement, termina-
tion and validity. While the first two aspects are defined

as before, validity is not that straight-forward.

14.1 Validity

There are four possible definitions for validity:

• Any-Input Validity - The decision value must be
the input of any node. This does not make sense for
byzantine nodes, as they can lie about their inputs.

• Correct-Input Validity - The decision value must
be the input of a correct node.

• All-Same Validity - If all nodes start with the same
input value, the decision value must be this input
value.

• Median Validity - If the input values are orderable,
byzantine outliers can be prevented by agreeing on a
value close to the median of the correct input values.
How close depends on the number of byzantine nodes
f .

First, we will only look at the synchronous model, where
nodes operate in synchronous rounds. In each round, each
node may send a message, receive messages, and do some
local computation. For algorithms in the synchronous
model, the runtime is simply the number of rounds from
the start of the execution to its completion in the worst
case.

14.2 How Many Byzantine Nodes?

Algorithm 9: Byzantine Agreement with f = 1

1 Code for node u, with input value x

/* Round 1 */

2 Send tuple(u, x) to all other nodes
3 Receive tuple(v, y) from all other nodes
4 Store all received tuples in a set Su

/* Round 2 */

5 Send set Su to all other nodes
6 Receive sets Sv from all nodes v
7 T = set of tuples seen in at least two sets Sv,

including own Su

8 Let y be the smallest value in T
9 Decide on value y

If a byzantine node does not follow the protocol, it can
be easily detected and its messages discarded. However, if
it sends syntactically correct messages, bad things might
happen, e.g. if a byzantine node sends different values to
different nodes in the first round.

If n ≥ 4, all nodes have the same set T . Thus, each one will
see every correct value twice. So all correct values are in
T . Based on this insight, we can show that this algorithm
solves byzantine agreement for n ≥ 4.

Further we can show that three nodes cannot reach byzan-
tine agreement and that a larger network cannot reach
byzantine agreement for f ≥ n/3 byzantine nodes.

14.3 The King Algorithm

Algorithm 10: King Algorithm for f < n/3

1 x = my input value
2 for phase = 1 to f + 1 do

/* Vote */

3 Broadcast value(x)

/* Propose */

4 if value(y) received at least n f times then
5 Broadcast propose(y)
6 end
7 if propose(z) received more than f times then
8 x = z
9 end

/* King */

10 Let node vi be the predefined king of phase i
11 The king vi broadcasts its current value w
12 if received strictly less than n - f propose(y)

then
13 x = w
14 end

15 end

This algorithm fulfils the all-same validity. Further if a
correct node proposes x, no other correct nodes proposes
y ∕= x, if n > 3f .

Lemma: There will be at least one phase with a correct
king.

14

Also, after a round with a correct king, the correct nodes
will not change their values anymore. Using all this facts,
its easy to show that this algorithm solves the byzantine
agreement. However, the algorithm needs f +1 predefined
kings. If they are not given beforehand, finding those kings
is a byzantine agreement task by itself, so this must be done
before the King algorithm.

A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f+1 rounds, if the nodes
decide for the minimum value. Since byzantine nodes can
also just crash, this lower bound also holds for byzantine
agreement, so our algorithm has an asymptotically optimal
runtime.

14.4 Asynchronous Byzantine Agreement

What if the nodes only work in a asynchronous manner?

Algorithm 11: Asynchronous Byzantine Agree-
ment (Ben-Or for f < n/10)

1 xu ∈ {0, 1}
2 round = 1

3 while true do
4 Broadcast propose(xu, round)
5 Wait until n− f propose messages of current

round arrived

6 if at least n/2 + 3f + 1 propose messages
contain same value x then

7 Broadcast propose(x, round + 1)
8 Decide for x and terminate

9 else
10 if at least n/2 + f + 1 propose messages

contain same value x then
11 xu = x
12 else
13 choose xu randomly with prob. 1/2
14 end

15 end

16 round += 1

17 end

If a correct node chooses x in line 11, then no other cor-
rect node chooses a value y ∕= x in line 11. The algo-
rithm above solves binary byzantine agreement for up to

f < n/10. There are other algorithms for asynchronous
byzantine agreement which tolerate up to f < n/3. Nearly
all developed algorithms for byzantine agreement (both
synchronous and asynchronous) only satisfy all-same va-
lidity, with some exceptions.

14.5 Random Oracle and Bitstring

A random oracle is a trusted (non-byzantine) random
source which can generate random values.

In the previous algorithm, replace line 13 by ”return ci,
where ci is i-th random bit by oracle”. So instead of ev-
ery node throwing a local coin (and hoping that they all
show the same), the nodes will base their random deci-
sion on the proposed algorithm. Using this, we could solve
asynchronous byzantine agreement in expected constant
number of rounds.

Unfortunately, random oracles do not really exist in the
world. We thus try to use random bitstrings to simulate
the behavior of a random oracle: this is a string of ran-
dom binary values known to all participating nodes when
starting a protocol. So in line 13 we choose the i-th bit
in the random bitstring. But is this really random? Not
quite! As the string is known beforehand, byzantine nodes
know in the i-th step of a protocol the value ci+1. Thus
the algorithm might not terminate.

15 Broadcast and Shared Coin

Our asynchronous byzantine agreement solution is awfully
slow or has unrealistic assumptions. Can we at least solve
asynchronous (assuming worst-case scheduling) consensus
if we have crash failures?

15.1 Shared Coin on Blackboard

The blackboard is a trusted authority which supports two
operations. A node can write its message to the black-
board and a node can read all the values from that have
been written to the blackboard so far. We assume that
the nodes cannot reconstruct the order in which the mes-
sages are written to the blackboard since the system is
asynchronous.

Algorithm 12: Crash-Resilient Shared Coin with
Blackboard

1 while true do
2 Choose new local coin cu with

cu =

1 with probability 1/2

−1 with probability 1/2

3 Write cu to the blackboard
4 Set C = read all coins on the blackboard
5 if |C| ≥ n2 then
6 return sign(sum(C))
7 end

8 end

This is a wait-free algorithm that works even for a worse-
case scheduler for crashing nodes. A single node can single-
handedly generate all n2 coinflips, without waiting. How-
ever, it does not work for byzantine nodes, as such a node
could write in rapid succession at the beginning.

Assuming a trusted blackboard does not seem practi-
cal. However, fortunately, we can use advanced broadcast
methods in order to implement something like a black-
board with just messages.

15.2 Broadcast Abstractions

A message received by a node v is called accepted if node
v can consider this message for its computation. Best-
effort broadcast ensures that a message that is sent from
a correct node u to another correct node v will eventually
be received and accepted by v.

Reliable broadcast ensures that the nodes eventually
agree on all accepted messages. That is, if a correct node
v considers message m as accepted, then every other node
will eventually consider message m as accepted. The fol-
lowing algorithm satisfies this definition:

15

Algorithm 13:Asynchronous Reliable Broadcast

1 Broadcast own message msg(u)
2 upon receiving msg(v) from v or echo(w,msg(v))

from n− 2f nodes w:
3 Broadcast echo(u, msg(v)
4 end upon
5 upon receiving echo(w,msg(v)) from n− f nodes

w:
6 Accept msg(v)
7 end upon

This algorithm satisfies the following three properties:

• If a correct node broadcasts a message reliably, it will
eventually be accepted by every other correct node.

• If a correct node has not broadcast a message, it will
not be accepted by any other correct node.

• If a correct node accepts a message, it will be even-
tually accepted by every correct node.

This algorithm can tolerate f < n/3 byzantine nodes or
f < n/2 crash failures.

It only makes sure that all messages of correct nodes will
be accepted eventually. This algorithm allows byzantine
nodes to issue arbitrarily many messages, which may result
in problems for protocols where each node is only allowed
to send one message per round.

FIFO reliable broadcast defines an order in which the
messages are accepted in the system. If a node u broad-
casts message m1 before m2, than any node v will accept
m1 before m2.

Algorithm 14: FIFO Reliable Broadcast

1 Broadcast own round r message msg(u, r)
2 upon receiving first msg(v, r) from v for round r

or echo(w,msg(v, r)) from n− 2f nodes w:
3 Broadcast echo(u, msg(v, r)
4 end upon
5 upon receiving echo(w,msg(v, r)) from n− f

nodes w:
6 if accepted msg(v, r − 1) then
7 Accept msg(v, r)
8 end
9 end upon

This algorithm can tolerate f < n/5 byzantine nodes or
f < n/2 crash failures. Further it only only accepts one
message per node. Atomic broadcast makes sure that
all messages are accepted in the same order by every node.
Now we finally have all tools to solve asynchronous con-
sensus.

15.3 Blackboard with Message Passing

Algorithm 15: Crash-Resilient Shared Coin

1 while true do
2 Choose new local coin cu with

cu =

1 with probability 1/2

−1 with probability 1/2

3 FIFO-broadcast coin(cu, r) to all nodes
4 Save all received coins coin(cv, r) in a set Cu

5 Wait until accepted own coin(cu)
6 Request Cv from n− f nodes v, and add newly

seen coins to Cu

7 if |Cu| ≥ n2 then
8 return sign(sum(Cu))
9 end

10 end

This solves asynchronous binary agreement for f < n/2
crash failures. But what about byzantine agreement? We
need even more powerful methods!

15.4 Using Cryptography

Let t, n ∈ N with 1 ≤ t ≤ n. An algorithm that dis-
tributes a secret among n participants such that t partic-
ipants need to collaborate to recover the secret is called a
(t, n)-threshold secret sharing scheme.

Every node can sign its messages in a way that no other
node can forge, thus nodes can reliably determine which
node a signed message originated from. We denote a mes-
sage x signed by node u with msg(x)u.
Those methods allow us to create an algorithm like this:

Algorithm 16: (t, n)-Treshold Secret Sharing

1 Input: A secret s, represented as a real number

/* Secret distribution by dealer d */

2 Generate t− 1 random numbers a1, ..., at−1 ∈ R
3 Obtain a polynomial p of degree t− 1 with

p(x) = s+ a1x+ ...+ at−1x
t−1

4 Generate n distinct x1, ..., xn ∈ R\{0}
5 Distribute share msg(x1, p(x1))d to node v1, ...,

msg(xn, p(xn))d to node vn

/* Secret recovery */

6 Collect t shares msg(xu, p(xu))d from at least t
nodes

7 Use Lagrange’s interpolation formula to obtain
p(0) = s

This algorithm relies on a trusted dealer who cannot by
byzantine and creates the polynomial. Further the com-
munication between the dealer and the nodes must be pri-
vate, i.e., a byzantine party cannot see the shares sent to
the correct nodes. Using an (f+1, n)-threshold secret shar-
ing scheme, we can encrypt messages in such a way that
byzantine nodes alone cannot decrypt them. This allows
us to solve byzantine agreement for f < n/10 in expected
3 number of rounds.

A hash function U → S is called cryptographic, if for
a given z ∈ S it is computationally hard to find an ele-
ment x ∈ U with hash(x) = z. Examples are the Secure
Hash Algorithm (SHA) and the Message-Digest Algorithm
(MD). With cryptographic hashing, we can implement a
synchronous byzantine shared coin:

Algorithm 17: Simple Synchronous Byzantine
Shared Coin

1 Each node has a public key that is known to all
nodes

2 Let r be the current round of Alg. 11
3 Broadcast msg(r)u, i.e., round number r signed by

node u
4 Compute hv = hash(msg(r)v) for all received

messages msg(r)v
5 Let hmin = minv hv

6 return least significant bit of hmin

16

This algorithm plugged into Alg. 11 solves synchronous
byzantine agreement in expected 3 rounds (roughly) for
up to f < n/10 byzantine failures.

16 Consistency and Logical Time

This section involves concepts already seen in Parallel Pro-
gramming and DMDB.

16.1 Consistency Models

An object is a variable or a data structure storing infor-
mation. Object is a general term for any entity that can
be modified. An operation f accesses or manipulates an
object. The operation f starts at wall-clock time f∗ and
ends at wall-clock time f†. If f† < g∗ we simply write
f < g.

An execution E is a set of operations on one or multiple
objects that are executed by a set of nodes. An execu-
tion restricted to a single node is a sequential execution.
This means that no two operations f and g are concurrent,
i.e., we have f < g or g < f .

Two executions are semantically equivalent if they con-
tain exactly the same operations. Moreover, each pair of
corresponding operations has the same effect in both exe-
cutions.

An execution E is called linearizable (or atomically con-
sistent), if there is a sequence of operations (sequential
execution) S such that:

• S is correct and semantically equivalent to E

• Whenever f < g for two operations f, g in E, then
also f < g in S

A linearization point of operation f is some f◦ ∈ [f∗, f†]. E
is linearizable if and only if there exist linearization points
such that the sequential execution S that results in order-
ing the operations according to those linearization points
is semantically equivalent to E.

An execution E is called sequentially consistent, if there
is a sequence of operations S such that:

• S is correct and semantically equivalent to E

• Whenever f < g for two operations f, g on the same
node in E, then also f < g in S

Every linearizable execution is also sequentially consistent.

linearizability =⇒ sequential consistency

An execution E is called quiescently consistent, if there
is a sequence of operations S such that:

• S is correct and semantically equivalent to E

• Let t be some quiescent point, i.e., for all operations
f we have f† < t or f∗ > t. Then for every t and
every pair of operations g, h with g† < t and h∗ > t
we also have g < h in S

Every linearizable execution is also quiescently consistent.

linearizability =⇒ quiescently consistency

However, sequentially consistent and quiescent consistency
do not imply one another. A system or an implementa-
tion is called linearizable if it ensures that every possible
execution is linearizable. Analogous definitions exist for
sequential and quiescent consistency.

Let E be an execution involving operations on multiple ob-
jects. For some object o we let the restricted execution
E|o be the execution E filtered to only contain operations
involving object o.

A consistency model is called composable if the follow-
ing holds: If for every object o the restricted execution E|o
is consistent, then also E is consistent. Sequential consis-
tency is not composable, but linearizability is.

16.2 Logical Clocks

To capture dependencies between nodes in an implemen-
tation, we can use logical clocks. These are supposed to
respect the so-called happened-before relation.

Let Su be a sequence of operations on some node u and
define → to be the happened-before relation on E :=
S1 ∪ ... ∪ Sn that satisfies the following three conditions:

1. If a local operation f occurs before operation g on
the same node (i.e. f < g), then f → g

2. If f is a send operation of one node and g is the cor-
responding receive operation of another node, then
f → g

3. If f, g, h are operations such that f → g, g → h then
also f → h

If for two distinct operations f, g neither f → g nor g → f ,
then we also say f and g are independent and write f ∼ g.
Sequential computations are characterized by → being a
total order, whereas the computation is entirely concurrent
if no operations f, g with f → g exist.

An execution E is called happened-before consistent,
if there is a sequence of operations S such that:

• S is correct and semantically equivalent to E

• Whenever f → g in E, then also f < g in S

This is actually an equivalent definition to sequential con-
sistency.

A logical clock is a family of functions cu that map every
operation f ∈ E on node u to some logical time cu(f) such
that the happened-before relation is respected, i.e., for two
operations g on node u and h on node v:

g → =⇒ cu(g) < cu(h)

If the reverse implication also holds, then the clock is called
a strong logical clock.

Algorithm 18: Lamport Clock

1 Initialize cu := 0
2 Upon local operation: Increment current local

time cu := cu + 1
3 Upon send operation: Increment cu := cu + 1 and

include cu as T in message
4 Upon receive operation: Extract T from message

and update cu := max(cu, T) + 1

This is not an implementation of a strong log- ical clock. To
achieve this, nodes also have to gather information about
other clocks in the system. We can do this with vector
clocks:

17

Algorithm 19: Vector Clock

1 Initialize cu[v] := 0 for all other nodes v
2 Upon local operation: Increment current local

time cu[u] := cu[u] + 1
3 Upon send operation: Increment cu[u] := cu[u] + 1

and include the vector cu as d in message
4 Upon receive operation: Extract vector d from

message and update cu[v] := max(d[v], cu[v]) for
all entries v. Increment cu[u] := cu[u] + 1

We define cu < cv if cu[w] ≤ cv[w] for all entries w and
cu[x] < cv[x] for at least one entry. Then vector clocks are
strong logical clocks.

Usually, the number of interacting nodes is small compared
to the overall number of nodes. Therefore, we do not have
to send the whole vector, but only some entries of the nodes
that are actually communicating. This is called the dif-
ferential technique.

16.3 Consistent Snapshots

A cut is some prefix of a distributed execution. More
precisely, if a cut contains an operation f on some node
u, then it also contains all the preceding operations of u.
The set of last operations on every node included in the
cut is called the frontier of the cut. A cut C is called
consistent if for every operation g in C with f → g, C
also contains f .

A consistent snapshot is a consistent cut C plus all mes-
sages in transit at the frontier of C. In a consistent snap-
shot it is forbidden to see an effect without its cause.

We say that a system is fully defined (at any point dur-
ing the execution) by its configuration. The configuration
includes the state of every node, and all messages that are
in transit (sent but not yet received).

The following algorithm collects a consistent snapshot:

Algorithm 20: Distributed Snapshot Algorithm

1 Initiator: Save local state, send a snap message
to all other nodes and collect incoming states and
messages of all other nodes

2 All other Nodes:
3 Upon receiving a snap message for the first time:

send own state (before message) to the initiator
and propagate snap by adding snap tag to future
messages

4 If afterwards receiving a message m without snap
tag: Forward m to the initiator

Let qu be the number of operations on node u. Then the
number of consistent snapshots (including the empty cut)
in thesequential case is µs := 1 + q1 + q2 + ...+ qn.

The number of consistent snapshots in the concurrent case
is µc := (1 + q1) · (1 + q2) · ... · (1 + qn).

The concurrency measure of an execution E = (S1, ..., Sn)
is defined as the ratio:

m(E) =
µ− µs

µc − µs

Where µ denotes the number of consistent snapshot of E.
This measure of concurrency is normalized.

16.4 Distributed Tracing

A microservice architecture refers to a system composed of
loosely coupled services. These services communicate by
various protocols and are either decentrally coordinated
(also known as ”choreography”) or centrally (”orchestra-
tion”). Microservices are the architecture of choice to im-
plement a cloud based distributed system.

Due to the often heterogeneous technology, a uniform de-
bugging framework is not feasible. Tracing enables track-
ing the set of services which participate in some task, and
their interactions.

A span s is a named and timed operation representing a
contiguous sequence of operations on one node. A span s
has a start time s∗ and finish time s†.

Spans represent tasks, like a client submitting a request or
a server processing this request. Spans often trigger sev-
eral child spans or forwards the work to another service. A

span may causally depend on other spans. The two possi-
ble relations are ChildOf and FollowsFrom references.

In a ChildOf reference, the parent span depends on the re-
sult of the child, and therefore parent and child span must
overlap. In FollowsFrom references parent spans do not
depend in any way on the result of their child spans (the
parent just invokes the child).

A trace is a series-parallel directed acyclic graph repre-
senting the hierarchy of spans that are executed to serve
some request. Edges are annotated by the type of the ref-
erence, either ChildOf or FollowsFrom.

The following algorithm shows what is needed if you want
to trace requests to your system.

Algorithm 21: Inter-Service Tracing

1 Upon requesting another service: Inject
information of current trace and span (IDs or
timing information) into the request header.

2 Upon receiving request from another service:
Extract trace and span information from the
request header and create new span as child span.

All tracing information is collected and has to be sent to
some tracing backend which stores the traces and can pro-
vide a frontend to understand what is going on.

17 Time, Clock and GPS

17.1 Time and Clocks

We define a second based on the oscillation cycles of a
caesium-133 atom.

The wall-clock time t∗ is the true time (a perfectly accurate
clock would show).

A clock is a device which tracks and indicates time. Its
time t is a function of the wall-clock time t∗, t = f(t∗).
Ideally, f is the identity function.

The clock error or clock skew is the difference between
two clocks. In practice the clock error is often modeled as
t = (1 + δ) · t∗ + · t∗. Accurate timekeeping and clock
synchronization are very important problems.

18

The drift δ (left) is the predictable clock error. It is rela-
tively constant over time, but can vary with supply voltage,
temperature etc. Stable clock sources are more expensive
and larger. Clock drift is indicated in parts per million
(ppm). One ppm corresponds to a time error growth of
one microsecond per second.

The jitter is the unpredictable, random noise of the clock
error. It is the irregularity of the clock and can vary fast.

17.2 Clock Synchronization

Clock synchronization is the process of matching multiple
clocks to have a common time. There is a trade-off between
accuracy, convergence time and cost.

Algorithm 22: Network Time Protocol (NTP)

1 Client u and Server v

2 while true do
3 Node u sends request to v at time tu
4 Node v receives request at time tv
5 Node v processes the request and replies at

time t′v
6 Node u receives the response at time t′u

7 Propagation delay: δ =
(t′u−tu)−(t′v−tv)

2
8 Clock skew:

θ =
(tv−(tu+δ))−(t′u−(t′v+δ))

2 =
(tv−tu)+(t′v−t′u)

2
9 Node u adjusts clock by +θ

10 Sleep before next synchronization

11 end

Most NTP servers are public and answer to UDP packets.
There is a hierarchy of NTP servers in a forest structure.
Despite unpredictable clock errors, we can limit the maxi-
mum error by using regular synchronization.

The Precision Time Protocol (PTP) is a clock synchro-
nization protocol similar to NTP, but which uses medium
access control (MAC) layer timestamps. This removes
the unknown time delay incurred through message pass-
ing through the network stack. This way, we can achieve
sub-microsecond accuracy in local networks.

Global synchronization establishes a common time be-
tween any two nodes in the system. NTP and PTP both
optimize for global synchronization. However, two nodes
may receive their timestamps through different paths of
the forest, accumulating different errors. Thus, a message
from u might arrive at v with a timestamp from the future.

We can easily achieve local time synchronization by con-
stantly exchanging the current time with the one from the
direct neighbors and taking the average/median. This is a
method of choice for time-division multiple access (TDMA)
and coordination in wireless networks.

In wireless networks, one can simplify synchronization:

Algorithm 23: Wireless Clock Synchronization
with Known Delays

1 Given: transmitter s, receivers u, v, with known
transmission delays du, dv from transmitter s,
respectively

2 s sends signal at time ts
3 u receives signal at time tu
4 v receives signal at time tv

5 ∆u = tu − (ts + du)
6 ∆v = tv − (ts + dv)

7 Clock skew between u and v: θ = ∆v −∆u

17.3 Time Standards

The International Atomic Time (TAI) is a time stan-
dard derived from over 400 atomic clocks distributed
worldwide. Using a weighted average over all involved
clocks, TAI is more stable than the best known clock.

A leap second is an extra second added to a minute to
make it irregularly 61 instead of 60 seconds long. This is
used to compensate for the slowing of the Earths rotation.
There are also negative leap seconds (59 instead of 60), but
they were never used so far.

The Coordinated Universal Time (UTC) is a time stan-
dard based on TAI with leap seconds added at irregular
intervals to keep it close to mean solar time at 0◦ longi-
tude. Before, we had GMT which is not based on atomic
clocks and thus got replaced by UTC in 1967.

A standardized format for timestamps, mostly used for
processing by computers, is the ISO 8601 standard. Ac-
cording to this standard, a UTC timestamp looks like this:

1712− 02− 30T07 : 39 : 52Z

T separates the date and time parts while Z indicates the
time zone with zero offset from UTC.

17.4 Clock Sources

There are different clock sources that were used over the
period of time:

• An atomic clock is a clock which keeps time by count-
ing oscillations of atoms. Such clocks are the most
accurate clocks known.

• The system clock in a computer is an oscillator used
to synchronize all components on the motherboard.
Usually, a quartz crystal oscillator with some tens
/ hundreds of MHz is used (precision of some ns).
The CPU clock is generated using a multiple of the
system clock (through a clock multiplier).

To guarantee nominal operation of the computer, the
system clock must have low jitter. The drift, on the
other hand, is irrelevant. The system clock only runs
when the computer is on.

• The real-time clock (RTC) in a computer is a bat-
tery backed oscillator which is running even if the
computer is shut down or unplugged. It is read at
startup to initialize the system clock. Even if a com-
puter is not connected to a network, it keeps its time
close to the GTC. It’s frequency is often exactly 215
Hz, which allows more simple binary counter circuits
to be used.

• A radio time signal is a time code transmitted via
radio waves by a time signal station, referring to
a time in a given standard such as UTC. Radio-
controlled clocks are the most common application
of such clocks.

• A power line clock measures the oscillations from
electric AC powerlines, e.g. at 50Hz. E.g. clocks
in kitchen ovens are driven by such clocks. It is rel-
atively stable and uses very little energy, but it is
quite imprecise.

19

• Sunlight time synchronization is a method of recon-
structing global timestamps by correlating annual so-
lar patterns from light sensors length of day mea-
surement. Its relatively inaccurate, but well-suited
for long-time measurements with data storage and
post-processing.

The most popular source of time is probably GPS.

17.5 GPS

The global positioning system (GPS) is a global naviga-
tion satellite system (GNSS), consisting of at least 24 satel-
lites orbiting around the world, each continuously trans-
mitting its position and times code.

Positioning is done in space and time! GPS provides infor-
mation of those two anywhere on Earth where at least four
satellite signals can be received. Signal delay is between
64 and 89 ms.

Pseudo-Random Noise (PRN) sequences are pseudo-
random bit strings. Each GPS satellite uses a unique PRN
sequence with a length of 1023 bits for its signal transmis-
sions. To simplify our math, each PRN bit is either 1 or
-1.

Navigation Data is the data transmitted from satellites,
which includes orbit parameters to determine satellite po-
sitions, timestamps of signal transmission, atmospheric de-
lay estimations and status information of the satellites and
GPS as a whole, such as the accuracy and validity of the
data.

Algorithm 24: GPS Satellite

1 Given: Each satellite has a unique PRN sequence,
plus some current navigation data D (±1).

2 The code below is simplified, only concentrating
on the digital aspects.

3 while true do
4 for all bits Di ∈ D do
5 for j = 0...19 do
6 for k=0...1022 do
7 Send bit PRNk ·Di

8 end

9 end

10 end

11 end

For better robustness, we repeat a single bit multiple times
in the following algorithm (line 5).

The circular cross-correlation is a similarity measure
between two vectors of length N , circularly shifted by a
given displacement d:

cxcorr(a, b, d) =

N−1

i=0

ai · bi+d mod N

The two vectors are most similar at the displacement d
where the sum is maximum. The vector of cross-correlation
values with all N displacements can efficiently be com-
puted using a fast Fourier transform.

Acquisition is the process in a GPS receiver that finds the
visible satellite signals and detects the delays of the PRN
sequences and the Doppler shifts of the signals. The rel-
ative speed between satellite and receiver introduce a sig-
nificant Doppler shift to the carrier frequency which needs
to be found in order to decode a signal:

Algorithm 25: Acquisition

1 Received 1 ms signal s with sampling rate r · 1023
kHz

2 Possible Doppler shifts F , e.g.
{−10kHz,−9.8kHz, ...,+10kHz}

3 Tensor A = 0: Satellite × carrier frequency × time

4 for all satellites i do
5 PRN′

i = PRNi stretched with ratio r
6 for all Doppler shifts f ∈ F do
7 Build modulated PRN′′

i with PRN′
i and

Doppler frequency f
8 for all delays d ∈ {0, ..., 1023 · r − 1} do
9 Ai(f, d) = |cxcorr(s,PRN′′

i , d)|
10 end

11 end

12 end
13 Select d∗ that maximizes maxd maxf Ai(f, d)
14 Signal arrival time ri = d∗/(r · 1023kHz)

Using all the facts from above, we can build a classic GPS
receiver:

Algorithm 26: Classic GPS Receiver

1 h: Unknown receiver handset position
2 θ: Unknown handset time offset to GPS system

time
3 ri: Measured signal arrival time in handset time

system
4 c: Signal propagation speed (GPS: speed of light)

5 Perform acquisition
6 Track signal and decode navigation data
7 for all satellites i do
8 Using navigation data, determine signal

transmit time si and position pi
9 Measured satellite transmission delay

di = ri − si
10 end
11 Solve the following system of equations for h and θ:
12 ||pi − h||/c = di − θ for all i

GPS satellites carry precise atomic clocks, but the receiver
is not synchronized with the satellites. We thus can- not
determine the exact distance between satellite and receiver
(even though timestamps are included). In total, the po-
sitioning problem contains four unknown variables, three
for the handset’s spatial position and one for its time offset
from the system time. Therefore, signals from at least four
transmitters are needed to find the correct solution. How-
ever, more received signals reduce the measurement noise
and increase the accuracy.

An assisted GPS (A-GPS) receiver fetches the satellite
orbit parameters and other navigation data form the Inter-
net. We use this method to reduce the data transmission
time and thus the TTFF from a max. of 30s to 6s.

Another GPS improvement is Differential GPS (DGPS),
where a receiver with a fixed location within a few kilome-
tres of a mobile receiver compares the observed and actual
satellite distances. This error is then subtracted at the
mobile receiver. We can achieve accuracies in the order of
10cm.

A snapshot receiver is a GPS receiver that captures one
or a few milliseconds of raw GPS signal for a position fix.
They aim at the remaining latency that results from the
transmission of timestamps from the satellite every 6 sec-
onds.

20

Coarse Time Navigation (CTN) is a snapshot receiver
positioning technique measuring sub-millisecond satellite
ranges from correlation peaks, like conventional GPS re-
ceivers. A CTN receiver determines the signal transmit
times and satellite positions from its own approximate lo-
cation by subtracting the signal propagation delay from
the receive time. As receiver location/time is not exactly
known, we round to the nearest whole millisecond. How-
ever, this way noise cannot be averaged out well and may
lead to wrong signal arrival time estimates. Usually, this
renders the system of equations unsolvable, making posi-
tioning infeasible!

Collective detection (CD) is a maximum likelihood
snapshot receiver localization method which does not de-
termine an arrival time for each satellite, but rather com-
bines all the available information and take a decision only
at the end of the computation. It is more robust than CTN
as it can tolerate a few low quality signals.

Algorithm 27: Collective Detection Receiver

1 Given: A raw 1 ms GPS sample s, a set H of
location/time hypotheses

2 In addition, the receiver learned all navigation and
atmospheric data

3 for all hypotheses h ∈ H do
4 Vector r = 0
5 Set V = satellites that should be visible with

hypothesis h
6 for satellites i in V do
7 r = r + ri, where ri is expected signal of

satellite i. The data of vector ri
incorporates all available information:
distance and atmospheric delay between
satellite and receiver, frequency shift
because of Doppler shift due to satellite
movement, current navigation data bit of
satellite, etc.

8 end
9 Ph = cxcorr(s, r, 0)

10 end
11 Solution: hypothesis h ∈ H maximizing Ph

17.6 Lower Bounds

In the clock synchronization problem, we are given a net-
work (graph) with n nodes. The goal for each node is to
have a clock such that the clock values are well synchro-
nized, and close to real time. We assume a bounded but
variable drift, i.e. each node has a hardware clock produc-
ing pulses between [1 − , 1 +], << 1 and an arbitrary
jitter in the delivery times. The goal is to design a message-
passing algorithm that ensures that the logical clock skew
of adjacent nodes is as small as possible at all times.

In a network of nodes, the local clock skew is the skew
between neighboring nodes, while the global clock skew is
the maximum skew between any two nodes.

The global clock skew is Ω(D), where D is the diameter of
the network graph. Many natural algorithms manage to
achieve a global clock skew of O(D), so we look at local
clock skew:

Algorithm 28: Local Clock Synchronization at
node v

1 while not done do
2 send logical time tv to all neighbors
3 if Receive logical time tu, where tu > tv, from

any neighbor u then
4 tv = tu
5 end

6 end

This algorithm has a local skew of Ω(n). It was shown that
the local clock skew is in Θ(logD), but any natural clock
synchronization algorithm has a bad local skew. However,
all of these are worse-case bounds; in practice, clock drift
and message delay may not be the worse possible. Under
more realistic (weaker) assumptions, better protocols exist
in theory and in practice.

18 Quorum Systems

In chapters before, we took decisions based on a majority-
approach: if ⌊n/2⌋+ 1 nodes decide for a value, clearly all
nodes must decide for that value. This is very fault toler-
ant, but highly inefficient and not scalable at all! Instead,
we will look at so called quorum.

Let V = {v1, ..., vn} be a set of nodes. A quorum Q ⊆ V
is a subset of these nodes s.t. every two quorums inter-
sect. When a quorum system is being used, a client selects
a quorum Q, acquires a lock on all nodes of Q and when
done leases all locks again. No matter which quorum is
chosen, its nodes will intersect with each other quorum.

A quorum system S is called minimal if ∀Q1, Q2 ∈ S :
Q1 ∕⊂ Q2. The simplest quorum system imaginable con-
sists of just one quorum, which in turn just consists of
one server. It is known as Singleton. In the Majority
quorum system, every quorum has ⌊n/2⌋+ 1 nodes.

18.1 Load and Work

An access strategy Z defines the probability PZ(Q) of ac-
cessing a quorum Q ∈ S s.t.

Q∈S PZ(Q) = 1. We can

define two measurements for quorum systems:

Load:

• The load of access strategy Z on a node vi is

Lz(vi) =

Q∈S,vi∈Q

PZ(Q)

The load is the probability that vi ∈ Q if Q is sam-
pled from S.

• The load induced by access strategy Z on a quorum
system S is the maximal load induced by Z on any
node in S:

LZ(S) = max
vi∈S

LZ(vi)

• The load of a quorum system S is:

L(S) = min
Z

LZ(S)

Work

• The work of a quorum Q ∈ S is the number of nodes
in Q:

W (Q) = |Q|

• The work induced by access strategy Z on a quorum
system S is the expected number of nodes accessed:

WZ(S) =

Q∈Z

PZ(Q) ·W (Q)

21

• The work of a quorum system S is:

W (S) = min
Z

WZ(S)

Note that you cannot choose different access strategies Z
for work and load, you have to pick a single Z for both.
If every quorum Q in a quorum system S has the same
number of elements, S is called uniform.

Let S be a quorum system. Then L(S) ≥ 1/
√
n holds.

18.2 Grid Quorum System

We try to achieve this lower bound for the load with so
called grid quorum systems. Assume

√
n ∈ N, then ar-

range the n nodes in a
√
n ×

√
n grid. The basic grid

quorum consists of
√
n quorums, each containing the full

row and column i.

However, with the simple quorum system, two quorums in-
tersect at two nodes. They could enter a deadlock, if both
quora try to get locks at the same time. By introducing
some kind of ordering (e.g. the one which holds the high-
est lock, i.e. the one with the right-most lock in the last
row, will get the lock), we can solve this problem. There
are different quorum systems which only intersect in one
node, e.g. the ones below:

In the script, there is a detailed algorithm for locking
strategies that prevent deadlocks. There are also other
problems, e.g., what happens when a quorum holds locks
and crashes? Instead of locks we could e.g. use leases
instead of locks (which have a time out).

18.3 Fault Tolerance

If any f nodes from a quorum system S can fail s.t. there
is still a quorum Q ∈ S without failed nodes, then S is
f -resilient. The largest such f is the resilience R(S).

If S is a Grid quorum system where each of the n quorums
consists of a full row and a full column, S has a re- silience
of

√
n− 1: Either, all

√
n nodes on the diagonal fail. Else,

no matter which ≤
√
n−1 nodes fail, there is always a row

and column without failed nodes.

Assume that every node works with a fixed probability p.
The failure probability Fp(S) of a quorum system S is the
probability that at least one node of every quorum fails.
The asymptotic failure probability is Fp(S) for n → ∞.

We have proven the following asymptotic failure probabil-
ities:

• Majority quorum system: failure probability 0

• Grid quorum system: failure probability 1

As we can see, we have a system with optimal load and
one with fault-tolerance. If we want to achieve both, we
need B-Grind quorum systems.

Consider n = dhr nodes, arranged in a rectangular grid
with h · r rows and d columns. Each group of r rows is
a band, and r elements in a column restricted to a band
are called a mini-column. A quorum consists of one mini-
column in every band and one element from each mini-
column of one band. Thus, every quorum has d + hr − 1
elements. The B-Grid quorum system consists of all such
quorums.

Indeed, the asymptotic failure probability of the B-Grid
quorum system is 0.

18.4 Byzantine Quorum System

While failed nodes are bad, they are still easy to deal with:
just access another quorum where all nodes can respond!
Byzantine nodes make life more difficult.

A quorum system S is f -disseminating if the intersection
of two different quorums always contains f + 1 nodes (1),
and for any set of f byzantine nodes, there is at least one
quorum without byzantine nodes (2). If we have some au-
thentication mechanism (the data is self-verifying) in our
system, then (1) is strong enough as the correct node could
verify the data. If this does not hold, then we need another
mechanism.

A quorum system S is f -masking if (1) the intersection of
two different quorums always contains 2f+1 nodes and (2)
for any set of f byzantine nodes, there is at least one quo-
rum without byzantine nodes. The idea behind (1) is that
f + 1 nodes can outvote all the byzantine nodes. Masking
quorum systems need more than 4f nodes.

The loads for these systems are L(S) ≥

(f + 1)/ for

the f -disseminating and L(S) ≥

(2f + 1)/2 for the f -

masking.

A f -masking Grid quorum system is constructed as the
grid quorum system, but each quorum contains one full
column and f + 1 rows of nodes, with 2f + 1 ≤

√
n. In

such a system, two quorums overlap by their columns in-
tersecting each others rows the overlap is thus at least
2f + 2 nodes. The f -masking Grid nearly hits the lower
bound, but is not optimal.

22

The M -Grid quorum system on the other hand hits the
lower bound: it is constructed as the grid quorum sys-
tem, but each quorum contains

√
f + 1 rows and

√
f + 1

columns of nodes, with f ≤
√
n−1
2 . For both of these sys-

tems, the load is in Θ(

f/n).

We achieved nearly the same load as without byzantine
nodes! However, as mentioned earlier, what happens if
we access a quorum that is not up-to-date, except for the
intersection with an up-to-date quorum?

We might want to ensure that the number of correct up-
to-date nodes accessed will be larger than the number of
out-of-date nodes and byzantine nodes.

A quorum system S is f -opaque if the following two prop-
erties hold for any set of f byzantine nodes F and any two
different quorums Q1, Q2:

|(Q1 ∩Q2)/F | > |(Q2 ∩ F) ∪ (Q2/Q1)|

(F ∩Q) = ∅ for some Q ∈ S

For a f -opaque system, we need n > 5f . For a f -opaque
quorum system S, we also have L(S) ≥ 1/2.

19 Distributed Storage

How can we store a huge amount of large files across many
nodes in a network? Which components in the network

change over time? Can we do something better than a
global index (what file is stored on which node)?

19.1 Consistent Hashing

We might want to use some sort of hashing, e.g. consis-
tent hashing (we already have seen this concepts in other
lectures).

Algorithm 29: Consistent Hashing

1 Hash the unique file name of each file x with a
known set of hash functions hi(x) → [0, 1), for
i = 1, ..., k

2 Hash the unique name (e.g. IP address and port
number) of each node with the same hash
function h(u) → [0, 1)

3 Store a copy of movie x on node u if h(x) ≈ h(u),
for any i. More formally, store movie x on node u
if :

|hi(x)− h(u)|min
v

{|hi(x)− h(v)|}, for any i

In expectation, each node in this algorithm stores km/n
files, where k is the number of hash functions, m the num-
ber of different files and n the number of nodes.

We can also choose to use pointers, then we can store the
files on any node we like (e.g. a data centre) and let the
weaker nodes simply return the forward pointer to the ac-
tual location. For better load balancing, we might want to
hash multiple times.

In this chapter, we consider nodes with high churn: nodes
are very unreliable and may only be available for a short
amount of time. In this scenario, as hundreds of nodes will
change every second, no single node can have an accurate
picture of all the other nodes in the system. It is impossible
to have a consistent view at any time.

A node will have information about its neighbors (a small
subset of all nodes). Thus, it does not directly know which
node is responsible for what file. Instead, it asks its neigh-
bor who recursively asks its neighbor, too. Thus, the nodes
form a virtual network (an overlay network).

19.2 Hypercubic Networks

Our virtual network should have the following properties:

• The network should be more or less homogeneous,
i.e. no node plays a dominant role and there is no
single point of failure.

• The nodes should have IDs. all the IDs should span
the universe [0, 1).

• Every node should have a small degree. This al-
lows a node to maintain a persistent connection with
each neighbor, allowing us to deal with churn.

• The network should have a small diameter and
routing should be easy. If a node doesnt have the re-
quired information itself, it should know which neigh-
bor it must ask. Within a few hops, we should find
the node containing the correct information.

One possible network topology that can be used are trees.
Routing is very easy, but basic trees are not homogeneous:
the root is a bottleneck. Using fat trees where every edge
connecting v to its parent u has a capacity that is propor-
tional to the number of leaves in the subtree of v.

Another topology are tori and meshes: Let m, d ∈ N, the
(m, d)-mesh M is a graph with node set V = [m]d (vectors
of length d of numbers {1, ..., n}) and edge set

E =

{(a1, ..., ad), (b1, ..., bd) | ai, bi ∈ [m],

d

i=1

|ai, bi| = 1}

The (m, d)-torus T (m, d) is a graph that consists of
an (m, d)-mesh and additionally wrap-around edges

23

from nodes (a1, ..., ai−1,m − 1, ai+1, ..., ad) to nodes
(a1, ..., ai−1, 0, ai+1, ..., ad) for all i ∈ {1, ..., d} and all
aj ∈ [m] with j ∕= i. M(m, 1) is a path, T (m, 1) a cy-
cle and M(2, d) = T (2, d) a d-dimensional hypercube.

Routing on a mesh, torus, or hypercube is trivial. On a
d-dimensional hypercube, to get from a source bitstring s
to a target bitstring t one only needs to fix each ”wrong”
bit, one at a time. There are k! routes with k hops.

We need to map the d-bit IDs to the universe [0, 1). We
can do so, by interpreting the bitstring b = b1...bd as the
number

d
i=1 2

−ibi = (0.b1...bd)2 in binary.

There are many topologies that are similar to hypercubes,
e.g. the Chord architecture. The hypercube connects ev-
ery node with an ID in [0, 1) with every node in exactly
distance 2−i. Chord instead connects nodes with approx-
imately distance 2−i. Many of the following examples are
also derivatives of hypercubes.

19.2.1 Butterfly

The d-dimensional butterfly BF (d) is a graph with node
set V = [d+ 1]× [2]d and edge set E = E1 ∪ E2 where:

E1 = {{(i,α), (i+ 1,α)} | i ∈ [d],α ∈ [2]d}

E2 = {{(i,α), (i+ 1,β)} | i ∈ [d],α,β ∈ [2]d,α⊕ β = 2i}
The node set {(i,α) | α ∈ [2]d} forms the level i of the
butterfly.

The d-dimensional wrap-around butterfly W − BF (d) is
defined by taking the BF (d) and having (d,α) = (0,α) for
all α.

Butterflies have the advantage of a constant node degree
over hypercubes, whereas hypercubes feature more fault-
tolerant routing.

19.2.2 Cube-Connected-Cycles

The cube-connected-cycles network CCC(d) is a graph
with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]} and
edge set E = {{(a, p), (a, p + 1 mod d)} | α ∈ [2]d, p ∈
[d]} ∪ {{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], |a − b| = 2p}.
CCC(3) results from the hypercube by replacing the cor-
ners by cycles. We can represent it in 2 different ways:

19.2.3 Shuffle-Exchange and DeBrujin

The shuffle-exchange and the DeBruijn network are other
ways of transforming the hypercubic interconnection struc-
ture into a constant degree network.

Shuffle-Exchange

DeBrujin

19.2.4 Skip List

The skip list is an ordinary ordered linked list of objects,
augmented with additional forward links. The ordinary
linked list is the level 0 of the skip list. In addition, every
object is promoted to level 1 with probability 1/2. As for
level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next
level with probability 1/2. A special start-object points to
the smallest/first object on each level.

Search, insert, and delete can be implemented in O(log n)
expected time in a skip list. There are obvious variants of
the skip list, e.g., the skip graph.

Back to more general properties of hypercubic networks.
In general, there is a trade o between degree and diam-
eter. Every graph of maximum degree d > 2 and size n
must have a diameter of at least ⌈log n/ log(d− 1)⌉− 2. In
other words, constant-degree hypercubic networks feature
an asymptotically optimal diameter D. Other hypercubic
graphs manage to have a different tradeoff between node
degree d and diameter D.

19.3 DHT and Churn

A distributed hash table (DHT) is a distributed data struc-
ture that implements a distributed storage. A DHT should
support at least (i) a search (for a key) and (ii) an insert
(key, object) operation, possibly also (iii) a delete (key)
operation.

A DHT can be implemented as a hypercubic overlay net-
work with nodes having identifiers such that they span the
ID space [0, 1). We assume that a joining node knows a
node which already belongs to the system. One way to do
this is using some authority for a list of IP addresses of
nodes that might be in the system.

To analyze this network against adversary, we assume that
an adversary can remove and add a bounded number of
nodes. It can choose which nodes to crash/join. Also, the
adversary does not have to wait until the system is recov-
ered before it crashes the next bash of nodes.

Our system is never fully repaired, but always fully func-
tional. An adversary can add/remove at most O(log n)
nodes in a constant time interval. This covers repeatedly
taking nodes down in a DDoS attack. Also we assume no

24

message delays which can be achieved using time synchro-
nization.

Algorithm 30: DHT

1 Given: a globally known set of hash functions hi

and a hypercube network
2 Each hypercube virtual node (”hypernode”)

consist of Θ(log n) nodes
3 Nodes have connections to all other nodes of their

hypernode and to nodes of their neighboring
hypernodes

4 Because of churn, some of the nodes have to
change to another hypernode such that up to
constant factors, all hypernodes own the same
number of nodes at all times

5 If the total number of nodes n grows or shrinks
above or below a certain threshold, the dimension
of the hypercube is increased or decreased by one,
respectively

Thus, each node has Θ(log2 n) neighbors. One can achieve
Θ(log n) with some additional effort.

The balancing of nodes can be seen as a dynamic token dis-
tribution problem on the hypercube. Each hypernode has a
certain number of tokens and the goal is to distribute them
along the edges s.t. all hypernodes end up with roughly
the same number of tokens.

Using DHT with churn, we have a fully scalable, effi-
cient distributed storage system which tolerates O(log n)
worse case joins and/or crashes per constant time interval.
Nodes have O(log n) overlay neighbors and search/insert
take time O(log n).

20 Eventual Consistency

How would one implement an ATM? A naive algorithm
could block if a connection problem occurs. A network
partition is a failure where a network splits into at least
two parts that cannot communicate with each other. We
look at tradeoffs between consistency, availability and par-
tition tolerance.

20.1 Consistency, Availability and Parti-
tions

A system is consistent if all nodes in the system agree
on the current state of the system. Availability means
that the system is operational and instantly processing in-
coming requests. Partition tolerance is the ability of a
distributed system to continue operating correctly even in
the presence of a network partition.

It is impossible for a distributed system to simultaneously
provide consistency, availability and partition tolerance, a
distributed system can fulfil two of these but not all three.

The following algorithm is both partition tolerant and
available:

Algorithm 31: Partition tolerant, available ATM

1 if bank reachable then
2 Synchronize local view of balances between

ATM and bank
3 if balance of customer insufficient then
4 ATM displays error and aborts
5 end

6 end
7 ATM dispenses cash
8 ATM logs withdrawal for synchronization

The ATM’s local view of the balances may diverge from
the balances as seen by the bank, therefore consistency is
no longer guaranteed.

Eventual Consistency - If no new updates to the shared
state are issued, then eventually the system is in a quies-
cent state, i.e., no more messages need to be exchanged be-
tween nodes, and the shared state is consistent. Eventual
consistency is a form of weak consistency. A conflict res-
olution mechanism is required to resolve the conflicts and
allow the nodes to eventually agree on a common state.

20.2 Bitcoin

The Bitcoin network is a randomly connected overlay net-
work of a few tens of thousands of individually controlled
nodes.

The lack of structure is intentional: it ensures that an at-
tacker cannot strategically position itself in the network

and manipulate the information exchange. Nodes commu-
nicate via a broadcasting protocol.

Users can generate any number of private keys. From each
private key a corresponding public key can be derived us-
ing arithmetic operations over a finite field. A public key
may be used to identify the recipient of funds in Bitcoin,
and the corresponding private key can spend these funds.
The Bitcoin network collaboratively tracks the balance in
bitcoins of each address.

Bitcoin, the currency, is an integer value that is trans-
ferred in Bitcoin transactions. This integer value is mea-
sured in Satoshi; 100 million Satoshi are 1 Bitcoin.

20.2.1 Transactions

A transaction is a data structure that describes the trans-
fer of bitcoins from spenders to recipients. It consists of
inputs and outputs. Outputs are tuples consisting of an
amount of bitcoins and a spending condition. Inputs are
references to outputs of previous transactions. Spending
conditions are scripts with a variety of options, e.g. includ-
ing conditions etc. An output is either spent or unspent,
it can only be spent once.

The set of unspent transaction outputs (UTXOs) an some
additional parameters are the shared state of Bitcoin. Lo-
cal replicas of this state may temporarily diverge, but con-
sistency is eventually reestablished. The inputs result in
the referenced outputs spent (removed from the UTXO)
and the new outputs being added to the UTXO. Transac-
tions are broadcast and processed by every node.

25

Algorithm 32: Node Receives Transaction

1 Receive transaction t
2 for each input (h,i) in t do
3 if output (h, i) is not in local UTXO set or

signature invalid then
4 Drop t and stop
5 end

6 end
7 if sum of values of inputs < sum of values of new

outputs then
8 Drop t and stop
9 end

10 for each input (h,i) in t do
11 Remove (h, i) from local UTXO set
12 end
13 for each output o in t do
14 add o to local UTXO set
15 end
16 Forward t to neighbors in the Bitcoin network

The effect of a transaction on the state is deterministic, if
all nodes receive the same set of transactions in the same
order, the state across all nodes is consistent. The outputs
of a transaction may assign less than the sum of inputs,
in which case the difference is called the transaction fee.
Incoming transactions are unconfirmed and are added to a
pool of transactions, the memory pool.

20.2.2 Doublespend

A doublespend is a situation in which multiple trans-
actions attempt to spend the same output. Only one
transaction can be valid since outputs can only be spent
once. When nodes accept different transactions in a dou-
blespend, the shared state across nodes becomes inconsis-
tent.

If doublespends are not resolved the shared state diverges.
We therefore need a conflict resolution mechanism to de-
cide which of the conflicting transactions is to be con-
firmed.

20.2.3 Proof-of-Work (PoW)

Proof-of-Work (PoW) is a mechanism that allows a party
to prove to another party that a certain amount of com-
putational resources has been utilized for a period of time.

A function Fd(c, x) → {true, false}, where difficulty d is
a positive number, while challenge c and nonce x are
bitstrings, is called PoW function if it has the following
properties:

1. Fd(c, x) is fast to compute if d, c, x are given

2. For fixed parameters d, c finding x s.t. Fd(c, x) =
true is computationally difficult but feasible. The
difficulty d is used to adjust the time to find an x

The Bitcoin PoW function is given by:

Fd(c, x) = SHA256(SHA256(c | x)) < 2224

d

This function concatenates c and x, and hashes them twice
using SHA256. There is no better algorithm known to find
a nonce x s.t. Fd(c, x) returns true rather than iterating
over all x. Each node attempts to find a valid nonce for a
node-specific challenge.

20.2.4 Blocks

A block is a data structure used to communicate incre-
mental changes to the local state of a node. It consists of
a list of transactions, a timestamp, a reference to a previ-
ous block and a nonce. It lists some transactions the block
creator (miner) has accepted to its memory pool since the
previous block. A node finds and broadcasts a block when
it finds a valid nonce for its PoW function.

Algorithm 33: Node Creates (Mines) Block

1 block bt = {coinbase tx}
2 while size(bt) ≤ 1 MB do
3 Choose transaction t in the memory pool that

is consistent with bt and local UTXO set
4 Add t to bt
5 end
6 Nonce x = 0, difficulty d, previous block bt1,

timestamp = ts
7 challenge c = (merkle(bt), hash(bt−1), ts, d)
8 while Fd(c, x) not true do
9 x = x+ 1

10 end
11 Gossip block bt
12 Update local UTXO set to reflect bt

The function merkle creates a cryptographic representa-
tion of the set of transactions in bt. With their reference
to a previous block, the blocks build a tree, rooted in the
so called genesis block. The primary goal for using the
PoW mechanism is to adjust the rate at which blocks are
found in the network, giving the network time to synchro-
nize on the latest block.

Finding a block allows the finder to impose the transac-
tions in its local memory pool to all other nodes. Upon
receiving a block, all nodes roll back any local changes
since the previous block and apply the new block’s trans-
actions. Transactions contained in a block are said to be
confirmed by that block.

The first transaction in a block is called the coinbase
transaction. The block’s miner is rewarded for confirm-
ing transactions by allowing it to mint new coins. The
coinbase transaction has a dummy input, and the sum of
outputs is determined by a fixed subsidy plus the sum of
the fees of transactions confirmed in the block.

20.2.5 Blockchain

The longest path from the genesis block to a leaf is called
the blockchain. The blockchain acts as a consistent trans-
action history on which all nodes eventually agree. Only
the longest path from the genesis block to a leaf is a valid
transaction history, since branches may contradict each
other because of doublespends.

Since only transactions in the longest path are agreed
upon, miners have an incentive to append their blocks to
the longest chain, thus agreeing on the current state. If
multiple blocks are mined more or less concurrently, the
system is said to have forked.

Algorithm 34: Node Receives Block

1 Current head bmax at height hmax

2 Receive block b
3 Connect b as a child of its parent p at height hp +1
4 if hp + 1 > hmax and is valid(bt) then
5 hmax = hp + 1
6 bmax = b
7 Compute UTXO for the path leading to bmax

8 Cleanup memory pool

9 end

26

Switching paths is referred to as reorg and may result in
confirmed transactions no longer being confirmed because
the blocks in the new blockchain do not include them.

Forks are eventually resolved and all nodes eventually
agree on which is the longest blockchain. The system there-
fore guarantees eventual consistency.

The is valid function represents the consensus rules of Bit-
coin. All nodes will converge on the same shared state if
and only if all nodes agree on this function.

If the set of valid transactions is expanded, we have a hard
fork. If the set of valid transactions is reduced, we have a
soft fork.

20.3 Smart Contracts

A smart contract is an agreement between two or more
parties, encoded in such a way that the correct execution
is guaranteed by the blockchain.

Contracts allow business logic to be encoded in Bitcoin
transactions which mutually guarantee that an agreed
upon action is performed. Scripts allow encoding com-
plex conditions specifying who may spend the funds under
what circumstances.

Bitcoin provides a mechanism to make transactions invalid
until some time in the future: timelocks. A transaction
may specify a locktime: the earliest time (either Unix
timestamp or blockchain height) at which it may be in-
cluded in a block and therefore be confirmed. Transactions
with a timelock are not released into the network until the
timelock expires. A node receiving the transaction needs
to store it locally until the time expires, then broadcast it.
A transaction t1 can be replaced by another transaction
t0 spending some of the same outputs, if t0 has a earlier
timelock and thus gets broadcast in the network before t1
becomes valid.

When an output can be claimed by providing a single sig-
nature it is called a singlesig output. In contrast the
script of multisig outputs specifies a set of m public keys
and requires k-of-m (k ≤ m) valid signatures from distinct
matching public keys from that set in order to be valid.

Most smart contracts begin with the creation of a 2-of-2
multisig output, requiring a signature from both parties.

Algorithm 35: Parties A and B create a 2-of-2
multisig output o

1 B sends a list IB of inputs with cB coins to A
2 A selects its own inputs IA with cA coins
3 A creates transaction

ts{[IA, IB], [o = cA + cB → (A,B)]}

4 A creates timelocked transaction

tr{[o], [cA → A, cB → B]}

and signs it
5 A sends ts and tr to B
6 B signs both ts and tr and sends them to A
7 A signs ts and broadcasts it to the Bitcoin network

We call ts the setup transaction. It is used to lock in
funds into a shared account. The fund could become un-
spendable if one of the parties could not collaborate to
spend the multisig output. Thus, we also introduce tr, the
refund transaction, which guarantees that, if funds are not
spend before the timelock expires, the funds are returned
to the respective party.

Using this algorithm, we can implement a micropayment
channel:

Algorithm 36: Simple Micropayment Channel
from s to r with capacity c

1 cs = c, cr = 0
2 s and r create a smart contract with output o with

value c from s
3 Create settlement transaction

tf [o], [cs → s, cr → r]

4 while channel open and cr < c do
5 In exchange for good with value δ
6 cr = cr + δ
7 cs = cs − δ
8 Update tf with outputs [cr → r, cs → s]
9 s signs and sends tf to r

10 end
11 r signs last tf and broadcasts it

This channel can be used for rapidly adjusting micropay-

ments from spender to recipient. Only 2 transactions are
sent in the whole process, even though there may have
been any number of updates to the settlement transaction,
transferring more of the shared output to the recipient.
The number c of bitcoins used to create the channel is the
maximum total that can be transferred over this channel.

At any time the recipient r is guaranteed to eventually re-
ceive the bitcoins, since she holds a fully signed settlement
transaction. The simple micropayment channel is intrin-
sically unidirectional. Since the recipient may choose any
of the settlement transactions in the protocol, she will use
the one with maximum payout for her.

20.4 Weak Consistency

Eventual consistency is only one form of weak consistency.
A number of different tradeoffs between partition tolerance
and consistency exist in literature.

In a system with monotonic read consistency, if a node
u has seen a particular value of an object, any subsequent
accesses of u will never return any older values.

Similarly, in a system with monotonic write consis-
tency, a write operation by a node on a data item is com-
pleted before any successive write operation by the same
node.

Read-your-write consistency means that after a node
u has updated a data item, any later reads from node u
will never see an older value.

The following pairs of operations are said to be causally
related:

• Two writes by the same node to different variables.

• A read followed by a write of the same node.

• A read that returns the value of a write from any
node.

• Two operations that are transitively related accord-
ing to the above conditions.

A system provides causal consistency if operations that
potentially are causally related are seen by every node of
the system in the same order. Concurrent writes are not
causally related, and may be seen in different orders by
different nodes.

27

21 Advanced Blockchain

21.1 Selfish Mining

A selfish miner hopes to earn the reward of a larger share
of blocks than its hardware would allow. The selfish miner
achieves this by temporarily keeping newly found blocks
secret.

Algorithm 37: Selfish Mining

1 Idea: Mine secretly, without immediately
publishing newly found blocks

2 Let dp be the depth of the public blockchain
3 Let ds be the depth of the secretly mined

blockchain
4 if a new block bp is published then
5 if ds < dp then
6 Start mining on the newly found block bp
7 end
8 if dp = ds then
9 Publish secretly mined block bs

10 Mine on bs and publish newly found block
immediately

11 end
12 if dp = ds − 1 then
13 Publish all secretly mined blocks
14 end

15 end

It may be rational to mine selfishly, depending on two pa-
rameters α and γ, where α is the ratio of the mining power
of the selfishly miner, and γ is the share of the altruistic
mining power the selfishly miner can reach in the network
if the selfishly miner publishes a block right after seeing a
newly published block. Precisely, the selfishly miner share
is:

α(1− α)2(4α+ γ(1− 2α))− α3

1− (1 + (2− α)α)

If the miner is honest (altruistic), then a miner with com-
putational share α should expect to find an α fraction of
the blocks.

21.2 Ethereum

Ethereum is a distributed state machine. Unlike Bitcoin,
Ethereum promises to run arbitrary computer programs in
a blockchain.

Like the Bitcoin network, Ethereum consists of nodes that
are connected by a random virtual network. These nodes
can join or leave the network arbitrarily. There is no cen-
tral coordinator. Users broadcast cryptographically signed
transactions in the network. Nodes collate these transac-
tions and decide on the ordering of transactions by putting
them in a block on the Ethereum blockchain.

Smart contracts are programs deployed on the Ethereum
blockchain that have associated storage and can execute
arbitrarily complex logic. They are written in higher level
programming languages like Solidity, Vyper, etc. and are
compiled down to EVM (Ethereum Virtual Machine) byte-
code. They cannot be changed after deployment. But most
smart contracts contain mutable storage, and this storage
can be used to adapt the behavior of the smart contract.

Ethereum knows two kinds of accounts. Externally
Owned Accounts (EOAs) are controlled by individu-
als, with a secret key. Contract Accounts (CAs) are
for smart contracts. CAs are not controlled by a user.

An Ethereum transaction is sent by a user who controls
an EOA to the Ethereum network. A transaction contains:

• Nonce: This ”number only used once” is simply a
counter that counts how many transactions the ac-
count of the sender of the transaction has already
sent.

• 160-bit address of the recipient.

• The transaction is signed by the user controlling the
EOA.

• Value: The amount of Wei (the native currency of
Ethereum) to transfer.

• Data: Optional data eld, which can be accessed by
smart contracts.

• StartGas: A value representing the maximum
amount of computation this transaction is allowed
to use.

• GasPrice: How many Wei per unit of Gas the sender
is paying. Miners will probably select transactions
with a higher GasPrice.

There are three types of transactions:

• A Simple Transaction in Ethereum transfers some
of the native currency, called Wei, from one EOA to
another.

• A Smart Contract Creation Transaction whose
recipient address field is set to 0 and whose data
field is set to compiled EVM code is used to de-
ploy that code as a smart contract on the Ethereum
blockchain. The contract is considered deployed af-
ter it has been mined in a block and is included in
the blockchain at a sufficient depth.

• A Smart Contract Execution Transaction that
has a smart contract address in its recipient field and
code to execute a speciffic function of that contract
in its data field.

Smart Contracts can execute computations, store data,
send Ether to other accounts or smart contracts, and in-
voke other smart contracts. They can also be programmed
to self destruct. This is the only way to remove them again
from the Ethereum blockchain. Each contract stores data
in 3 separate entities: storage, memory, and stack. Of
these, only the storage area is persistent between transac-
tions.

Gas is the unit of an atomic computation, like swapping
two variables. Complex operations use more than 1 Gas,
e.g., adding two numbers costs 3 Gas.

Transactions are an all or nothing affair. If the entire trans-
action could not be finished within the StartGas limit, an
Out-of-Gas exception is raised. The state of the blockchain
is reverted back to its values before the transaction. The
amount of gas consumed is not returned back to the sender.

In Ethereum, like in Bitcoin, a block is a collection of
transactions that is considered a part of the canonical his-
tory of transactions. Among other things, a block contains:
pointers to parent and up to two uncles, the hash of the
root node of a trie structure populated with each transac-
tion of the block, the hash of the root node of the state
trie (after transactions have been executed).

22 Game Theory

In this chapter, nodes no longer have a common goal but
are selfish. They are not byzantine but try to benefit from

28

a distributed system. Game theory attempts to mathemat-
ically capture behavior in strategic situations, in which an
individual’s success depends on the choices of others.

22.1 Prisoner’s Dilemma

The following is one of the classical examples of game the-
ory. Two prisoners u, v are questioned by the police. They
are both held in solitary confinement and cannot talk to
each other. The prosecutors offer a bargain to each pris-
oner: snitch on the other prisoner to reduce your prison
sentence.

A game requires at least two rational players, and each
player can choose from at least two options (strategies). In
every possible outcome (strategy profile) each player gets
a certain payoff (or cost). The payoff of a player depends
on the strategies of the other players.

A strategy profile is called social optimum (SO) if and
only if it minimizes the sum of all costs (or maximizes pay-
off).

A strategy is dominant if a player is never worse off
by playing this strategy. A dominant strategy profile is
a strategy profile in which each player plays a dominant
strategy.

A Nash Equilibrium (NE) is a strategy profile in which
no player can improve by unilaterally (the strategies of
the other players do not change) changing its strategy. A
game can have multiple Nash Equilibria. If every player
plays a dominant strategy, then this is by definition a Nash
Equilibrium.

Nash Equilibria and dominant strategy profiles are so
called solution concepts. They are used to analyze a game.

The best response is the best strategy given a belief
about the strategy of the other players.

22.2 Selfish Caching

Consider computers in a network who want to access a file
regularly. Each node v ∈ V has a demand dv for the file
and wants to minimize the cost for accessing it. To ac-
cess it, a file can either be cached locally at cost 1 or be
requested from another node u with cost cu→v. If we inter-
pret this game as a graph, then the cost cu→v is equivalent
to the length of the shortest path times the demand dv.

Algorithm 38: Nash Equilibrium for Selfish Min-
ing

1 S = {}
2 while V not empty do
3 Let v be the node maximum demand dv in V
4 S = S ∪ {v}, V = V \{v}
5 Remove every node u from V with cv→u ≤ 1

6 end

Let NE− denote the Nash Equilibrium with the highest
cost (smallest payoff). The Price of Anarchy measures
how much a distributed system degrades because of selfish
nodes. The Price of Anarchy (PoA) is defined as:

PoA =
cost(NE−)

cost(SO)

Let NE+ denote the Nash Equilibrium with the smallest
cost (highest payoff). The Optimistic Price of Anarchy
(OPoA) is defined as:

OPoA =
cost(NE+)

cost(SO)

We have PoA ≥ OPoA ≥ 1. The following shows a net-
work with a Price of Anarchy of Θ(n)

The (Optimistic) Price of Anarchy of selfish caching can
be Θ(n).

22.3 Braess’ Paradox

Consider a game where cars want to travel from s to t.
Some road’s cost depend on the amount of traffic going
through them. There are 1000 cars. Adding a super fast
road with delay 0 can increase the travel time from s to t!

Each driver acts rationally, thus half of them takes the up-
per road and half of them the lower. The time for each
traveler is then 1 + 500/1000 = 1.5.

If we introduce the new road with cost 0 between u and v,
each driver now drives from s → v → u → t, leading to a
total cost of 2 > 1.5.

22.4 Rock-Paper-Scissors

We will consider the classical game of rock-paper-scissors.
No strategy for one player is a Nash Equilibrium: whatever
u chooses, v can always switch its strategy s.t. v wins.

A Mixed Nash Equilibrium (MNE) is a strategy pro-
file in which at least one player is playing a randomized
strategy (choose strategy profiles according to probabili-
ties), and no player can improve their expected payoff by
unilaterally changing their (randomized) strategy. Every
game has a mixed Nash Equilibrium.

The Nash Equilibrium of this game is if both players choose
each strategy with probability 1/3.

29

22.5 Mechanism Design

Whereas game theory analyzes existing systems, there is a
related area that focuses on designing games mechanism
design. The task is to create a game where nodes have an
incentive to behave ”nicely”.

One good is sold to a group of bidders in an auction. Each
bidder vi has a secret value zi for the good and tells his
bid bi to the auctioneer. The auctioneer sells the good to
one bidder for a price p.

For simplicity, we assume that no two bids are the same,
and that b1 > b2 > ...

Algorithm 39: First Price Auction

1 Every bidder vi submits his bid bi
2 The good is allocated to the highest bidder v1 for

the price b1 = p

An auction is truthful if no player vi can gain anything
by not stating the truth. A First Price Auction is not
truthful.

Algorithm 40: Second Price Auction

1 Every bidder vi submits his bid bi
2 The good is allocated to the highest bidder v1 for

the price b2 = p

Truthful bidding is a dominant strategy in a Second Price
Auction.

We can use this mechanism for selfish caching! We need
one node who is first to cache. Every node says for which
price it is willing to cache the file. We pay the node with
the lowest offer and pay it the second lowest offer to ensure
truthful offers.

Any Nash Equilibrium of Selfish Caching can be imple-
mented for free.

Mechanism design assumes that the players act rationally
and want to maximize their payoff. In real-world dis-
tributed systems some players may be not selfish, but ac-
tively malicious (byzantine).

23 The Internet Computer

This was a guest lecture by DFINITY. The internet
computer is a platform to run any computation, using

blockchain technology for decentralization and security.

The internet computer protocol (IPC) coordinates
nodes in independent data centers, jointly performing com-
putation for anyone. It create the internet computer
blockchains. It guarantees safety and liveness of smart
contract execution despite byzantine nodes.

A smart contract is called a canister and stores memory
pages in data and code in the form of webassembly byte-
code. Together they are a collection of replicated state
machines.

Internet computer consensus is based on the assumption
n > 3f an guarantees consensus under asynchrony and
termination under partial synchrony.

Each subnet has a network nervous system (NNS) as a
backbone, performing administrative stuff, and a own pub-
lic key.

Messages are placed in blocks to reach consensus. There
are two types of messages, user to canister and canister
to canister. Forming the blocks is done by a block maker.
A random ranking of the block maker in each round is
introduced by a shared coin.

23.1 HTTP Outcall

Since a smart contract should be able to execute every
computation, we need to think about how to communicate
with the off-chain world. This is done via a oracle service.
The problem is that the oracles must be trusted.

The internet computer can communicate with no interme-
diary. Responses go through consensus to ensure deter-
ministic behavior.

24 Approximate Agreement

We have seen that there is not solution for byzantine agree-
ment for asynchronous networks. If we relax one restric-
tion, we can achieve approximate agreement.

Instead of agreement, we only need -agreement, meaning
honest parties obtain -close outputs. In many applications
such a small error is not a problem.

The algorithm for approximate agreement is iterative,
shrinking the range of the honest values in each iteration
until it is smaller than .

Algorithm 41: Approximate Agreement

1 Distribute your value v
2 Let V denote the multiset of values received
3 Obtain V ′ by discarding outliers from V

4 Compute a new value v′ = minV ′+maxV ′

2

One approach to discard outliers would be to discard the
minimum and maximum value in the set. If even after dis-
carding outliers, honest parties have some common range,
we have convergence.

The asynchronous algorithm, V ≥ n − f and discarding
lowest / highest value, achieves validity and -agreement
for f < n/4. For f < n/3 we still have validity but no
longer -agreement.

24.1 Witness Technique

With this technique we can achieve -agreement for f <
n/3. When receiving values a node sends a witness report,
containing the values received by each node, to all other
nodes. When receiving a witness report, a node checks if
all values have been received and then marks the report.
If n− f reports are marked the output is valid.

With this we achieve agreement for asynchronous nodes
with f < n/3.

24.2 Synchronous Setting

In the synchronous setting approximate agreement can be
used to decrease the number of rounds. Instead of only
using the asynchronous protocol, we can use digital signa-
tures and achieve f < n/2.

Weak broadcast works by sending a signed value v to ev-
ery other node. These nodes in turn forward the received
value including signature and if > f nodes confirmed the
value, we output v.

The synchronous algorithm works similar to the approxi-
mate agreement algorithm for the asynchronous case, but
it uses weak broadcast for sending the values and discards

30

the k lowest and k highest values (assuming n−f+k values
are received).

There are protocols that use approximate agreement and
work for both type of networks (combining the best of both
worlds).

31

