
Visual Computing
by dcamenisch

1 Introduction

This document is a summary of the 2022 edition of the lec-
ture Visual Computing at ETH Zurich. I do not guarantee
correctness or completeness, nor is this document endorsed
by the lecturers. If you spot any mistakes or find other
improvements, feel free to open a pull request at https:

//github.com/DannyCamenisch/vc-summary. This work
is published as CC BY-NC-SA.

cbna

Computer Vison

2 The Digital Image

An image is simply a continuous function over 2 or 3 vari-
ables (XY-coordinates and possibly time). Usually we use
brightness as the value of the function, but other physi-
cal values can also be used. For a computer this is just
a collection of numbers, but instead of continuous values
we have discrete. Note that in real life images are never
completely random and almost always contain some struc-
ture. It is important to know that pixels are not little
squares, they are point measurements.
When taking a picture with a digital camera, we can en-
counter various problems, e.g.:

• Transmission Interference

• Compression Artefacts

• Spilling

• Sensor Noise

2.1 Sampling

When taking an image, we are sampling such a continuous.
When trying to reconstruct the original function, we can
encounter undersampling, i.e. when we loose information
due to a too low amount of sampling points.

Due to undersampling, the result can not be distinguished
from a lower or a higher frequency wave. Signal disguised
as other frequencies is also called aliasing.

Nyquist-Shannon Sampling Theorem
For sine waves we have to sample at half the wave length.
This corresponds to double the frequency, we also call this
the Nyquist Frequency.

2.2 Quantization

Another problem we have to deal with is quantization,
since the real valued function will get digital (integer) val-
ues, it is lossy. Compared to sampling which lets us re-
construct the original function. Simple quantization uses
equally spaced levels with k intervals.

2.3 Image Properties

Image resolution is divided into two parts:

• Geometric Resolution: How many pixels per area

• Radiometric Resolution: How many bits per pixel

2.4 Noise

When taking pictures we can almost always encounter
some noise. A common way to model this is additive gaus-
sian noise:

I(x, y) = f(x, y) + c, c ∼ N (0,σ2)

The signal to noise ratio (SNR) is an index of image qual-
ity:

SNR =
F

σ
, F =

1

XY

X

x=1

Y

y=1

f(x, y)

The usefulness for this metric can vary drastically depend-
ing on the type of image (dark images will have a higher
SNR compared to bright images). Therefore we introduce
peak SNR:

PSNR =
Fmax

σ

3 Segmentation

Image segmentation is often viewed as the ultimate classi-
fication problem, once solved, computer vision is solved. A
complete segmentation of an image is a finite set of disjunct
regions R1, ..., Rn, such that I =

Ri.

3.1 Thresholding

Thresholding is a simple segmentation process, that pro-
duces a binary image by labelling each pixel in or out of the
region of interest. We do this by comparison of the grey
level with a threshold value T . Another, better approach
can be chromakeying. Hereby we measure the distance
from a defined color g:

Iα = |I − g| > T

One limit of thresholding is that it does not consider image
context.

1

https://github.com/DannyCamenisch/vc-summary

3.2 Segmentation Performance

If we want to choose the best performing segmentation
algorithm or determine a good value for T , we need a per-
formance metric. To use automatic analysis, one needs to
know the true classification of each test, for this the test
images have to be segmented by hand.

One performance metric is the ROC curve. This curve
characterizes the error trade-off in binary classification
tasks, by plotting the true positive fraction against the
false positive fraction. We often choose the operating point
on the ROC curve, by assigning cost and values to each
outcome:

• VTN - value of true negative

• VTP - value of true positive

• CFN - cost of false negative

• CFP - cost of false positive

We then choose the point on the ROC curve with the gra-
dient:

β =
N

P
· VTN + CFP

VTP + CFN

3.3 Pixel Connectivity

We try to define which pixels are neighbors.

A 4 (or 8) connected path between p1, pn is a set of pixels
such that every pi is a 4 (or 8) neighbor of pi+1. Now we
can defined a region as 4 (or 8) connected if it contains a
4 (or 8) connected path between any two of its pixels.
With this we can introduce region growing. We start
from a seed point or region and add neighboring pixels

that satisfy the criteria defining a region until we can in-
clude no more pixels. There are different approaches to
selecting the seed and we could also use multiple seeds.
For the inclusion criteria we could choose thresholding or
a distribution model.
Another criteria is a snake (active contour). While each
point along the contour moves away from the seed, it al-
ways has to have some smoothness constraints (minimizing
energy function).

3.4 Distance Measures

Plain background substraction Iα = |I − Ibg| > T , where
Ibg is the background image, we get this by fitting a Gaus-
sian (Mixture) model per pixel. Even better would be:

Iα =

(I − Ibg)⊤Σ−1(I − Ibg) > T

Where Σ is the background pixel appearance covariance
matrix.

3.5 Markov Random Fields

We can add spatial relations with Markov Random Fields
(2D Markov Chains).

Using a graph cut algorithm we can determine the opti-
mal segementation. We can further optimize this by using
iterated graph cut and k-means for learning the colour dis-
tribution (GMM) of the image.

4 Convolution and Filtering

Convolution and filtering are some of the most basic oper-
ations of image processing.

4.1 Filtering

Image filtering is the process of modifying pixels in an im-
age base on some function of a local neighborhood of the
pixel.

4.1.1 Linear Shift-Invariant Filtering

Linear shift-invariant filtering means using linear combi-
nations of neighbors and doing the same for each pixel
(shift-invariant). These filters are often used for low-level
image processing, smoothing / noise reduction, sharpening
and feature detection. Linear operations can be written as:

I ′(x, y) =

(i,j)∈N(x,y)

K(x, y; i, j)I(x, y)

Here I is the input image, I ′ the output image, K is the
kernel and N is the neighborhood. Operations are shift-
invariant if K does not depend on (x, y).

4.2 Correlation

Correlation, e.g. template matching:

2

I ′ = K ◦ I, I ′(x, y) =

(i,j)∈N(x,y)

K(i, j)I(x+ i, y + j)

Correlation takes an input image and a weight mask, then
each pixel gets ”replaced” by the weighted sum of its neigh-
borhood. This can be described as taking multiple input
location and writing one output location.

4.3 Convolution

Convolution, e.g. point spread function:

I ′ = K ∗ I, I ′(x, y) =

(i,j)∈N(x,y)

K(i, j)I(x− i, y − j)

This is similar to the correlation, but the kernel is re-
versed.

I ′(x, y) =

(i,j)∈N(x,y)

K(−i,−j)I(x+ i, y + j)

If K(i, j) = K(−i,−j) we call the operations dual.

Convolution can be described as taking one input location
and writing multiple output location, the opposite of the

correlation. By default we use convolution for filtering. An
example for a kernel would be:

K =

0 0 0
0 2 0
0 0 0

− 1

9

1 1 1
1 1 1
1 1 1

This kernel is used for sharpening by accentuating differ-
ences with the local average. Another example would be:

K =

−1 0 1
−2 0 2
−1 0 1

This kernel looks for differences in the horizontal direction,
this corresponds to finding vertical edges.

4.3.1 What about the Edges?

If we apply our filters to images, we need to deal with
the edges separately. This is due to our window falling
off the edge of the image. There are different techniques
to deal with this problem:

• Extend the image with black border

• Wrap the kernel around the edges

• Copy out the edge

• Mirror the image at the edge

• Vary filter near the edge

4.3.2 Separable Kernels

A kernel is separable, if it can be written as K(m,n) =
f(m)g(n). This means that the kernel can be separated
into a function for the first coordinate and another for the
second coordinate. If this is the case we can apply the
separated functions individually to the image.

A filter is separable, if the kernel matrix has rank 1.

4.3.3 Gaussian Kernel

The idea of the Gaussian Kernel is to weight the contri-
butions of neighboring pixels by nearness.

Gσ =
1

2πσ2
· e−

(x2+y2)

2σ2

We can use the Gaussian Kernel for image smoothing, the
best part being that the kernel is separable. The actual
amount of smoothing depends on σ and the window size.

If we repeatedly apply the Gaussian filter, we produce the
scale space of an image.

4.3.4 High-Pass Filters

High-pass filters are used to detect areas of the image where
a lot is happening (high frequencies). Examples for these
are the Laplacian operator K or the high-pass filter K ′:

K =

0 1 0
1 −4 1
0 1 0

 K ′ =

−1 −1 −1
−1 8 −1
−1 −1 −1

High-pass filters can be used to perform image sharpening
I ′ = I + α|K ∗ I|.

4.3.5 Integral Image

The integral image or summed area table is defined as:
 x

0

 y

0

I(x, y)dydx

It is the sum of all pixels in a rectangle spanned from the
origin to a point (x, y). The integral image can be used
to speed up calculating the convolution with a constant
rectangle.

We can get a high-pass filter from a normalized low-pass
filter by calculating I − L = H.

5 Image Features

Image features are about detecting the location of patterns
in images, e.g. edge detection or facial landmarks.

3

5.1 Template Matching

Given an template t, e.g. template describing an eye, we
want to locate an area, in an image s, that best fits this
template. Alternatively we could also look for areas that
match this template by a certain threshold.

To search for the best match, we try to minimize the mean
squared error. This is the same as maximizing the area
correlation:

r(p, q) =

∞

x=−∞

∞

y=−∞
s(x, y)·t(x−p, y−q) = s(p, q)∗t(−p,−q)

5.2 Edge Detection

For edge detection we need to calculate the gradient mag-
nitude M and the gradient orientation α:

M(x, y) =

δf

δx

2

+

δf

δy

2

α(x, y) = tan−1

δf

δy

δf

δx

We have previously seen kernels that can detect horizontal
edges. To expand on this, we differentiate the following
kernels:

Prewitt

−1 0 1
−1 0 1
−1 0 1

 Sobel

−1 0 1
−2 0 2
−1 0 1

We can also transpose these kernels to detect horizon-
tal edges. From the resulting images (horizontal / ver-
tical edges) we take the log sum squared and use different
thresholds to achieve the final result.

5.2.1 Laplacian Operator

The idea behind the Laplacian operator is to detect dis-
continuities in the second derivative. This corresponds to
detecting zero-crossings. The operator is isotropic (rota-
tionally invariant) and can be implemented with one of the
following kernels:

0 1 0
1 −4 1
0 1 0

 or

1 1 1
1 −8 1
1 1 1

This operator is very sensitive to fine details and noise,
therefore we might need to blur the image first. Addition-
ally it will respond equally to weak and strong edges, so
we want to suppress edges with low gradient magnitude.
Blurring and applying the Laplacian operator can be com-
bined into a convolution with Laplacian of Gaussian (LoG).
Combining LoG with gradient based threshold delivers the
best result.

5.2.2 Canny Edge Detector

The Canny edge detector works by first smoothing the im-
age with a Gaussian filter. Then we compute the gradi-
ent magnitude (Sobel, Prewitt, ...) and the angle of the
gradient. After this we want to apply non-maxima sup-
pression to the gradient magnitude image. Combining this
with double thresholding, to detect strong and weak edge
pixels, and rejecting weak edge pixels not connected with
strong edge pixels, results in the Canny edge detector.

5.3 Hough Transform

Hough transform can be used to find higher order entities
in an image, e.g. lines or circles. The Hough transform
is a generalized template matching technique. Considering
detection of straight lines (y = mx + c), for each edge pixel
there are infinitely many possible lines. We plot these pos-
sible lines in the 2D space formed by its parameters, we
end up with a single line.

If we do this for multiple edge points and subdivide the pa-
rameter space into discrete bins, we can find the bin with
the most possible lines. This gives us the detected line.

There is a problem with this approach, the parameter space
is infinite. To avoid this problem we choose an alternative
parametrization, in this case we represent a line as an angle
and the distance from the origin. Now the representations
in parameter space are not lines but sine waves.

p = x cos θ + y sin θ

Again we find the maxima to find our lines.

4

To find multiple lines we do non-maxima suppression and
keep every strong peek. To expand this concept to circle
detection we simply change the parameter space.

One downside is that two line segments that lie on the same
line but are some difference apart cannot be distinguished
but appear as a single line.

5.4 Keypoint Detection

We might want to only find corners and not edges. We
want this corner localization to be accurate, invariant and
robust. We define the following:

M =

(x,y)∈window

f2
x(x, y) fx(x, y)fy(x, y)

fx(x, y)fy(x, y) f2
y (x, y)

S(∆x,∆y) = (∆x,∆y) M (∆x,∆y)⊤

Hereby fx is the horizontal gradient and fy the vertical
gradient. M is called the structure matrix or nomal ma-
trix. To detect feature points we know try to find points
for which min∆⊤M∆, ||∆|| = 1 is large. This is the same
as maximizing the eigenvalues of M. The eigenvalue allow
us to define a measure of ”cornerness” (smaller k means
more strict):

C(x, y) = detM− k · (trace M)2 = λ1λ2 − k · (λ1 + λ2)
2

If we plot the values for the eigenvalues, we can divide the
space as follows:

This is invariant to rotation since the eigenvalues remain
the same after a rotation. But it is not invariant to scale,
since the window is constant size. To make it scale invari-
ant we can look for strong responses of DoG filter over scale
space and only consider local maxima in both position and
scale space.

To compare different images, e.g. for combining images.
We use thresholded image gradients that are sampled over
an array of locations in scale space. This can then be used
for example to stich images together (SIFT).

6 Fourier Transformation

We have already seen the problem of aliasing. Now we
want to understand how we can avoid aliasing and for this
we introduce the Fourier Transformation.

The idea behind the Fourier transformation is to perform
a change of basis, where the new basis elements are of the
form e−i2π(ux+vy) = cos(2π(ux+ vy))− i sin(2π(ux+ vy))
(u, v are the parameters for the new basis).

F (g(x, y))(u, v) =

R2

g(x, y)e−i2π(ux+vy)dxdy

The basis functions of Fourier transform are eigenfunctions
of linear systems (one of the reasons it is so popular). Dis-
crete Fourier transformation (DFT) can be represented as:

F = Uf

Here U is the Fourier transform base. The vector (u, v)
determines the frequency by its magnitude and the orien-
tation by its direction (only looking at the real part):

6.1 Phase and Magnitude

Since the Fourier transform is complex, it is difficult to
plot. Instead we think of the phase (angle) and magnitude
(length of the vector) of the transform. Note that natural
images have about the same magnitude transform, hence
phase seems to matter more. The phase part seems more
random than the magnitude. Here you can see an example
of the magnitude of an image.

6.2 Properties of the Fourier Transform

We already said that the Fourier transform is linear. Fur-
ther it is important to note that the FT of a Gaussian is a
Gaussian.

5

Convolution Theorem

The FT of the convolution of two functions is the product
of their FT and the other way around:

F ·G = U(f ∗ g), F ∗G = U(f · g)

6.3 Sampling

Now we have a look at aliasing again. We define our sam-
pling function as follows:

Sample2D(f(x, y)) = f(x, y)

∞

i=−∞

∞

j=−∞
δ(x− i, y − j)

Where δ is the Dirac delta function. The FT of a sampled
signal now corresponds to:

F (Sample2D(f(x, y))) =

∞

i=−∞

∞

j=−∞
F (u− i, v − j)

This approach can still lead to aliasing as high frequencies
can lead to trouble. To avoid this we first need to sup-
press high frequencies before sampling. We can do this by
convolution with a low-pass filter, this corresponds to mul-
tiplying the FT with the same filter. As a low-pass filter
we use a Gaussian.

Nyquist Sampling Theorem

To understand why we need to do the low-pass filtering,
we can take a look at the Nyquist sampling theorem: The
sampling frequency must be at least twice the highest fre-
quency (of the signal).

6.4 Signal Reconstruction

In image reconstruction we want to recreate our image
from the samples data. To avoid pixelation we look at
different reconstruction filters.

In the Fourier domain, determining the inverse of a kernel
/ filter becomes a lot easier, as:

F (h)(u, v) · F (h−1)(u, v) = 1

With this we can for example try to remove motion blur
from images. But we have to be careful to regularize our
reconstruction filter to avoid noise amplification.

7 Unitary Transforms

Images can be either written as matrices or as vectors to
make math easier. So a linear image processing system can
be defined as:

g = Af

So we ask ourself the question how to choose A. We say A
is unitary (or orthonormal for real values) if A−1 = AH .
Transformations by unitary matrices are energy conserv-
ing, meaning the length of the transformed vector will stay
the same.
We introduce the following notation: fi one image, F =
[f1, ..., fn] collection of images and Rff = E[fi · fH

i] =

F ·FH

n image collection auto-correlation function. While
unitary transformations preserve the energy, it will often
be unevenly distributed among coefficients. The autocor-
relation matrix of the transformed image will look like this:

Rcc = ARffA
H

The eigenmatrix Φ of Rff is unitary and defined as follows:

7.1 Karhunen-Loeve Transform / PCA

If we choose A = ΦH we get:

Rcc = ΦHRffΦ = ΦHΦΛ = Λ

We can interpret this transformation as follows: ”No other
unitary transformation packs as much energy into the first
k coefficients, where k is arbitrary”. The mean squared ap-
proximation error by choosing only the first k coefficients
is minimized.

The basis images, which are the eigenvectors of the auto-
correlation matrix, are called eigenimages. We can use
eigenimages for recognition tasks, as the high dimensional-
ity of the images space can be reduced to k dimensions. To
perform recogintion, we tailor a KLT / PCA to the specific
set of images we want to recognize, for example this lead
to Eigenfaces.

6

The first principal component is the eigenvector with the
largest eigenvalue. The eigenvalue can be interpreted as de-
noting the variance in the direction of the corresponding
eigenvector. So the principal component shows in which
direction the data is most spread out.

We can summaries the steps of PCA by:

• Subtract mean from the data and normalize

• Store data (images) as columns in a matrix

• Compute the covariance matrix of the resulting ma-
trix

• Perform Eigenvalue Decomposition to get the eigen-
values and eigenvectors

• Sort the eigenvectors by descending value of corre-
sponding eigenvalues

• Take the first k as principal component matrix Uk

• Project any further samples I into this space by
multiplying the sample with the PC-matrix U⊤

k (I −
mean)

To restore a compressed image Ic we compute I = UkIc +
mean.

7.1.1 Fisherfaces

To improve on the short comings of Eigenfaces, Fisherfaces
try to find the direction where the ratio between individual
variance are maximized. As the math behind this is rather
complex, it is left out.

7.2 JPEG Compression

We notice that humans do not resolve high frequencies too
well, therefore we can leave some of them away to reduce
the size of an image.

This is one of the main concepts in JPEG compression. In-
stead of FT, JPEG uses discrete cosine transform (DCT),
which has no imaginary part. We go through the compo-
nents of the DCT in a snake like pattern.

If the coefficients get too small after a certain point, we
simply leave them away. In the end we apply Huffman
encoding to further reduce the size of our image.

JPEG tends to introduce three kinds of distortions:

• General loss of sharpness and oscillations around
high-contrast edges: these are due to approximating
intensity transitions with smooth functions (cosines).

• Blocking structure: image is processed separately for
every 8x8 block, block edges become visible at high
compression ratios.

• Loss of color detail: the program may aggressively
”downsample” chromaticity channels.

8 Pyramids and Wavelets

The scale-space is the family of signals generated by suc-
cessive smoothing with a Gaussian filter. Using the scale-
space we can downsample the image step by step, giving
us an image pyramid.

Such image pyramids can be used for edge tracking, search
for correspondence, etc. One of their main benefits is that
they allow for control of detail and computational costs.

8.1 The Laplacian Pyramid

While the Gaussian pyramid successively suppressed high
frequencies, the Laplacian pyramid represents a different
frequency at each level. This is similar to a bandpass fil-
ter.

With a Laplacian pyramid we mean a difference of Gaus-
sians (DoG). The main benefit is that it removes the redun-
dancy of having the lower frequency parts in every level.

8.2 Wavelet Transform

The Haar transform is one of the most basic wavelets.

7

We can see that the outer vectors correspond to recursively
applying a two-band filter to the bands of the previous
stage (like a pyramid). The Haar transformation has poor
energy compaction, meaning it is not really good for image
compression.

In general wavelet transform works by splitting the signal
into a low frequency and a high frequency pass, then the
process is applied to the low frequency band recursively.

This concept is then again expanded to 2D images.

9 Optical Flow

The goal of optical flow is to estimate motion in videos. It
is used for tracking, motion segmentation, video stabiliza-
tion, compression, etc. Optical flow is defined as apparent
motion of brightness patterns. This definition is impor-
tant, as uniform, moving objects have an optical flow of
zero, while non moving objects with change in lighting can
have an optical flow not equal to zero.

We define I(x, y, t) as the brightness of at (x, y) at time t.
So the optical flow constraint is given by the equation:

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= Ixu+ Iyv + It = 0

9.1 Aperture Problem

If we look at the previous equation, we see that we have
two unknowns u and v, meaning we have an under con-
straint problem. This is called the aperture problem.
The aperture problem refers to the fact that when flow
is computed for a point that lies along a linear feature,
it is not possible to determine the exact location of the
corresponding point in the second image. Thus, it is only
possible to determine the flow that is normal to the linear
feature.

The simplest solution to this problem is called the normal
flow.

u⊥ = − It
|∇I|

∇I

|∇I|

9.2 Regularization

Regularization introduces an additional smoothness con-
straint:

es =

(u2

x + u2
y) + (v2x + v2y)dxdy

Beside the optical flow constraint:

ec =

(Ixu+ Iyv + It)

2dxdy

Now we try to minimize es+λec. This can lead to errors at
boundaries as it is the opposite of what we try to enforce
with the smoothness term.

9.3 Lucas-Kanade

We introduce the assumption of a single velocity for all
pixels within an image patch:

E(u, v) =

x,y∈Ω

(Ix(x, y)u+ Iy(x, y)v + It)
2

We now have the constraints:

dE(u, v)

u
= 0

dE(u, v)

v
= 0

We solve with:

I2x

IxIy
IxIy

I2y

u
v

= −

IxIt
IyIt

This is equivalent to:

MU =

∇I∇I⊤

U = −

∇IIt = b

The Lucas-Kanade algorithm works by computing U for
at each pixel and then solving MU = b. M is singular if
all gradients point in the same direction, i.e. only normal
flow is available.

We can refine our estimates by repeating the process mul-
tiple times and warping one image to the other using the
estimated flow of the previous step.

9.4 Coarse to Fine

There are some failure modes to the local gradient method,
for one if the intensity structure within our window is poor
(uniform area). Another failure mode is when the displace-
ment is too large or the brightness is not constant or if we
have no spatial coherence. To make our approach more
robust, we can again use an image pyramid, first estimat-
ing the optical flow on a coarse image and then iteratively
start using finer images from the pyramid.

9.5 Parametric Motion Models

Global motion models offer more constraint solutions and
integration over larger areas. For affine motions (rotation,
translation, sheer) we introduce the following model:

Ix(a1 + a2x+ a3y) + Iy(a4 + a5x+ a6y) + It = 0

As each pixel provides one constraint in six global un-
knowns, we need a minimum of six pixels. The error we
try to minimize here is again the square loss.

We can change the model further to allow for more types
of transformation / warping of the image. There are also
model that allow for 3D motion.

8

9.6 SSD Tracking

For large displacements we can use template matching, we
do this by defining a small area around the pixel as the
template and match the next image against that template.
This will not work for uniform or noisy patches.

10 Video Compression

One of the main concepts of video compression is that while
the human visual system is specifically sensitive to motion,
some distortions are not as perceivable as in static images.
Visual perception is limited to < 24Hz, but flicker can be
perceived up to > 60Hz.

Bloch’s Law

Up to a time frame of 100ms, it does not matter ”how”
light arrives only the sum, e.g. 10ms of double the inten-
sity is equal to 20ms at the normal intensity.

10.1 Video Format

A video sequence is a bunch of images aligned in a time
sequence. The interlaced video format uses two temporal
shifted half images and increases the frequency from 25Hz
to 50Hz.

Today this is not done anymore, we rather use a progres-
sive format that updates the whole screen at a time.

10.2 Temporal Redundancy

One way of compressing video is to take advantage of simi-
larity between successive frames. Especially for high frame
rates this works well.

The most used representation along the temporal dimen-
sion are predictive methods. There we define three typed
of frames:

• I Frame: Intra-coded frame, independent of all
other frames

• P Frame: Predictively-coded frame, based on the
previous I and P frame

• B Frame: Bi-directionally predicted frame, based
on both the previous and future I and P frames

P frames can send motion vector plus changes. The frames
starting at an I frame until the next I frame is also called a
group of pictures (GOP). Temporal redundancy becomes
inefficient if there are many scene changes or there is a lot
of motion, e.g. confetti.

10.2.1 Motion-Compensation Prediction

One possibility of dealing with a high amount of motion
is to use MC-prediction. Ideally we would partition the
video into moving objects and describe these object mo-
tions. In reality this is very difficult, therefore we partition
each frame into blocks, e.g. 16x16 pixels, and try to de-
scribe the motion of each block.

The algorithm first divides the frames into blocks and then
uses the best matching blocks of the reference frame as
prediction of the blocks in the current frame. For the
block matching we use some best match metric, e.g. mean
squared error or mean average error. The candidate blocks
for the best match can either be determined by looking at
all blocks or select a subset by some assumptions.

If we combine all the motion vectors, we end up with a
motion field for all the blocks. As motion is not limited
to integer-pixel offsets, one could try to estimate sub-pixel
motion by spatial interpolation of the frames. The model
of MC-prediction does not work well for more complex mo-
tions and might produce blocking artifacts.

10.2.2 Bidirectional MC Prediction

Instead of only looking at the previous frame we also take a
look at the next frame. Bidirectional MC-prediction then
estimates the position of a block in the current frame from
either the previous frame, the next frame or the average of
the previous and next frame.

10.3 Video Compression Architecture

Basic video compression architectures use temporal, spa-
tial and color redundancies. Spatial redundancy uses DCT
on the blocks and color redundancy does a color space con-
version. A basic encoder could look as follows:

The corresponding decoder then looks like this:

9

https://www.youtube.com/watch?v=r6Rp-uo6HmI&feature=youtu.be

11 Radon Transform

Radon transformation is often used in medical imaging,
e.g. computed tomography (CT). In CT data collection
works by shooting x-rays through the material we try to
image and collect them on the other side. If we do this
from multiple angles, we can try to reconstruct an image
from the measured data, as different material absorb a dif-
ferent amount of x-rays. We take the logarithm of this
value, since absorption is a multiplicative process.

This can be seen as an image reconstruction problem.

X-rays move along a straight line, at distance s it has in-
tensity l(s) and after traveling δs the intensity is reduced
by δl. The reduction depends on the intensity and the op-
tical density u(s) of the material. For small δs it holds
δl/l(s) = −u(s)δs. This leads to the following equations:

Ifinish = Istart · eR R =

L

u(s)ds

This related to the Radon transform:

Rf(L) =

L

f(x)|dx|

Given the following setup:

We can calculate:

R(p, θ) =

 ∞

−∞

 ∞

−∞
u(x, y)δ(p− x cos θ − y sin θ)dxdy

The Radon transform has the following properties:

• Linearity

• Shifting only changes the p coordinate

• Rotation of the coordinate system also rotates the
Radon transformation

• The Radon transform of a 2D convolution is a 1D
convolution of the Radon transformed function with
respect to p

The following image shows the Radon transform of a
square. We call this a sinogram.

11.1 Backtransformation

Up until know we have seen how to perform a Radon trans-
formation from an image to a sinogram. In reality we want
the opposite, as medical imaging devices give us a sinogram
and we want to reconstruct the image. This is the same as
the question: ”Can we find u(x, y) if we know R(p, θ).

We can compute this with linear algebra, solving the
overdetermined system Kf = g using normal equations.
This solution is not cheap, therefore we are interested in
alternative ways. One possible way of doing this would be
backprojection:

If we do this multiple times, adding more projections, we
end up with a blurred version of the original image.

11.1.1 Fourier / Central Slice Theorem

G(q, 0) = F (q cos 0, q sin 0)

This tells us that the 1D Fourier transformation of the mea-
surement g = Rf (for a fixed θ) is equal to the 2D Fourier
transformation of the object slice f(x, y) evaluated at a
particular point. We can apply this for any orientation θ.

11.1.2 Backprojection Algorithm

The backprojection algorithm works as follows, for each of
the K projection angles θ:

1. Measure projection data Pθ(t)

2. Fourier transform it to find Sθ(w)

3. Multiply by weighting function 2π|w|/K (high-pass
filter)

4. Sum over the image plane and perform 2D inverse
Fourier transform.

There are some practical issues, as it requires many pre-
cise measurements and is sensitive to noise it may lead to
blurring in the final image.

10

12 Sparsity

We can use sparsity for image restoration. The idea be-
hind this is, that a sparse signal is good for representing
structure but not for white Gaussian noise. For this we
model an image as follows:

y
measured image

= x
original image

+ w
noise

Now we perform MAP (maximum a posteriori) estimation:

E(x) =
1

2
||y − x||22 + Pr(x)

Where Pr is a log prior. Some classical priors to use would
be smoothness (λ||Lx||22 or total variation λ||∇x||21.

Let D = [d1, ..., dp] be a set of normalized basis vectors, we
call it dictonary. D is adapted to x if it can represent it
with few basic vectors, meaning a sparse vector α exists,
so that x ≈ Dα.

There are predefined dictionaries, but we can also try to
learn one ourself. We use the following model:

min
α

1

2
||x−Dα||22 + λψ(α)

Here ψ induces sparsity and can be the l0, l1, ... norm (we
call it Lasso if l1 is used). This idea can be expanded
to not only perform denoising, but also do inpainting and
demosaicking.

13 Texture

The key issues for textures are analysis / segmentation,
representing the texture, and synthesis, generating tex-
tures.

13.1 Representing Textures

Textures are made up of stylised subelements, repeated
in meaningful ways. To represent a texture we can try to
find these subelements and represent their statistics. Find-
ing the subelements can be done by applying filters and
looking at the magnitude of the response. Possible filters
could be spots and oriented bars at a variety of different

scales (image pyramids). We do this by building a Lapla-
cian pyramid of the image of the texture and then apply
a number of oriented filters to each level. This represents
image information at a particular scale and orientation.

13.2 Texture Synthesis

There is a variety of approaches to texture synthesis. One
might use a histogram to capture the intensity probability
distribution, but this does not capture any spatial rela-
tions. To improve on that one might use a co-occurrence
matrix, having the probability distributions for intensity
pairs. Other approaches are image-base, trying to perform
”cut and paste”. This is done by assuming Markov prop-
erty and computing P (p|N(p)) (N is the neighborhood of
p).

To synthesize p, just pick one match at random. This can
be expanded to work on patches of images and not single
pixels.

13.2.1 Chaos Mosaic

Another method for image synthesis is using a chaos mo-
saic. It works by tiling the input image, picking random
patches and then smoothing the edges between them. This
works best for random textures but will fail for structured
ones.

Computer Graphics

14 Graphics Pipeline

The graphics pipeline contains all the steps we need to get
from a geometric representation to a image. As an input
we get not only the geometric representation (e.g. triangle
mesh), but also information about materials, lighting and
a virtual camera position.

The pipeline then consists of the following steps:

1. Modeling Transform - Take the object and trans-
forms it into world coordinate space

2. Viewing Transform - Transforms the world coor-
dinate space into camera coordinate space

3. Primitive Processing - Transforms the geometric
representation into a triangle mesh

4. 3D Clipping - Removes triangles not visible to the
camera (objects outside the frustum)

5. Projection to Screen Space - Projects from 3D
camera space to 2D screen space

6. Scan Conversion - Converts triangles to pixels and
interpolates attributes

7. Lighting, Shading, Texturing - Computes color
based lighting, shading and texture map

8. Occlusion Handling - Updates the color buffer us-
ing the depth buffer (z-buffer), deal with objects that
are hidden by other objects

9. Display - Output to the display

If we perform the lighting, shading, texturing step after
the scan conversion, we call it pixel shading, if it is the
other way around, we call it vertex shading.

Programmer’s View

From a programmers point of view the graphic pipeline
looks as follows:

Vertex processing deals with per-vertex operations (ver-
tex shaders) and fragment processing deal with per-pixel
operations (fragment shaders).

15 Light and Colors

To understand colors in computer graphics, we first have
to learn about the real physical properties of colors.

11

15.1 What is light?

Light is a form of electromagnetic radiation, we perceive a
very limited section of the spectrum as visible light.

Light can be a mixture of many wavelength and is typically
defined by the spectral power distribution (SPD). P (λ) de-
fines the intensity of this spectrum at wavelength λ. We
humans then perceive this distribution as colors. A light
ray carries more information than a human can process, so
we project this spectrum onto a 3D subspace given by the
types of cones.

15.2 Anatomy of the Eye

On our retina there are two types of different cells, rods
and cones. While rods respond to intensity only, the cones
respond to color. There are three type of cones, each re-
sponding to a different wavelength (short = blue, medium
= green, long = red). These cones are the reason we
project the infinite dimensional space P (λ) onto a 3D sub-
space.

15.3 Defining the Subspace

When doing this projection we will inherently lose some
information, therefore two different SPD might look the
same to us. There have been multiple attempts to stan-
dardise this subspace and the projection used.

The CIE Primary System

This was one of the the first attempts at standardising the
color subspace. Their approach was to try to define every
color by an additive mixture of the three base colors red,
green, blue. They came up with the following results:

This shows that there are some colors that cannot be re-
produced (negative r value). The CIE XYZ color space
defines transformation from these three curves to a vector
(X,Y, Z).

X =

 ∞

0

P (λ)x̄(λ)dλ

Y =

 ∞

0

P (λ)ȳ(λ)dλ

Z =

 ∞

0

P (λ)z̄(λ)dλ

The transformation matrix from RGB to XYZ is then given
by:

x̄(λ)
ȳ(λ)
z̄(λ)

 =

2.36 −0.515 0.005
−0.89 1.426 0.014
−0.46 0.088 1.009

r̄(λ)
ḡ(λ)
b̄(λ)

These transformed curves have the properties that they
are normalized, positive definite and the ȳ(λ) curve corre-
sponds to the luminance.

As the XYZ color space is 3D, it is often not very practical.
Therefore we normalize the XYZ components and project
it into a 2D space:

x =
X

X + Y + Z
y =

Y

X + Y + Z

To reverse is given by:

X = x · Y
y

Z =
Y

y
− x · Y

y
− Y

Now (x, y) characterize color and Y characterizes bright-
ness. If we plot (x, y) on a plane, we get all the colors of a
single brightness (chromaticity chart).

The primary colors are on the boundary of the horse shoe
and all linear combinations of two colors are on a line. The
line between 380mm and 770mm is called the purple line
and represents colors that are not spectral. Further if we
have a point and draw a straight line connecting it with
white and the pure color on the edge, we end up with a
line sharing the same dominant wavelength. The position
along this line characterizes saturation.

Screens are limited to a combination of three colors (trian-
gle in the chart), so they can not show all possible colors.

Other Color Spaces

The CMY color space is the inverse of the RGB space.

C
M
Y

 =

1
1
1

−

R
G
B

12

The main difference between RGB and CMY is that RGB
is an additive color space, that is every color that can be
represented is a non negative linear combination of the 3
primaries. CMY on the other hand is a subtractive color
space, that is every color that can be represented in CMY
is a non positive linear combination of the 3 primaries.

The HSV color space consists of hue (base color), sat-
uration (purity of color) and value (brighness). This is a
more user oriented color space, as it is rather intuitive to
interact with.

MacAdams ellipses describe an area around a color, such
that everything inside the ellipse is perceptual indistin-
guishable.

The CIELAB and CIELUV color spaces use
MacAdams ellipses and transform the color space, so that
the ellipses become nearly circular.

16 Transformations

Transformations map geometry. In the graphics pipeline
this is mostly used for changing positions and orientations

for objects, projecting them to the screen and animating
objects.

16.1 2D Transformations

• Translation - note that translation is not linear as it
corresponds to vector addition

x′

y′

=

x
y

+

tx
ty

• Scaling
x′

y′

=

sx 0
0 sy

·

x
y

• Rotation

x′

y′

=

cos θ − sin θ
sin θ cos θ

·

x
y

Affine maps are linear in homogeneous coordinates (adding
one dimension). This allows us to perform translations as
a linear operation (p′ = Tp).

• Translation

T =

1 0 tx
0 1 ty
0 0 1

• Scaling

S =

sx 0 0
0 sy 0
0 0 1

• Rotation

R =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

• Shear along x-axis (a) and along the y-axis (b)

SH =

1 a 0
0 1 0
0 0 1

 SH =

1 0 0
b 1 0
0 0 1

When transforming back from the homogeneous coordi-
nates it is important to divide by the last value. We can
easily combine multiple transformation by taking the ma-
trix product.

16.2 3D Transformations

We also want to use homogeneous coordinates in the 3D
space.

• Translation

T =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

• Scaling

S =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

• Rotation - this is not commutative anymore! For
3D rotations we have R−1 = R⊤.

Rx =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

Ry =

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

Rz =

cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

• Shear parallel to the principal planes

SHxy =

1 0 shx 0
0 1 shy 0
0 0 1 0
0 0 0 1

SHxz =

1 shx 0 0
0 1 0 0
0 shz 1 0
0 0 0 1

SHyz =

1 0 0 0
shy 1 0 0
shz 0 1 0
0 0 0 1

13

16.3 Coordinate Systems

A coordinate system represents a point / vector as a linear
combination of orthonormal basis vectors.

p = pxx+ pyy + pzz

A change of coordinate systems consists of a combination
of translation and rotation:

p′ = TRp =

r1 r2 r3 t
0 0 0 1

px
py
pz
1

We are also interested in how the surface normal n is trans-
formed. Given a transformation p′ = Mp the surface nor-
mal is transformed by n′ = (M−1)⊤n.

16.4 Projection

When we want to go from 3D space to 2D space, e.g. when
projecting to screen space, we have to think about perspec-
tive. We differentiate two types of projection.

Perspective projection corresponds to how a camera would
see an object. In perspective projection the lines seem to
converge in some point, these points are called vanishing
points. If we have more than three vanishing points we
have multiple center of projection.

16.4.1 Mathematics of Perspective Projection

If the camera plane is defined by the x and y axis, i.e.
the coordinate system is aligned with the z axis, the math
behind the projection is easy. This is the reason we first
transform from world coordinates to camera coordinates.
For a given focal distance d, the projection is then given

by:

Mp =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

x
y
z
1

 =

x
y
z

z/d

If we transform this back to non homogeneous space, we
end up with:

dx/z
dy/z
d

16.4.2 Mathematics of Parallel Projection

This is a lot simpler and corresponds to:

M =

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

16.4.3 Projections in OpenGL

In OpenGL modelviewMatrix is used to project from ob-
ject to camera space and projectionMatrix projects from
camera to screen space.

17 Lighting and Shading

In lighting we have to differentiate between local and global
illumination models. Local illumination models only con-
sider the direct interaction of a light source with an ob-
ject surface, the global illumination model also considers
indirect lighting. We mostly focus on local illumination
models.

17.1 Measuring Light

Radiometry is the study of measuring electromagnetic ra-
diation, including visible light. We first introduce some
definitions:

• Angle - θ = l
r , for a circle 2π radians

• Solid Angle - Ω = A
r2 , for a sphere 4π steradians

• Direction - point on the unit sphere parameterized
by two angles ω = (θ,φ) (zenith and azimuth)

Now we can define light as consisting of photons with a
position x, a direction ω and a wavelength λ. Each photon
has an energy of hc/λ.

The basic quantities to measure light are then defines as:

• Flux Φ - total amount of energy passing through a
surface or space per time unit

• Irradiance E - flux per unit area arriving at a sur-
face

• Radiosity B - flux per unit area leaving a surface

• Intensity I - flux per solid angle

• Radiance L - intensity per unit area or flux density
per unit solid angle

17.2 Reflection Models

17.2.1 BRDF

Bidirectional Reflectance Distribution Function (BRDF)
models the surface and its reflection of light. The BRDF
provides a relation between incident radiance and differen-
tial reflected radiance.

fr(x,ωi,ωr) =
dLr(x,ωr)

Li(x,ωi) cos θidωi

14

From this we can derive the reflection equation:

Lr(x,ωr) =

H2

fr(x,ωi,ωr)Li(x,ωi) cos θidωi

The reflection equation describes a local illumination
model. BRDF has the ability to express a large variety of
complex materials. There are large libraries of measured
BRDFs for different materials.

17.2.2 Simpler Reflections

These physical based models where for a long time to com-
plex, so a simpler model was used. A material was charac-
terized by a combination of diffuse and specular reflexion.

For diffuse reflection, the BRDF is a constant, since it is
the same value over the whole hemisphere.

Lr(x) = frEi(x)

17.2.3 Phong Illumination

OpenGL uses simplified reflections, one of the most used
models is the phong illumination model.

Ambient Light comes from all directions. Its reflection
is independent of the cameras position, light position and
surface orientation. So we can model the reflection inten-
sity by using a light source and a material parameter.

I = Iaka

Diffuse Reflection is dependent on directed light Ip (light
source position) and the orientation of the source. It still

is independent of the camera position. So we can model
the reflection intensity by either using a cosine or the dot
product using the surface normal.

I = Ipkd cos θ = Ipkd(N · L)

In a very simple model, we can now simply take the sum
of the ambient light and the diffuse reflection.

I = Iaka + Ipkd(N · L)

To improve on this we can add quadratic attenuation due
to spatial radiation (quadratically less energy when moving
away from the source).

I = Iaka + fattIpkd(N · L) fatt =
1

d2L

To further improve we can add the specular reflection. This
depends on the angle between the reflection R and viewing
ray V .

Combining this we end up with a simple but already quite
good model for lighting.

The phong illumination model approximates specular re-
flection by cosine powers. It also makes the whole function
dependent on the wavelength.

Iλ = IaλkaOdλ + fattIpλ[kdOdλ(N · L) + ks(R · V)n]

17.3 Shading Models

We have seen how to calculate the lighting of an object,
now we want to know how to calculate the color per prim-
itive. The simplest model would be to have a single color
per primitive, this is called flat shading and happens in
screen space. This does not look good as a primitive con-
verts to many pixels.

17.3.1 Gouraud Shading

Similar to flat shading, gouraud shading also happens in
screen space. It works by calculating the face normals and
then the vertex normals by averaging the face normals. Af-
ter that we evaluate illumination for each vertex and then
interpolate the vertex colors bilinearly on the current scan
line.

There are a few problems with scan line interpolation. The
first one being perspective distortion, as we interpolate in
the projection plane. Further the interpolation is orienta-
tion dependent and quality depends on the size of primi-
tives.

17.4 Phong Shading

Phong shading happens in object space. It works by
barycentric interpolation of the surface normals. The color
is then determined by the interpolated normal.

15

Phong shading cannot be applied if the normal is not de-
fined.

17.5 Transparency

The typical color format includes an alpha channel, in-
dicating the level of transparency. If we have partially
transparent object, we need to blend the colors of the dif-
ferent objects together. One approach for this is alpha
blending.

The intensity of the opaque object gets filtered by the ob-
ject in front of it.

Iλ = Iλ1
α1∆t+ Iλ2

e−α1∆t ≈ Iλ1
α1 + Iλ2

(1− α1)

To evaluate the alpha blending, we need to have an or-
der to the primitives. This is the reason that we store the
distance even in the screen space representation. Having
that distance value (z-buffering) allows us to apply back
to front rendering of the primitives. However this does
not work anymore if we have intersecting objects.

To solve this problem we use depth peeling. It works by
using multiple passes, each pass renders the next closest
fragment.

18 Geometry and Textures

Geometry plays a fundamental role in CG. At the start, we
need to define how we want to represent geometry in a dis-
crete setting. Source data can be acquired by 3D scanning,
digital modelling, procedural modelling, etc. We mainly
differentiate by data generated on a computer (mesh) vs.
data acquired from real-world object (point cloud).

18.1 Geometry Representation

If we look at geometry representation, we need to think
about storage, acquisition / creating of shapes, editing of
shapes and rendering of shapes.

Parametric Surfaces are surfaces that are defined by a
parameter space. This allows us to simplify the storage
to the position in the parameter space. On the downside,
if there is no parameterisation of a surface, this does not
work.

Subdivision Surfaces are surfaces that are piecewise lin-
ear. By increasing the subdivision, we can increase the
number of surfaces and the precision.

Point Set Surfaces are a collection of points that can be
combined to surfaces.

Polygonal Meshes store the boundary of objects and the
connectivity.

Todays GPU pipelines are optimized for such mesh struc-
tures and therefore provide fast rendering. On a math-
ematical level we define a polygon by a set of ver-
tices V = {v0, ..., vn−1} and a set of edges E =
{(v0, v1), ..., (vn−2, vn−1)}. A polygon is planar and non-
self-intersecting.

A polygonal mesh is a set of connected polygons M =
(V,E, F) where F are the faces of the polygons. It has the
following properties:

• Every edge belongs to at least one polygon

• The intersection of two polygons in M is either
empty, a vertex, or and edge

A manifold is a surface locally homeomorphic to a disk.

In a manifold mesh there are some structures that are not
allowed:

Real-world data is often non-manifold.

18.2 Mesh Data Structures

We want to store the geometry and topology of a polygonal
mesh. This data structure should allow for easy rendering,
support geometry queries and allow for modifications.

Triangle Lists are a simple data structure. On the down-
side, they do not provide information about connectiv-
ity and are largely redundant (vertex gets saved multiple
times).

Indexed Face Set are a lot more efficient, store connec-
tivity and eliminate the redundancy. On the other hand
geometric queries and modifications are costly.

16

18.3 Texture Mapping

On fundamental way to enhance the quality of our render-
ings are texture mapping. Texture mappings increase the
level of detail, without increasing our geometric mesh.

The difficulty is to find this mapping (2D to 3D space),
this can lead to aliasing, blur or level-of-detail issues.

Texture mapping creates a one-to-one mapping between
the texture and the geometry, this is done by parameteri-
zation of our geometric surface. We want the mapping to
have the following properties:

• Low Distortion

• Bijective Mapping

• Efficient to Compute

Finding a good texture map can be done by using a tex-
ture atlas or by finding cuts to transform our 3D surface
into 2D.

18.4 Texture Filtering

When we project our texture to a surface it is subject to
aliasing.

Low-pass filtering can help us avoid this aliasing. A typical
low-pass filter would be the Gaussian filter.

Filtering in texture space is different form filtering in screen
space. If we have an isotropic Gaussian in screen space this
can relate to an anisotropic Gaussian in texture space.

18.5 Light Map

Light maps are a trick to simulate the effect of a local light
source.

They allow for fast and high-quality shadows and lighting
with an unlimited amount of light sources. On the down-
side they are not suited for every lighting model, take up
space, do not work with moving light and take a lot of time
to generate.

18.6 Environment Map

Environmental maps are used to render reflective objects
efficiently. It works by by intersecting the reflected ray
with the surrounding sphere or cube map.

18.7 Bump Mapping

Bump maps are used to perturb surface normal according
to textures, allowing us to represent small-scale geometry
(e.g. pores).

One limitation of bump mapping is that it does not work
on the silhouette.

Normal maps are very similar to bump maps. The differ-
ence is that they contain a bit more information since they
use RGB input and not only black and white.

18.8 Procedural Textures

Combining Perlin noise (or other types of noise) in different
resolutions, allows us to create procedural textures. One
examples for such a texture would be wood textures.

17

19 Processing Signals

This section focused on topic already covered in the first
part of the lecture. Therefore I left out most of the content
and only focused on the new content.

19.1 Antialiasing Filters

We already used Gaussian filters for antialiasing. A Gaus-
sian Filter is a infinite response filter. The downside to this
type of filter is that it is unstable. We mentioned that a
Sinc Filter would be even better (ideal low-pass filter), but
it is extremely hard to implement. B-Splines are another
type of filter we really like, as they are easy to implement
and allow for locally adaptive smoothing.

19.2 Perspective Projection

Equally distributed samples in texture space can get un-
equally distributed when projected into screen space. The
optimal filter is spatially variant.

There are two type of problems that happen when project-
ing. Magnification happens when the pixel in the texture
image maps to an area larger than one pixel. To avoid this
we can simply use bilinear interpolation. Minification
is the oposite, pixels in the texture image map to areas
smaller than one pixel. To deal with this problem we use
mipmapping.

Mipmapping is the process of storing the texture at mul-
tiple resolutions (image pyramid) and choosing the resolu-
tion level depending on the projected size of the triangle.

19.3 Geometric Aliasing

This is another problem that happens at the edges of poly-
gons. Since we our screen space allows for only a limited
number of pixels, we end up with a staircase pattern for the
edges. To lessen this effect we can apply supersampling.

Supersampling introduces multiple color samples per pixel,
which then are averaged. There are multiple possible sam-
pling patterns, including uniform, jittering, stochastic and
poisson. The following shows supersampling using jitter-
ing.

20 Bezier Curves

I would highly recommend watching this YouTube video
for a detailed explanation of the topic.

One way of modelling a geometric object are Bezier curves.
Bezier curves are defines as:

x(t) = b0B
n
0 (t) + ...+ bnB

n
n(t)

Where Bn
i (t) is a Bernstein polynomial of degree n:

Bn
i (t) =

n

i

ti(1− t)n−1 i < 0, i > n : Bn

i (t) = 0

Bernstein polynomials are positive definite and provide
global support. Bezier curves can be thought consecutive
interpolation.

This leads to deCasteljau’s algorithm, O(n2). One of the
downsides when combining Bezier curves is that the are
only C0 smooth.

21 B-Splines

B-Splines are in many ways a improvement over Bezier
curves. They give us control over the continuity and al-
low for local support only. Cubic B-Splines are the most
popular type, but we can define them for arbitrary degree.

A B-Spline s(u) is built from piecewise polynomial bases
and a sequence of knots u0 < u1 < ...

s(u) =

k

i=0

diN
n
i (u)

They have the following properties:

• Partition of Unity:

i N
n
i (u) = 1

• Positivity: Nn
i (u) ≥ 0

• Compact support: Nn
i (u) = 0, u ∕∈ [ui, ui+1]

• Continuity: Nn
i is (n-1) times continuously differ-

entiable

The basis functions are defined as:

Nn
i (u) = (u− ui)

Nn−1
i (u)

ui+n − ui
+ (ui+n+1 − u)

Nn−1
i+1 (u)

ui+n+1 − ui+1

21.1 Tensor Product Surfaces

Getting from a curve to a surface involves taking a tensor
product (outer product). Given two Bezier curves bm(u)
and bn(v) we can create the surface:

bm,n(u, v) =

m

i=0

n

j=0

bi,jB
m
i (u)Bn

j (v)

18

https://www.youtube.com/watch?v=jvPPXbo87ds&t=2384s

22 Subdivision Surfaces

Subdivision surfaces are a generalization of spline curves
/ surfaces. They allow for successive refinement and con-
verge to a smooth surface.

It relies on corner cutting:

1. Insert two new vertices at 1/4 and 3/4 of each edge

2. Remove the old vertices

3. Connect the new vertices

There are multiple algorithms for subdivision, with dif-
ferent properties (applied on polygonal mesh or triangle
mesh, G1 or G2 continuous etc.).

One of these algorithms is the Loop Subdivision. It is a
generalization of box splines and can be used on triangle
meshes. It generates a G2 continuous limit surface:

23 Scan Conversion

Scan conversion (also called rasterization) is the problem
of converting our objects to the discrete pixel space, e.g.
deciding which pixel lie inside our object.

23.1 Scan Conversion of Lines

Bresenham lines choose the closest pixel at each inter-
section. The goal is to have a fast decision which pixel has
to be drawn next. It does this by using the position of the
midpoint m with respect to the intersection point q as a
criterion.

Given f(x, y) = ax + by + c = 0 as the implicit equation
of the straight line, it decides based on d = f(m). If d < 0
select pixel E, else select pixel NE. After the first decision,
we can base our update criterion based on the choice E or
NE.

Pixel NE : dnew = dold +∆y −∆x

Pixel E : dnew = dold +∆y

23.2 Scan Conversion of Polygons

Filled polygons (especially triangles) are the most impor-
tant graphics primitives. The straightforward solution
would be to perform an inside test for each pixel, but this
is very inefficient. Instead we process scan line after scan
line. We call a group of picked pixels inside a scan line a
span. The algorithm then works as follows:

1. Calculate all intersections of the scan line

2. Sort the intersection points by ascending x-
coordinates

3. Fill all spans in between two consecutive intersection
points if the parity is odd

24 Visibility and Shadows

24.1 Visibility

We already encountered the visibility problem, some
parts of some surfaces could be occluded. There are two
possible solutions:

• Painter’s Algorithm - Render objects / polygons
from furthest to nearest. This leads to problems
when there are intersections or cyclic overlaps.

• Z-Buffering - Store depth to the nearest object for
each pixel.

The Z-Buffering algorithm works as follows:

1. Initialize all z values to ∞.

2. For each polygon: If z value of a pixel for this poly-
gon is smaller than the stored z value, replace the
stored z value.

19

The problem with this approach are that the resolution of
the z-buffer is limited, we have to decide how many bits
we need for the depth. If we think about how many bit to
allocate, we also have to take into account that the depth
resolution is not linear.

24.2 Shadows

Shadows are important as they can make an image im-
mediately more realistic. There are different methods of
creating shadows.

24.2.1 Basic Shadows

Planar shadows are the most basic approach, we sim-
ply draw a projection of the object on the ground. It is
limited as it cannot create shadows on curved surfaces or
other objects.

Projective texture shadows uses texture mapping in
a projective way. It works by creating a black and white
image of the object from light. Then it uses this image
as a projective texture. It is again limited as we need to
define the obstacle and the receiver and it does not allow
self-shadows.

24.2.2 Shadow Maps

The fundamental idea of shadow maps it to compute the
depths from the light source. The depth from the light
source gets save to a z-buffer (light source coordinates) we
call this a shadow map. If we then render the scene from
the camera position, we can transform each pixel xC from
the camera coordinate system into the light coordinate sys-
tem xL. By comparing the depth of the corresponding
value from the shadow map d(xL) and the projected point
zL, we can determine if a pixel gets illuminated or not.

One of the main limitations of shadow maps is that there
is a bias. Due to numerical errors it can happen that for a
visible point d(xL) < zL. To avoid this we have to carefully
select a bias to add to d(xL).

Another problem is the field of view. A point to shadow
can be outside the field of view of the shadow map, due to
the camera frustum. A solution to this would be to use a
cubical shadow map or spot lights.

We might also occur aliasing, but we cannot filter depth.
Instead we filter the result of the test by taking a weighted
average of the comparisons.

24.2.3 Shadow Volumes

A third, more geometric, approach to rendering shadows
are shadow volumes. For each light source we can explicitly
represent the volume of space that is inside the shadow. If
a polygon is inside the volume it is inside the shadow. To
determine if a primitive is inside we apply the following
algorithm:

1. Shoot a ray from the camera

2. Increment / decrement a counter each time the
boundary of a shadow volume is intersected

3. If the counter is 0, the primitive is not in the shadow

This can be further optimized using silhouettes. Never-
theless this is very costly, as it introduces a lot of new
geometry and we can only use the optimizations if objects
are watertight.

25 Ray Tracing

The idea behind ray tracing the reverse process of what
we did until now. We start by shooting rays through each
pixel in our image.

The first versions of ray tracing stoped at the first inter-
section with an object and then evaluated the illumination
model for this point (also called ray casting). Nowadays
recursive ray tracing calculates refractions of that ini-
tial ray until we arrive at the light source.

25.1 Forward Ray Tracing

Forward ray tracing would theoretically start at the light
source and trace each ray until it hits the camera. This is
not very efficient as most rays will never hit the camera.

25.2 Backward Ray Tracing

Backward ray tracing therefore does it the other way
round. It traces rays from the camera into the scene un-
til arriving at a light source. This easily solves some of
the problems we previously encountered, e.g. hidden sur-
face problem or transparency. When arriving at a object
we calculate the lighting model for this point by casting
additional rays depending on the type of surface (diffuse,
glossy, specular). Additionally to determine shadows, we
cast a ray towards the light source, if the ray arrives at the
light source our point does not lie inside a shadow.

20

The basic pipeline therefor consists of the following steps:

• Ray Generation

• Intersection

• Shading

This three stages get repeated over and over. If we shoot
multiple ray per pixel (supersampling) we not only improve
the quality, but also implement anti-aliasing.

The ray equation is given by:

r(t) = o+ td

o is the origin of the ray and d the direction. Using this we
can calculate the intersection with various types of primi-
tives, e.g. triangles or spheres.

25.3 Shading

We already said that physically correct shading is too ex-
pensive. Therefore we need to simplify by making some
assumptions. We assume that there are different types of
surface reflectance: diffuse, specular, ambient and trans-
parency terms. Further we use the shadow ray to deter-
mine if a point is illuminated.

26 Acceleration Data Structures

There are three general techniques to speed up ray tracing.
These are fewer intersection computations, fewer rays and
generalized rays. We will focus on the first one, trying to
calculate fewer intersections.

Ray-surface intersection is at the core of every ray tracing
algorithm, the brute force approach computes the inter-
section of every ray with every primitive. That are many
unnecessary ray-surface intersection tests.

Before we look at the actual acceleration data struc-
tures, we need to define the axis aligned bounding box
(AABB). This bounding box aligned with the three axis
of our coordinate system and can be defined by two points
min and max. We can then calculate if a ray intersects a
bounding box by the following calculations:

The main focus of the acceleration data structures is to de-
compose space into disjoint regions and store pointers to
overlapping objects within each region. When rendering
we then have to traverse through regions overlapping the
ray and calculate only the intersections for objects in each
region until a hit is found.

26.1 Uniform Grids

The most basic of these data structures are uniform grids.
We first need to compute the bounding box and then ap-
ply a determined grid resolution (often ∼ 3 3

√
n). Then

we insert objects into cells, prune empty cells and store
references for each object in a cell.

During rendering, we incrementally rasterize the ray and
compute the intersection with objects in each cell until we
found a intersection.

This already gives a huge improvement over the brute fore
approach and can be further refined by using hierarchical
grids.

26.2 Binary Space Partition

There are different type of spacial hierarchies. They all
follow the same divide-and-conquer approach. This again
results in a lot fewer intersection tests.

From left to right we have increasing complexity but also
more flexibility and fewer intersection tests.

26.3 Bounding Volume Hierarchies

Bounding volume hierarchies are an alternative divide-and-
conquer method. It works by decomposing object into
sets (overlapping) and bound them using simple volumes
(spheres, axis-aligned bounding boxes, oriented bounding
boxes). We can either apply top down or bottom up con-
struction for this data structure.

21

27 Animation Physics

Animation is about creating the illusion of motion, e.g.
by rapidly displaying of a sequence of static images that
minimally differ from each other. There are three basic
techniques to animate motion in computers:

• Artist Directed, e.g. using keyframes

• Data Driven, e.g. motion capture

• Procedural, e.g. simulation

27.1 Key Framing

The idea behind key framing is to specify important events
only, computer fills in the rest via interpolation or approx-
imation. We also call this event and they do not have to
be position, it could also be color, lighting, etc.

How do we interpolate data? Linear interpolation is simple
but yields rather rough motion. A more appropriate inter-
polation technique would be to use spline interpolation.

27.2 Splines

In general, a spline is any piecewise polynomial function
defined by data points (ti, fi), so that f(ti) = fi. The only
other condition is that the function is a polynomial when
restricted to any interval between knots.

Most commonly we use cubic splines (degree three). As
cubic polynomials have four degrees of freedom, there are
multiple solutions to interpolate given points. To find a
solutions we need further restrictions, so we match the
derivatives at the endpoints.

27.2.1 Natural Splines

Piecewise spline made up of cubic polynomials pi.

We want that these polynomials are C2 continuous at the
knots. This leaves us with two degrees of freedom remain-
ing, so we have to introduce conditions for the endpoints.
We set the curvature to zero at endpoints, therefore we can
solve this system.

This function now interpolates the data and is C2 contin-
uous everywhere, but there is still a problem. If we move
one knot, it will have an influence on the whole curve (lo-
cality).

27.2.2 Hermite / Bezier Splines

We have already seen B-Splines, they fulfil the locality con-
dition but the C2 continuity is gone. For each knot we have
to additionally specify the tangents. These type of splines
are the most used in computer graphics and animation.

27.2.3 Catmull-Rom Splines

Sometimes makes sense to specify tangents, but often it
is more convenient to just specify values. Catmull-Rom
splines are a specialization of Hermite splines, determined
by values alone. They use difference of neighbors to de-
fine the tangents. Commonly they are used to interpolate
motion in computer animation.

22

