
MATRIX CONCENTRATION INEQUALITIES AND FREE
PROBABILITY II. TWO-SIDED BOUNDS AND APPLICATIONS

AFONSO S. BANDEIRA, GIORGIO CIPOLLONI, DOMINIK SCHRÖDER,
AND RAMON VAN HANDEL

Abstract. The first paper in this series introduced a new family of nonasymp-
totic matrix concentration inequalities that sharply capture the spectral prop-
erties of very general Gaussian (as well as non-Gaussian) random matrices
in terms of an associated noncommutative model. These methods achieved
matching upper and lower bounds for smooth spectral statistics, but only pro-
vided upper bounds for the spectral edges. Here we obtain matching lower
bounds for the spectral edges, completing the theory initiated in the first pa-
per. The resulting two-sided bounds enable the study of applications that
require an exact determination of the spectral edges to leading order, which is
fundamentally beyond the reach of classical matrix concentration inequalities.
To illustrate their utility, we undertake a detailed study of phase transition
phenomena for spectral outliers of nonhomogeneous random matrices.

1. Introduction

Let X be any d × d self-adjoint random matrix with jointly Gaussian entries.
What can we say about its spectrum? As we made no assumptions on the mean and
covariance of the entries, classical methods of random matrix theory shed little light
on this question. Nonetheless, nontrivial bounds on the spectrum are achievable at
this level of generality by means of operator-theoretic results that are often referred
to as matrix concentration inequalities.

The classical such result, the noncommutative Khintchine inequality [36, 15],
estimates any finite moment of a (centered) Gaussian matrix explicitly up to a
constant factor in terms of the covariance of its entries. Stated precisely, for any
self-adjoint Gaussian random matrix X with EX = 0 we have

tr[(EX2)p]
1
2p ≤ E[trX2p]

1
2p ≤

√
2p tr[(EX2)p]

1
2p (1.1)

for p ∈ N, where we define the normalized trace trM := 1
d TrM for any M ∈ Md(C).

Using the basic fact (see (1.5) below) that for any M ∈ Md(C)

tr[|M |2p]
1
2p = (1 + o(1))∥M∥ for p≫ log d, (1.2)

the bound (1.1) also yields upper and lower bounds for the spectral norm ∥X∥ up
to a factor that grows logarithmically with dimension. Much work in the past two
decades has been devoted to extending such bounds to a large class of non-Gaussian
models, cf. [42] and the references therein.

Due to their generality and ease of use, matrix concentration inequalities have
found numerous applications in pure and applied mathematics. At the same time,
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they can provide only rough bounds on the behavior of the spectrum that are of-
ten increasingly inaccurate in high dimension, in contrast to classical results in
random matrix theory that become increasingly precise as d → ∞. It has been a
long-standing question whether there exist results at the level of generality of ma-
trix concentration inequalities which can nonetheless sharply capture the spectral
properties of many random matrix models.

Significant progress in this direction was achieved in the first part of this series [6]
(inspired in part by [21, 43]), which introduced a new family of matrix concentration
inequalities that optimally capture the behavior of very general Gaussian random
matrices to leading order. A key feature of these inequalities is that they do not
bound the spectrum of X directly, but rather quantify the deviation of the spectrum
of X from that of an associated deterministic operator Xfree in a C∗-probability
space (A, τ) (we recall the precise definitions in section 2). For example,

|E[trX2p]
1
2p − (tr⊗ τ)[X2p

free]
1
2p | ≤ 2p

3
4 ṽ(X) (1.3)

for p ∈ N by [6, Theorem 2.7], where ṽ(X)4 := ∥Cov(X)∥ ∥E[(X − EX)2]∥ and
Cov(X) is the d2 × d2 covariance matrix of the entries of X. Here X need not be
centered, that is, both mean and covariance of X are arbitrary.

Unlike (1.1), which upper and lower bounds the moments of X up to a constant
factor, (1.3) computes the moments of X exactly to leading order when ṽ(X) is
small. The latter situation is ubiquitous in applications. Such bounds extend also
to non-Gaussian models by means of a universality principle [14]. At the same time,
tools of free probability theory [21, 27] make it possible to compute or estimate the
spectral statistics of Xfree explicitly in terms of the mean and covariance of X,
making (1.3) genuinely applicable to concrete situations.

The inequality (1.3) is just one example of the kind of results that are achieved
by the theory of [6]; the same method of proof yields analogous two-sided bounds
for many smooth spectral statistics. But arguably the most powerful aspect of this
theory lies in its ability to capture the edges of the spectrum, which is considerably
more delicate than the bulk spectral behavior. In this regard, however, the theory
is incomplete. For example, it is shown in [6, Corollary 2.2] that

E∥X∥ ≤ ∥Xfree∥+ Cṽ(X)(log d)
3
4 (1.4)

for a universal constant C, which yields a sharp upper bound on ∥X∥ whenever
ṽ(X) is small. However, unlike in (1.3), the corresponding lower bound is missing.
The reason for this discrepancy, as explained in [6, §8.2.3], lies in the elementary
fact (1.2): while the norm of any d × d matrix can be approximated by moments
of order log d, it is far from clear whether the analogous property holds for the
infinite-dimensional operator Xfree. This problem is resolved in this paper, which
completes the theory of [6] and opens the door to new applications.

1.1. Main results. The simplest implication of the new results of this paper may
be readily understood in the context of the above discussion: the following theorem
extends the upper bound (1.4) to a two-sided bound.

Theorem 1.1. For any d× d random matrix X with jointly Gaussian entries

|E∥X∥ − ∥Xfree∥| ≤ Cṽ(X)(log d)
3
4 ,

where C is a universal constant. When X is self-adjoint, the same inequality holds
if ∥X∥, ∥Xfree∥ are replaced by the upper edge of the spectrum λmax(X), λmax(Xfree).
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Figure 1.1. Illustration of a hypothetical obstruction to the validity of
Theorem 1.1. The proof must show that this situation cannot occur.

However, our results are much more general than is suggested by Theorem 1.1.
The main result of this paper provides a subgaussian matrix concentration inequal-
ity for the Hausdorff distance between the spectra of X and Xfree. This makes it
possible both to achieve high probability results, and to detect interior edges of the
spectrum in addition to exterior edges. Our results will be stated in full generality
in section 2 after we recall the relevant definitions.

As was explained above, the key new ingredient that is needed in the proof of
these results is that the norm of Xfree (more generally, of its resolvent (z−Xfree)

−1)
is well approximated by its moments. That the moments are upper bounded by
the norm is trivial, which is the reason that the upper bound (1.4) was achievable
in [6]. The converse direction is far from clear, however.

To understand where the difficulty lies, it is instructive to recall why (1.2) holds
for a self-adjoint d× d matrix M with eigenvalues λ1(M), . . . , λd(M): as

tr[|M |2p] = 1

d

d∑
i=1

|λi(M)|2p ≥ 1

d
max

i
|λi(M)|2p =

1

d
∥M∥2p, (1.5)

we have tr[|M |2p]
1
2p ≥ d

1
2p ∥M∥ = (1 + o(1))∥M∥ for p ≫ log d. Thus (1.2) holds

because the empirical spectral distribution of M has mass 1
d at ∥M∥. However, it

is not clear why the spectral distribution of the infinite-dimensional operator Xfree

should also have large mass near its edges. For example, Figure 1.1 illustrates a
hypothetical scenario where the spectral distribution of Xfree only has mass e−d

near its upper edge; in this case, it would be extremely unlikely that any eigenvalue
of X (each of which has mass 1

d ) is located near ∥Xfree∥, contradicting Theorem 1.1.
Our proof must therefore show that such situations cannot occur.

We have in fact developed two distinct methods of proof to achieve this aim.
The first method is based on the work of Alt, Erdős, and Kruger [2], who made a
detailed study of the behavior of the spectral distribution of Xfree near the edges
of the spectrum under two strong regularity assumptions: flatness, which requires
in particular that all entries of X have variance of the same order, and a uniform
bound on ∥EX∥. Both assumptions are highly problematic in our setting, as they
rule out precisely the kind of nonhomogeneous models that matrix concentration
inequalities aim to capture. However, in fixed dimension d, any random matrix
can be perturbed with negligible effect on the spectrum so that it satisfies these
regularity assumptions with constants that diverge polynomially with d. One can
therefore rule out situations as in Figure 1.1 by a combination of spectral perturba-
tion theory and a quantitative refinment of the results of [2]. A proof of our main
results by this approach appears in an early draft of this paper [7].
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Figure 1.2. Spectral distribution of Xfree for the spiked Wigner model.

An entirely different approach arises, in a slightly different setting, in the work of
Bordenave and Collins [12, §7.1]. The idea introduced there is that the comparison
between moments and norm of Xfree is closely connected to the ultracontractive
properties of free operators. Exploiting this idea in the present setting considerably
shortens the proof of our main results, as it replaces the rather technical work based
on [2] by operator-theoretic tools. We therefore present the latter approach in this
paper. Despite this simplification, ultracontractivity does not suffice in itself to
achieve satisfactory bounds, so that spectral perturbation arguments remain crucial
for the proof. Details and further discussion are given in section 4.

1.2. Applications. The development of inequalities that exactly capture the spec-
tral edges to leading order enables the study of applications that are fundamentally
beyond the reach of classical matrix concentration inequalities, such as phase tran-
sition phenomena for spectral outliers of nonhomogeneous random matrices. We
will develop this theme in some detail, both as a compelling illustration of our main
results and for its independent interest.

The classical study of phase transitions for spectral outliers due to Baik, Ben
Arous, and Péché [4] has led to a large body of work, see, e.g., the survey [16]. Let
us briefly recall one of the standard models in this area. Let G be a d×d self-adjoint
matrix with i.i.d. standard Gaussian entries above the diagonal, and let

X = θ vv∗ +G

where θ ≥ 0 and ∥v∥ = 1. This is the spiked Wigner model. It is classical that the
largest eigenvalue of G is 2+o(1). For the random matrix X, however, we observe a
phase transition: its largest eigenvalue is still 2+ o(1) when θ ≤ 1, while an outlier
eigenvalue emerges at θ + 1

θ + o(1) when θ > 1.
While such a sharp transition is clearly inaccessible by classical matrix concen-

tration inequalities, it can be recovered as an easy exercise from Theorem 1.1 using
an explicit formula of Lehner (see (1.6) below) for the largest eigenvalue of Xfree.1

As our theory applies to arbitrarily structured random matrices, however, it enables
the study of such phenomena in far more general situations:
• We may replace G by a much more general nonhomogeneous model, including

models that are highly sparse or whose entries exhibit strong dependence;

• We may replace θ vv∗ by much more general perturbations whose rank may di-
verge at a rate determined by the fluctuations of the spectral statistics of G;

1It may appear surprising that Xfree, which has a continuous spectrum, can detect the presence
of a single eigenvalue of X. This paradox is explained in Figure 1.2: the spectral distribution of
Xfree has a small connected component of mass 1

d
which produces the outlier eigenvalue of X.
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• We can obtain fully nonasymptotic results that provide explicit guarantees for
the given random matrix X of fixed dimension d.

None of these features are readily accessible by prior work in this area. Most
methods that have been used to study outliers of random matrices rely strongly
on mean-field (that is, near-homogeneous) random matrix structure [16, 11, 26].
Some results for sparse models have appeared only very recently [40, 3], but rely
on restrictive assumptions and make use of specialized tools.

In principle, our theory can be applied to an arbitrarily structured nonohomoge-
neous spiked model. However, the phase transition behavior will be determined in
general by a complicated variational principle that does not have a simple analytic
solution. Instead, we will primarily focus our attention on two general classes of
models that can be understood in an explicit closed form:
1. The behavior of the spiked Wigner model extends to any isotropic noise matrix

G (that is, E[G] = 0 and E[G2] = 1), even in sparse or dependent situations.

2. For a class of anisotropic G, we prove a conjecture of Pak, Ko, and Krzakala [32,
Conjecture 1.6] that a certain affine transformation of the model (arising from
statistical physics considerations) exhibits a canonical phase transition.2

These results are established in strong nonasymptotic form that can be applied in a
black box manner in complex situations, as we will illustrate in diverse applications.
At the same time, we emphasize that problems that do not belong to one of the
above general classes can still readily be studied on a case-by-case basis. As an
illustration of the latter, we will prove a conjecture of Han [22] on a phase transition
phenomenon of sample covariance matrices.

It should be emphasized that the specific features of spiked models are completely
irrelevant to our sharp matrix concentration theory: our theory reduces the study of
arbitrarily structured random matrices to the question of understanding Xfree. The
difficulty in the above applications lies entirely in the latter deterministic question.
To this end, we will make fundamental use of a remarkable formula of Lehner

λmax(Xfree) = inf
M>0

λmax

(
EX +M−1 +E[(X −EX)M(X −EX)]

)
(1.6)

for arbitrary self-adjoint random matrices X (cf. [27, Corollary 1.5] and [6, §4.1]).
In our study of spiked models, we will develop methods to capture the structure of
this variational principle that may be useful also in other applications.

Finally, let us note that the random matrix models that arise in applications are
often non-Gaussian. This will not present any additional complications, however,
as the sharp matrix concentration theory of this paper extends directly to many
non-Gaussian situations using the universality principle of [14].

1.3. Organization of this paper. This paper is organized as follows. In section 2,
we formulate the main results of this paper: two-sided sharp matrix concentration
inequalities for spectral edges, and “master theorems” for the two general classes of
spiked models described above. In section 3, we will illustrate the applicability of
these results in a diverse range of applied mathematical problems.

The rest of the paper is devoted to the proofs of these results. Section 4 develops
the key ultracontractive estimates that are needed in the proofs of two-sided bounds
on the spectral edges. The latter will subsequently be proved in section 5. Sections

2An asymptotic form of this conjecture was independently proved in [28].
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6 and 7 are devoted to the proofs of the two “master theorems” for spiked models.
Finally, section 8 contains proofs of some results needed in the applications.

1.4. Notation. The following notation will be used throughout this paper. For a
bounded operator X, we denote by ∥X∥ its operator norm and by |X| := (X∗X)

1
2

its modulus. If X is self-adjoint, we denote its spectrum as sp(X), and denote by
λmax(X) := sup sp(X) and λmin(X) := inf sp(X) the upper and lower edges of the
spectrum. The identity operator or matrix is denoted as 1. The algebra of d × d
matrices with entries in a ∗-algebra A is denoted as Md(A), and its subspace of
self-adjoint elements is Md(A)sa. For M ∈ Md(C), we denote by TrM :=

∑d
i=1 Mii

its unnormalized trace and by trM := 1
d TrM its normalized trace. Finally, we use

the convention that when a functional is followed by square brackets, it is applied
before any other operations; for example, E[X]α := (EX)α and tr[M ]α := (trM)α.

2. Main results

2.1. Basic model and matrix parameters. Throughout this paper, we fix d ≥ 2
and consider a d×d random matrix X with jointly Gaussian entries. Such a random
matrix can always be represented (for some n ∈ N) as

X = A0 +

n∑
i=1

Aigi, (2.1)

where g1, . . . , gn are i.i.d. standard Gaussian variables and A0, . . . , An ∈ Md(C).
To the given random matrix X, we associate a corresponding noncommutative

model Xfree ∈ Md(A) ≃ Md(C)⊗A defined as

Xfree = A0 ⊗ 1+

n∑
i=1

Ai ⊗ si, (2.2)

where s1, . . . , sn is a free semicircular family in some C∗-probability space (A, τ).
We refer to [6, §4.1] for a very brief introduction and [30] for a pedagogical treatment
of the basic notions of free probability. The main outcome of the sharp matrix
concentration theory of [6] and of the present paper is that, in many situations, the
spectrum of X is well approximated by that of Xfree.

Before we formulate our main results, we recall the definitions of the most com-
mon parameters that will appear in our bounds. In the following, we denote by

Cov(X)ij,kl := E
[
(X −EX)ij(X −EX)kl

]
the d2 × d2 covariance matrix of the entries of X. We now define the parameters

σ(X)2 := ∥E[(X −EX)∗(X −EX)]∥ ∨ ∥E[(X −EX)(X −EX)∗]∥,
v(X)2 := sup

Tr |M |2=1

E[|Tr[M(X −EX)]|2] = ∥Cov(X)∥,

σ∗(X)2 := sup
∥v∥=∥w∥=1

E[|⟨v, (X −EX)w⟩|2],

as well as the frequently appearing combination

ṽ(X)2 := v(X)σ(X).

We emphasize that these parameters depend only on Cov(X) and not on EX = A0.
All these parameters are readily expressed explicitly in terms of A1, . . . , An and we
have σ∗(X) ≤ σ(X) and σ∗(X) ≤ v(X), cf. [6, §2.1].
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Remark 2.1. Roughly speaking, these parameters will play the following roles in
our theory: σ(X) controls the scale of the spectrum of X − EX (e.g., by (1.1));
v(X) controls the degree to which the spectrum of X is approximated by Xfree; and
σ∗(X) captures the fluctuations of the spectrum of X.

Finally, let us note that we will often restrict attention in the formulation and
proofs of our results to self-adjoint random matrices X (that is, random matrices
defined by A0, . . . , An ∈ Md(C)sa). This entails no loss of generality, however, as
results on the spectrum of self-adjoint operators extend directly to the singular value
spectrum of non-self-adjoint operators by means of a standard dilation argument
[6, Remark 2.6]. For this reason, we will formulate some of our main results for
self-adjoint matrices whenever this leads to greater notational simplicity.

2.2. Sharp matrix concentration inequalities.

2.2.1. Gaussian random matrices. Recall that the Hausdorff distance between two
subsets A,B ⊆ R of the real line is defined as

dH(A,B) := inf{ε > 0 : A ⊆ B + [−ε, ε] and B ⊆ A+ [−ε, ε]}.
The following is the central result of this paper.

Theorem 2.2. For any d× d self-adjoint Gaussian random matrix X, we have

P
[
dH(sp(X), sp(Xfree)) > Cṽ(X)(log d)

3
4 + Cσ∗(X)t

]
≤ e−t2

for all t ≥ 0, where C is a universal constant.

Theorem 2.2 controls the entire spectrum of X and Xfree. As the spectral edges
are often of special interest, we spell out the following simple corollary.

Corollary 2.3. Let X be an arbitrary (not necessarily self-adjoint) d×d Gaussian
random matrix. Then we have

P
[
|∥X∥ − ∥Xfree∥| > Cṽ(X)(log d)

3
4 + Cσ∗(X)t

]
≤ e−t2

for all t ≥ 0 and
|E∥X∥ − ∥Xfree∥| ≤ Cṽ(X)(log d)

3
4 ,

where C is a universal constant. If X is self-adjoint, the same inequalities hold if
∥X∥, ∥Xfree∥ are replaced by λmax(X), λmax(Xfree) or by λmin(X), λmin(Xfree).

Theorem 2.2 and Corollary 2.3 will be proved in section 5. Note that Theorem 1.1
in the introduction is merely a special case of Corollary 2.3.

2.2.2. Non-Gaussian random matrices. While the above inequalities are formulated
for Gaussian random matrices, random matrices that arise in applications are often
non-Gaussian. The Gaussian case is nonetheless of central importance, as the be-
havior of many non-Gaussian matrices can be understood in terms of an associated
Gaussian model. For ease of reference, we presently state two general results of this
kind that will be used in the applications in section 3.

One widely used non-Gaussian random matrix model is

Z = Z0 +

n∑
i=1

Zi, (2.3)

where Z0 ∈ Md(C) is a nonrandom matrix and Z1, . . . , Zn are arbitrary indepen-
dent d × d random matrices with EZi = 0. Such models arise naturally in many
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applications [42, 14]. We presently state a universality principle [14, Theorem 2.5]
that reduces the study of such models to the Gaussian case.

Theorem 2.4 ([14]). Let Z be a d× d self-adjoint random matrix as in (2.3), and
suppose that ∥Zi∥ ≤ R a.s. for i = 1, . . . , n. Let X be the d × d Gaussian random
matrix whose entries have the same mean and covariance as those of Z. Then

P
[
dH(sp(Z), sp(X)) > Cσ∗(X)t

1
2 + CR

1
3σ(X)

2
3 t

2
3 + CRt

]
≤ de−t

for all t ≥ 0, where C is a universal constant.

Theorem 2.4 shows that Z behaves as a Gaussian random matrix X, while Theo-
rem 2.2 shows that X behaves as its noncommutative model Xfree. The combination
of these two theorems therefore provides a powerful tool to study a large class of
non-Gaussian random matrices. A variant of Theorem 2.4 that is applicable when
Zi are unbounded may be found in [6, Theorem 2.7].

A non-Gaussian model of a different nature arises in the study of sample co-
variance matrices, which requires an understanding of the spectra of quadratic
polynomials of a Gaussian random matrix X such as XX∗ −EXX∗. Such models
are captured by the following quadratic analogue of Theorem 2.2.

Theorem 2.5. Let X be any (not necessarily self-adjoint) d× d Gaussian random
matrix, and let B ∈ Md(C)sa. Then we have

P
[
dH(sp(XX∗+B), sp(XfreeX

∗
free+B⊗1)) > C{∥Xfree∥+∥B∥

1
2 }t+Ct2

]
≤ e

− t2

σ∗(X)2

for all t ≥ ṽ(X)(log d)
3
4 , where C is a universal constant.

Theorem 2.5 will be proved in section 5.

Remark 2.6. Theorem 2.5 can be extended in two directions. On the one hand, we
may consider models where X itself is non-Gaussian as in [14, §3.3]. On the other
hand, the method of proof of Theorem 2.2 can be adapted to bound general noncom-
mutative polynomials P (X1, . . . , Xm) of Gaussian random matrices X1, . . . , Xm in
terms of their noncommutative models P (X1,free, . . . , Xm,free). As such extensions
digress from the main theme of this paper, we do not develop them further here.

2.3. Phase transitions: isotropic case. The theorems stated above explain the
spectral properties of very general random matrices in terms of the noncommutative
model Xfree. To understand specific phenomena, it therefore remains to understand
the corresponding behavior of Xfree. We presently formulate a number of results
that enable the study of spectral outliers in a broad range of models.

It will be convenient to define the function

B(θ) :=

{
2 for θ ≤ 1,

θ + 1
θ for θ > 1.

As was discussed in section 1.2, this function describes the largest eigenvalue of the
classical spiked Wigner model. The following result may be viewed as a far-reaching
generalization of this phenomenon.

Theorem 2.7. Let X be any d × d self-adjoint random matrix. Suppose that
E[(X −EX)2] = 1 and that EX has rank r with σ∗(X)

√
r ≤ 1. Then

|λmax(Xfree)− B(λmax(EX))| ≤ 2σ∗(X)
√
r.
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When combined with sharp matrix concentration inequalities, this yields a phase
transition for a broad range of models: the isotropic assumption E[(X−EX)2] = 1
holds in many (including sparse or dependent) applications, while σ∗(X)

√
r = o(1)

typically allows the rank to grow rapidly with dimension.

Remark 2.8. Let us briefly explain in what sense Theorem 2.7 captures an outlier of
the spectrum. Denote by µX := 1

d

∑d
i=1 δλi(X) the empirical spectral distribution

of X. We begin by recalling the deterministic fact (see, e.g., [25]) that∣∣∣∣ ∫ f dµX −
∫

f dµX−EX

∣∣∣∣ = |tr f(X)− tr f(X −EX)| ≤ r

d
∥f ′∥L1(R) = o(1)

for any f ∈ C∞
0 (R) when EX has rank r = o(d).

Suppose the relevant matrix parameters are sufficiently small that the spectrum
of X is well modelled by that of Xfree. Then Theorem 2.7 (applied to X ← X−EX)
implies that λmax(X −EX) = 2+ o(1). Therefore, by the above deterministic fact,
a fraction 1− o(1) of the eigenvalues of X are bounded by 2 + o(1).

On the other hand, Theorem 2.7 (applied to X itself) shows that X has an
eigenvalue at B(λmax(EX)) > 2 + ε when λmax(EX) > 1. This outlier eigenvalue
is therefore bounded away from the bulk of the spectrum.

When there is an outlier, it is expected that the eigenvector associated to the
largest eigenvalue of X yields information on the eigenvectors of EX. This behavior
is readily deduced from Theorem 2.7 by the following device. Here 1A(M) is defined
by functional calculus, that is, it is the projection onto the space spanned by the
eigenvectors of M ∈ Md(C)sa with eigenvalues in A ⊆ R.

Theorem 2.9. Let X be any d×d self-adjoint random matrix with λmax(EX) =: θ,
and fix 0 < t ≤ δ. Define Xs := X+s1(θ−δ,θ](EX), and suppose that for s ∈ {0,±t}

P
[
|λmax(Xs)− B(λmax(EXs))| > ε

]
≤ ρ.

Then any unit norm eigenvector vmax(X) of X with eigenvalue λmax(X) satisfies

P

[∣∣∣∣⟨vmax(X), 1(θ−δ,θ](EX)vmax(X)⟩ −
(
1− 1

θ2

)
+

∣∣∣∣ > t+
2ε

t

]
≤ 3ρ.

For example, suppose the largest eigenvalue θ of EX is simple, and that there
is a gap of size δ between the largest and second-largest eigenvalues of EX. Then
Theorem 2.9 yields |⟨vmax(EX), vmax(X)⟩|2 = (1− 1

θ2 )+ + o(1), provided that the
lower-order terms that arise from the sharp matrix concentration inequalities and
from Theorem 2.7 (i.e., ε in Theorem 2.9) are o(δ).

We have deliberately formulated the above results independently of any specific
random matrix model so that they can be applied equally easily in the context
of either Theorem 2.2 or Theorem 2.4; applications to concrete models will be
illustrated in in section 3. The above results are proved in section 6.

Remark 2.10. While we have focused our treatment of outliers on the largest eigen-
value, one may also investigate other outliers in the spectrum using Theorem 2.2.
As the above results already suffice for all the applications we will consider, we omit
further development of such questions in the interest of space.
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2.4. Phase transitions: an anisotropic model. In principle, there is nothing
special about the isotropic assumption E[(X−EX)2] = 1 made in Theorem 2.7: we
can establish an analogous phase transition for an arbitrarily structured self-adjoint
random matrix X so that EX has low rank. However, for anisotropic models the
phase transition will generally not admit a simple description; it is determined by
the solution to the variational problem (1.6), which cannot be expected to yield an
analytic solution in the absence of some special structure. We presently discuss a
class of anisotropic models where such special structure is present.

To define the model, we fix the following parameters:

• A partition of [d] = C1 ⊔ · · · ⊔ Cq into q disjoint sets of size |Ck| > 1.

• A matrix B ∈ Mq(R)sa with nonnegative entries.

• A vector z ∈ Rd such that
∑

i∈Ck
z2i = |Ck| for k = 1, . . . , q.

Let B ∈ Md(R)sa be the block matrix defined by Bij := Bkl for all i ∈ Ck, j ∈ Cl.
Then we consider the d× d random matrix X defined as3

X =
1

d
diag(z)B diag(z) +X∅,

X∅ = −diag

(
1

d
B1d

)
+G,

(2.4)

where G is a d× d real symmetric random matrix whose entries (Gij)i≥j are inde-
pendent with E[Gij ] = 0 and E[G2

ij ] =
1+1i=j

d Bij . To interpret the structure of this
model, note that X is a low-rank perturbation of X∅ when q ≪ d as rank(B) ≤ q.
We aim to understand the resulting outlier phase transition.

Remark 2.11. The significance of this model is that random matrices of the form
(2.4) arise in applications as a linearization of message passing algorithms of sta-
tistical physics. Two such applications are discussed in sections 3.4 and 3.5.

In the following, we will assume that the nonnegative matrix B is irreducible.
This entails no loss of generality: if B is reducible, then X is block-diagonal and it
suffices to consider its irreducible blocks. We denote by c, b ∈ Rq the vector with
entries ck = |Ck|

d and the Perron-Frobenius (right) eigenvector b > 0 of B diag(c).
We are now ready to formulate the analogue of Theorem 2.7 in the present

setting. Such a phase transition was first conjectured in [32] (see section 3.4).

Theorem 2.12. Let X,X∅ be defined as in (2.4), and suppose all the above as-
sumptions are in force. Then there exist λ, λ∅ ∈ R so that

|λmax(Xfree)− λ| ≤
√

8∥B1q∥∞
d

, |λmax(X∅,free)− λ∅| ≤
√

8∥B1q∥∞
d

,

where λ∅ satifies

λ∅ ≤ 1− mini bi
maxi bi

(
1− λmax(diag(c)

1
2B diag(c)

1
2 )

1
2

)2
,

while λ exhibits the following phase transition.
a. If λmax(diag(c)

1
2B diag(c)

1
2 ) < 1, then λ∅ = λ < 1.

3Here 1d ∈ Rd is the vector whose entries are all equal to one. As the analysis of this model
involves both q- and d-dimensional vectors and matrices, we will indicate the dimension of the
ones vector 1d and of the identity matrix 1d in subscript to avoid confusion.
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b. If λmax(diag(c)
1
2B diag(c)

1
2 ) = 1, then λ∅ = λ = 1.

c. If λmax(diag(c)
1
2B diag(c)

1
2 ) > 1, then λ∅ < λ = 1.

To interpret this result, note that by the same argument as in Remark 2.8,
the bulk of the spectrum of X is bounded by λ∅. The largest eigenvalue of X is
therefore an outlier precisely when λmax(diag(c)

1
2B diag(c)

1
2 ) > 1, and when the

outlier appears it is always at λ = 1. Moreover, the bound on λ∅ yields an explicitly
computable estimate on how far the outlier lies from the bulk, which is essential
for the applicability of the result in nonasymptotic situations.

The proof of Theorem 2.12 in section 7 will provide explicit variational expres-
sions for λ, λ∅ that are not analytically tractable in general. It is a remarkable fea-
ture of this model that we can nonetheless describe the phase transition in terms of
the explictly computable parameter λmax(diag(c)

1
2B diag(c)

1
2 ). The proof of this

fact requires a number of ideas and tools for analyzing Lehner-type variational
principles that may be useful also in other applications.

Remark 2.13. It would be of interest to establish a counterpart of Theorem 2.9
in the present setting, which yields quantitative bounds on the overlap between z
and the largest eigenvector of X. While it is rather easy to read off the correct
behavior of the overlap from the proof of Theorem 2.12 in the asymptotic setting
where q,B, c are fixed and d→∞ (see section 3.4), it has proved more challenging
to obtain an explicitly computable nonasymptotic estimate for the overlap in the
present setting. We leave this as an open problem.

3. Applications

3.1. Simple examples. For sake of illustration, we begin by spelling out the sim-
plest form of the phase transition phenomenon that arises from section 2.3.

Theorem 3.1. Let G be any d × d self-adjoint random matrix with EG = 0 and
EG2 = 1, which either has jointly Gaussian entries or is of the form (2.3). Let
θ ≥ 0 and v ∈ Sd−1. Then X = θ vv∗ +G satisfies

P
[
|λmax(X)− B(θ)| > Cε(t)

]
≤ Cde−t

for all t > 0, and

P
[∣∣∣|⟨v, vmax(X)⟩|2 −

(
1− 1

θ2

)
+

∣∣∣2 > Cε(t)
]
≤ Cde−t

whenever Cε(t) ≤ θ2. Here ε(t) = v(G)
1
2 (log d)

3
4 + σ∗(G)t

1
2 in the Gaussian case

and ε(t) = v(G)
1
2 (log d)

3
4 + σ∗(G)t

1
2 +R

1
3 t

2
3 +Rt in the setting of Theorem 2.4.

Proof. The first inequality follows by combining Corollary 2.3, Theorem 2.4, and
Theorem 2.7, where we note that σ(X) = σ(G) = 1, v(X) = v(G), σ∗(X) = σ∗(G)
and the parameter R in Theorem 2.4 are independent of θ, and that σ∗(G) ≤ ṽ(G).
The second inequality follows from the first by applying Theorem 2.9 with δ = θ
and optimizing over the parameter t that appears in its statement. □

As a simple example, let us consider sparse Wigner matrices.

Example 3.2. Let ([d], E) be a k-regular graph with d vertices. Then we can define
a d×d self-adjoint random matrix G with Gij = k−

1
2 ηij1{i,j}∈E for i ≥ j, where ηij

are independent random variables such that E[ηij ] = 0, E[|ηij |2] = 1, ∥ηij∥∞ ≤ K.
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Figure 3.1. Outlier phase transition of a 2000 × 2000 random band
matrix with band width 101. The markers represent the empricial result,
the lines represent the theoretical prediction of Theorem 3.1.

In other words, G is a sparse Wigner matrix with an arbitrary deterministic sparsity
pattern that has k nonzero entries in each row and column.

It is readily verified that we have E[G] = 0, E[G2] = 1, σ∗(G) ≤ v(G) ≲ k−
1
2 ,

and R ≲ Kk−
1
2 . Thus choosing t = (1 + c) log d in Theorem 3.1 shows that

λmax(θ vv
∗ +G) = B(θ) + o(1), |⟨v, vmax(θ vv

∗ +G)⟩|2 =
(
1− 1

θ2

)
+
+ o(1)

with probability at least 1− C
dc whenever k ≫ K2(log d)4.

One very special case of this model is a periodic random band matrix with band
width k, which is illustrated in Figure 3.1. In this case, as long as K = O(1), we
find that the classical phase transition for the spiked Wigner model (as described in
section 1.2) extends to this highly sparse setting as soon as the width of the band
grows at least polylogarithmically in the dimension of the matrix. This special case
was recently investigated using entirely different methods in [3].

While Theorem 3.1 provides precise information on the largest eigenvalue and
eigenvector, it does not in itself explain why this largest eigenvalue is an outlier of
the spectrum when θ > 1. The rough explanation given in Remark 2.8 can however
readily be made precise in concrete situations such as the present one.

Corollary 3.3. Consider the setting of Theorem 3.1, and denote by λ2(X) the
second largest eigenvalue of X. Then we have for all t > 0

P
[
λ2(X) > 2 + Cε(t)

]
≤ Cde−t.

Proof. Let P = 1− vv∗. Then the min-max theorem yields

λ2(X) ≤ λmax(PXP ) = λmax(PGP ) ≤ λmax(G).

The conclusion follows by applying Theorem 3.1 with θ = 0. □

Corollary 3.3 shows that whenever ε(t) = o(1), at most one eigenvalue of X can
exceed 2+ o(1). When θ > 1, Theorem 3.1 then implies that the largest eigenvalue
of X is simple and is separated from the rest of the spectrum.
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Theorem 3.1 could be applied directly or with minimal modifications to various
models that appear in applications (both with independent and dependent entries),
such as adjacency matrices of nonhomogeneous random graphs [40], stochastic block
models [26], or synchronization problems [39, §7]. In the following sections, we will
investigate applications that exhibit more complex structures.

3.2. Decoding node labels on graphs. The following model is considered in [1].
Let Γ = ([d], E) be a given k-regular graph with d vertices, and let x ∈ {−1,+1}d
be an (unknown) binary labeling of the vertices. For each edge {i, j} ∈ E, we are
given a noisy observation Yij = xixjξij of the correlation between the labels of the
incident vertices, where ξij = ξji are i.i.d. random variables for i ≥ j such that

P[ξij = 1] = 1− p, P[ξij = −1] = p

with p ≤ 1
2 . The aim is to understand when it is possible to recover the vertex

labels (up to a global sign) from the noisy observations.
Here we investigate a simple spectral method for this problem (see, e.g., [18]).

Let us augment the above definitions by setting Yij = 0 for {i, j} ̸∈ E, so that Y
defines a d× d self-adjoint random matrix with independent entries. Note that

E[Yij ] = (1− 2p)xixj1{i,j}∈E , Var(Yij) = 4p(1− p)1{i,j}∈E .

Thus E[(Y − EY )2] = 4kp(1 − p)1, where we used that Γ is k-regular. We may
therefore apply Theorems 2.7 and 2.9 to a suitable modification of Y . In the
following result, we will consider a sequence of graphs with d, k →∞ for simplicity
of exposition; a nonasymptotic statement can be read off from the proof.

Theorem 3.4. Let A be the adjacency matrix of Γ, and denote its singular values
as k = s1 ≥ s2 ≥ · · · ≥ sd and its spectral gap as λ = k − λ2(A). Parametrize the
error probability as p = 1

2 −
1
2k

− 1
2 θ with 0 ≤ θ ≪

√
k. If

min
1≤r≤k

{
θ sr+1 +

√
rk

}
+ k

5
6 (log d)

2
3 ≪ min{θλ, k},

then
1

d
|⟨x, vmax(Y )⟩|2 =

(
1− 1

θ2

)
+
+ o(1)

with probability 1− o(1). In particular, there exists an estimator x̂(Y ) ∈ {−1,+1}d
so that 1

d |⟨x, x̂(Y )⟩| > δ+ o(1) for some δ > 0 as soon as θ ≥ 1+ ε for some ε > 0.

The proof of this result is given in section 8.1. The basic idea of the proof is
approximate EY by a matrix of rank r. We then apply Theorem 2.7 to the low-rank
part of the model, and optimize the resulting bound over r to trade off between the
width of the phase transition and the approximation error.

Let us note that the recovery condition θ > 1 in Theorem 3.4 is the best possible
in general: for example, when Γ is the complete graph, no estimator can recover
a nontrivial fraction of the vertex labels when θ < 1 (this follows, e.g., from [34,
Theorem 6.3]). A key feature of Theorem 3.4 is that it enables us to achive this
recovery threshold for a large class of deterministic graphs. An analogous problem
for Erdős-Rényi graphs was previously considered in [38].

Let us give two examples to illustrate the assumptions of Theorem 3.4.

Example 3.5 (Good expanders). Suppose that s2(A) ≤ c
√
k; this is the case, for

example, when Γ is a random k-regular graph [41]. Under mild conditions, such
graphs achieve the largest possible spectral gap by the Alon-Boppana theorem [31].
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In this situation, we can choose r ← 1 in the assumption of Theorem 3.4. The
conclusion of the theorem then follows for any 1 ≤ θ ≪

√
k and k ≫ (log d)4.

Example 3.6 (Graphs of intermediate degree). The previous example considered
expanders, that is, graphs whose spectral gap λ is of order k. However, expansion
is not necessary for the conclusion to hold when the degree k is sufficiently large,
as we will presently illustrate. Note first that we can trivially estimate

d∑
i=1

s2i = Tr[A2] = dk,

which implies si ≤ (dki )
1
2 . Assuming θ ≥ 1 for simplicity, we can estimate

min
1≤r≤k

{
θ sr+1 +

√
rk

}
≤
√
k min

1≤r≤k

{
r−

1
2 θ
√
d+ r

1
2

}
≲ d

1
4

√
θk

when k ≥ θ
√
d. Then the conclusion of Theorem 3.4 holds whenever

d
1
4

√
θk + k

5
6 (log d)

2
3 ≪ min{θλ, k}.

For example, if k ∼ da for some 1
2 < a ≤ 1, then the conclusion of Theorem 3.4

holds whenever 1 ≤ θ ≪ da−
1
2 and λ

k ≫ max{θ−1d−
a
6 (log d)

2
3 , θ−

1
2 d−

1
2 (a−

1
2 )}.

It is instructive to note that the spectral gap λ appears in Theorem 3.4 only in
order to resolve the top eigenvector of Y . This is necessary: for example, if Γ were
not connected, then the distribution of Y would be unchanged if we flip the signs of
all vertex labels in one connected component, so that it is fundamentally impossible
to recover x up to a global sign. On the other hand, if we were interested only in
detecting the presence of an outlier eigenvalue in the spectrum of Y , no assumption
on the spectral gap would be needed in the proof.

3.3. Tensor PCA. The following may be viewed as an analogue of the classical
spiked Wigner model for tensors of order p. Fix λ > 0, a signal x ∈ {−1,+1}n, and
i.i.d. standard Gaussian variables (ZS)S⊆[n]:|S|=p. We are given a noisy observation
tensor Y = λx⊗p + Z; more precisely, we observe

YS := λXS + ZS

for all S ⊆ [n] with |S| = p, where XS :=
∏

i∈S xi. This is the tensor PCA
model, cf. [29, 44] and the references therein. The key problems in this context are
detecting whether a signal is present, and recovering the signal. In the interest of
space we focus on detection, though recovery may be similarly investigated.

We presently describe a general family of spectral methods for the tensor PCA
problem that was proposed in [44]. Let p ≥ 4 be even, fix an integer ℓ ∈ [p2 , n−

p
2 ],

and define a symmetric
(
n
ℓ

)
×
(
n
ℓ

)
random matrix M = (MS,T )S,T⊆[n]:|S|=|T |=ℓ as

MS,T :=

{
YS△T if |S△T | = p,

0 otherwise,

where△ denotes the symmetric difference. The presence of a signal is then detected
by the presence of an outlier eigenvalue in the spectrum of M . It is shown in [44]
that correct detection of the presence or absence of a signal with probability 1−o(1)
is achieved by this method when λ≫ n− p

4

√
log n.

Here we achieve a much more precise understanding of this method for a certain
range of the design parameter ℓ of the detection algorithm.
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Theorem 3.7. Fix p
2 ≤ ℓ < 3p

4 and α > 0, and define

k∗ :=

(
ℓ

p/2

)(
n− ℓ

p/2

)
.

Then there is a constant C that depends only on p, ℓ, α so that

P
[
|λmax(k

− 1
2

∗ M)− B(λk
1
2
∗ )| > Cn−1λk

1
2
∗ + Cn

4ℓ−3p
4 + Cn

ℓ−p
4 (log n)

3
4

]
≤ C

nα
.

In particular, for any ε > 0, the test

f(M) :=

{
1 if λmax(k

− 1
2

∗ M) > 2 + n− 1
8 ,

0 otherwise,

satisfies P[f(M) = 1] = o(1) if λ = 0 and P[f(M) = 1] = 1−o(1) if λ ≥ (1+ε)k
− 1

2
∗ .

The order λ ∼ k
− 1

2
∗ ∼ c(p, ℓ)n− p

4 of the signal strength is believed to be the
weakest that can be detected by computationally efficient algorithms, cf. [23, 44].
To the best of our knowledge, however, Theorem 3.7 is the first result to establish
a sharp phase transition for any tensor PCA algorithm for symmetric tensors.4

The proof of Theorem 3.7 is given in section 8.2. As in the previous section, the
idea of the proof is to approximate EM by a low rank matrix. However, in the
present case the entries of M exhibit a complicated dependence structure, which is
nonetheless captured effortlessly by our main results.

Remark 3.8. The design parameter ℓ provides a tradeoff between computational
cost and the detection threshold: the larger ℓ, the more costly is the computational
method (as the dimension of M is of order nℓ) but the smaller is the detection
threshold c(p, ℓ). It is conjectured in [44, Conjecture 3.6] that an arbitrarily small
detection threshold c(p, ℓ) can be achieved by choosing ℓ sufficiently large. This
regime is not captured by Theorem 3.7, however, as its validity is restricted to the
range p

2 ≤ ℓ < 3p
4 . When ℓ is large compared to p, the dependence structure of

M is so strong that it is unclear whether it could be accurately modeled by Mfree.
Nonetheless, even the detection threshold achieved by Theorem 3.7 for ℓ = p

2 is
already of smaller order than is captured by the analysis of [44] for any value of ℓ.

Remark 3.9. The matrix M used here is known as a Kikuchi matrix. Such matrices
have had a number of unexpected applications in recent years, such as to the study
of Moore bounds for hypergraphs. We refer to [24] for more on this topic.

3.4. Spike detection in block-structured models. The above applications fea-
ture various nonhomogeneous but isotropic models. We now study an anisotropic
model proposed by Pak, Ko, and Krzakala [32].

Let x ∈ {−1,+1}d, and let H be a d×d self-adjoint random matrix whose entries
(Hij)i≥j are independent with Hij ∼ N(0,

1+1i=j

d ∆ij); here ∆ij = ∆ji ≥ 0 define
an arbitrary variance profile of the entries of H. Then

X̃ =
1

d
xx∗ +H

4For the asymmetric analogue of the tensor PCA model, a sharp transition was established in
[29, §3.2] . This case is considerably simpler, as the natural counterpart of M with ℓ = p

2
has

independent entries and thus its analysis reduces to that of the classical spiked Wigner model.
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is an anisotropic variant of the spiked Wigner model of section 1.2. The question
is when it is possible to detect the presence of the spike xx∗, and to recover the
entries of x, when we can only observe X̃. One may expect that this question can
be addressed using the largest eigenvalue and eigenvector of X̃ as in section 3.1.
Unfortunately, the variational principle (1.6) is generally not analytically tractable
for anisotropic models. More surprisingly, the detection threshold achieved by this
method turns out to be information-theoretically suboptimal [20].

Instead, [32] propose to consider the largest eigenvalue and eigenvector of a
deterministic transformation of X̃ that is motivated by statistical physics:

X =
1

∆
⊙ X̃ − diag

(
1

d∆
1d

)
,

where 1
∆ denotes the elementwise inverse and ⊙ denotes elementwise (Hadamard)

product. This procedure can be implemented provided all variances ∆ij > 0 are
positive and known. It is conjectured in [32, Conjecture 1.6] that this approach
achieves the optimal detection threshold when the variance profile ∆ has block
structure. Here we prove this conjecture in a strong form.

In the following theorem, we denote by X∅ the null model associated to X, that
is, the model where we replace x← 0 in the definition of X.

Theorem 3.10. Let q ≥ 1, let ∆ be a q×q self-adjoint matrix with positive entries,
and let C1⊔ · · · ⊔Cq be a partition of [d] into q disjoint sets of size |Ck| =: ckd > 1.
Assume the variance profile ∆ is defined by ∆ij = ∆kl for i ∈ Cj , j ∈ Cl. Let

SNR(∆) := λmax

(
diag(c)

1
2 1
∆ diag c

1
2

)
.

Then there exists µ ≤ 1− κ
(
1− SNR(∆)

1
2

)2 so that the following hold.

a. If SNR(∆) > 1, we have with probability 1− e−d
1
2

|λmax(X)− 1| ≤ Cβ
1
2

(
(log d)

3
4

d
1
4

+ q
1
2

d
1
2

)
, |λmax(X∅)− µ| ≤ Cβ

1
2

(
(log d)

3
4

d
1
4

+ q
1
2

d
1
2

)
.

b. If SNR(∆) ≤ 1, we have with probability 1− e−d
1
2

|λmax(X)− µ| ≤ Cβ
1
2

(
(log d)

3
4

d
1
4

+ q
1
2

d
1
2

)
, |λmax(X∅)− µ| ≤ Cβ

1
2

(
(log d)

3
4

d
1
4

+ q
1
2

d
1
2

)
.

Here β := maxi,j
1

∆ij
, κ := mini bi

maxi bi
where b is the Perron eigenvector of 1

∆ diag(c).

The proof of this result in section 8.3 is a straightforward consequence of the
fact that X is of the form (2.4) with B = 1

∆ and z = x.
Theorem 3.10 shows that the largest eigenvalue of X can detect the presence or

absence of a signal with probability 1− o(1) when SNR(∆) ≥ 1 + ε for any ε > 0,
which coincides with the information-theoretic detection limit for this problem [20].
We emphasize that this is established here in a much stronger nonasymptotic form
than was conjectured in [32] (and proved in [28] concurrently with our work). In
particular, the conclusion is valid when q ≪ d and β, 1

κ ≲ 1, which means the
number of blocks may be chosen to diverge rapidly as the dimension increases.

Remark 3.11. In [32, Conjecture 1.6], the largest eigenvalue of X is conjectured to
detach from the bulk of the spectrum if and only if SNR(∆) > 1. This formulation
must be interpreted with care in the nonasymptotic setting, however, as it is possible
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when both d, q → ∞ that even the spectrum of X∅ has components that detach
from the bulk. The formulation of Theorem 3.10 avoids this pitfall.

Remark 3.12. We assumed that x ∈ {−1, 1}d primarily for simplicity of exposition.
In [32], it is assumed instead that the entries of x are i.i.d. with E[x2

i ] = 1. It is
completely straightforward to extend Theorem 3.10 to this setting, see Remark 8.4.
However, the quantitative rates in Theorem 3.10 must then depend on what as-
sumptions are made on the distribution of xi. As no new insights are obtained
from such an extension, we have chosen to focus on the above concrete setting.

Beside the behavior of the top eigenvalue, [32] also conjectured a corresponding
phase transition for the overlap between x and the largest eigenvector of X. As
was explained in Remark 2.13, it has proved challenging to achieve nonasymptotic
bounds for this quantity. However, in the asymptotic setting where all the model
parameters are fixed as d→∞, the correct behavior may be readily established.

Theorem 3.13. Consider the setting of Theorem 3.10, where q,∆, c are taken to
be fixed as d→∞. Then we have

1

d
|⟨x, vmax(X)⟩|2 → 0 in probability as d→∞

if and only if SNR(∆) ≤ 1.

3.5. Contextual stochastic block models. We now discuss an entirely different
anisotropic application: a spike detection problem with side information.

Let G be an n × n self-adjoint random matrix whose entries (Gij)i≥j are inde-
pendent with Gij ∼ N(0,

1+1i=j

n ), H be a p×n random matrix all of whose entries
are i.i.d. with distribution N(0, 1

p ), and u ∼ N(0, 1
p1p) be an independent random

vector. We further fix v ∈ {−1,+1}n and λ, µ ≥ 0. We now define

A =
λ

n
vv∗ +G, Y =

√
µ

n
uv∗ +H.

We aim to recover the signal v from observation of both A and Y . Note that A is
precisely the classical spiked Wigner model, while Y provides additional information
or “context” about v. The availability of side information should make it possible
to detect weaker signals than is possible otherwise.

The above model was proposed in [19, eq. (8)–(9)] as a Gaussian counterpart
of an analogous discrete model called the contextual stochastic block model. In
particular, it is shown in the proof of [19, Theorem 4] by an indirect argument that
the existence of any nontrivial estimator of v in the Gaussian model will imply the
existence of such an estimator in the discrete model. We will therefore focus our
attention here for simplicity on the Gaussian model.

In [19, Theorem 6], the authors propose a detection algorithm that combines
a spectral method with a univariate optimization problem. Here we investigate
a simpler detection algorithm that is purely spectral in nature, which was sug-
gested by F. Krzakala and L. Zdeborová (personal communication) based on ideas
of statistical physics. To define this algorithm, let

X̂ =

[
λA− (λ2 + µp

n )1n Y ∗√µp
n

Y
√

µp
n −µ1p

]
,
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and let v̂ ∈ Rn be the restriction of vmax(X̂) ∈ Rn+p to the first n coordinates. The
following theorem shows that v̂ has positive correlation with v up to the information-
theoretic detection limit for this problem (cf. [19, Theorem 6]).

Theorem 3.14. Let λ, µ be fixed as n, p→∞ with n
p → γ ∈ (0,∞). Then

1

n
|⟨v, v̂⟩|2 ≥ ε− o(1) with probability 1− o(1) for some ε > 0

if and only if λ2 + µ2

γ > 1.

The proof of this result is given in section 8.4. The main idea of the proof is that
we can identify X̂ as another special instance of the model (2.4). The model differs
from that of the previous section in that the matrix B now has many vanishing
entries; this will, however, not cause any complications in our analysis.

Remark 3.15. Our analysis could be extended using Theorem 2.4 to achieve the
same result directly for the discrete contextual stochastic block model, provided
that its average degrees grow polylogarithmically in the dimension. The latter is
necessary, as direct spectral methods fundamentally cannot work in the regime of
constant average degrees due to the presence of high degree nodes (see, e.g., [8]).
This does not contradict the indirect universality argument used in [19], which
merely ensures the existence of an estimator in the discrete setting.

3.6. Sample covariance error. Let X1, . . . , Xn be i.i.d. Gaussian random vectors
in Rp with distribution N(0,Σ). Then the sample covariance matrix

Σ̂ :=
1

n

n∑
i=1

XiX
∗
i (3.1)

is a natural estimator of the covariance matrix Σ. If X is the p×n random matrix
whose columns are X1, . . . , Xn, we may write Σ̂ = 1

nXX∗.
Sample covariance matrices exhibit outlier phase transitions much like in the

spiked Wigner model when the covariance matrix Σ is defined by a low-rank per-
turbation. This is in fact the original setting studied by Baik et al. [4, 5]. For sake
of illustration, we will consider here the simplest such model where

Σ = λ vv∗ + 1p, (3.2)

where λ ≥ 0 and ∥v∥ = 1. In this case, it is shown in [4, 5] that in the asymptotic
regime n, p→∞ with p

n → δ, the largest eigenvalue of Σ̂ is a spectral outlier if and
only if λ >

√
δ (cf. Theorem 3.16 below).

If we view Σ̂ as an estimator of Σ, however, then it is often more relevant to
understand the norm of the estimation error ∥Σ̂−Σ∥, rather than the norm of the
estimator itself ∥Σ̂∥ as in [4, 5]. It was conjectured5 by Han [22] that the sample
covariance error also exhibits a phase transition; however, this transition occurs at
a larger value of the signal strength λ > 1 +

√
δ.

5In [22] this conjecture is stated as a theorem, but the proof of the lower bound has a gap.
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Figure 3.2. Illustration of 200 samples of Σ̂ in Theorem 3.16 with
p = 400 and n = 2000 (so that

√
δ ≈ 0.45). The light shaded area is the

empirical histogram of all eigenvalues normalized to have total area 1,
while the colored shaded area is the empirical histogram of the largest
eigenvalue normalized to have area 1

p
. The solid line is the spectrum of

the free model, and the dashed vertical line marks S(λ, δ). The vertical
axis follows a square-root scale to visualize the density of the outlier.

We will prove a nonasymptotic form of the above phase transitions and of yet
another transition for the smallest eigenvalue of Σ̂− Σ. Here we define

S(λ, δ) :=

{
(1 +

√
δ)2 for λ ≤

√
δ,

(1 + λ)(1 + δ
λ ) for λ >

√
δ,

H+(λ, δ) :=

{
δ + 2

√
δ for λ ≤ 1 +

√
δ,

1+λ
2λ (
√
δ +
√
δ + 4λ)

√
δ for λ > 1 +

√
δ,

H−(λ, δ) :=

{
δ − 2

√
δ for λ ≤ 1−

√
δ,

1+λ
2λ (
√
δ −
√
δ + 4λ)

√
δ for λ > 1−

√
δ.

These functions play the same role for Σ̂ and Σ̂ − Σ as does B(θ) in section 2.3.
The following theorem is illustrated in Figures 3.2 and 3.3.

Theorem 3.16. Let δ = p
n and d = max{n, p}, and assume n ≥ (log d)3. Then

P
[∣∣∥Σ̂∥ − S(λ, δ)

∣∣ > C(1 + λ+ δ)n− 1
4 (log d)

3
4 ] ≤ e−Cn

1
2 ,

P
[∣∣λmax(Σ̂− Σ)−H+(λ, δ)

∣∣ > C(1 + λ+ δ)n− 1
4 (log d)

3
4 ] ≤ e−Cn

1
2 ,

P
[∣∣λmin(Σ̂− Σ)−H−(λ, δ)

∣∣ > C(1 + λ+ δ)n− 1
4 (log d)

3
4 ] ≤ e−Cn

1
2 .

Remark 3.17. Note that as |H−(λ, δ)| ≤ H+(λ, δ), Theorem 3.16 also implies that
∥Σ̂− Σ∥ = (1 + o(1))H+(λ, δ) with probability 1− o(1) as conjectured in [22].
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Figure 3.3. Illustration of 200 samples of Σ̂−Σ in Theorem 3.16 with
the same parameters as in Figure 3.2. Here the two colored shaded areas
are the empirical histograms of the smallest and largest eigenvalues, and
the dashed vertical lines mark the locations of H±(λ, δ).

The proof of Theorem 3.16 is given in section 8.5. We will use Theorem 2.5
to reduce the problem to the analysis of its deterministic model, which can be
performed using a quadratic counterpart of the Lehner formula [33].

4. Ultracontractive bounds

The aim of this section is to prove that suitable analogues of the elementary fact
(1.2) for matrices with scalar entries hold for matrices whose entries are polynomials
of semicircular variables. In the following, we let s1, . . . , sn be a free semicircular
family, and denote by ∥Z∥Lp(τ) := τ(|Z|p)

1
p the noncommutative Lp-norm.

The following may be viewed as a direct analogue of the scalar case.

Theorem 4.1. Let P ∈ Md(C)⊗C⟨x1, . . . , xn⟩ be any noncommutative polynomial
of degree k with matrix coefficients. Then we have

∥P (s1, . . . , sn)∥ ≤ d
3
4q (2qk + 1)

3
4q ∥P (s1, . . . , sn)∥L4q(tr⊗τ)

for every q ∈ N.

However, we will require such a property not for the norm of the matrix itself, but
rather for the norm of its resolvent. For the resolvent of a self-adjoint polynomial,
we can deduce an analogous result up to a small error.

Theorem 4.2. Let P ∈ Md(C)⊗C⟨x1, . . . , xn⟩ be any self-adjoint noncommutative
polynomial of degree k with matrix coefficients. Then we have

∥(z − P (s1, . . . , sn))
−1∥ ≤

d
3
4q (2qkr + 1)

3
4q

(
∥(z − P (s1, . . . , sn))

−1∥L4q(tr⊗τ) +
12r−1∥P (s1, . . . , sn)∥

(Im z)2

)
for every q, r ∈ N and z ∈ C, Im z > 0.
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Of primary interest in this paper is the noncommutative model Xfree associated
to a self-adjoint Gaussian random matrix X. It is evident from the definition (2.2)
that Xfree is a self-adjoint noncommutative polynomial of degree k = 1 with matrix
coefficients. However, while Theorem 4.2 can be applied directly to Xfree as a
special case, this result is not adequate for our purposes because the error term in
the resulting inequality is proportional to ∥Xfree∥. Such a bound would give rise
to sharp matrix concentration inequalities that become increasingly inaccurate as
∥EX∥ = ∥A0∥ → ∞, which is unnatural in applications.

The following bound, which eliminates the dependence of the error term on A0,
is essential for the main results of this paper. Its proof is based on the fact that the
resolvent (z −Xfree)

−1 primarily captures the part of the spectrum of Xfree that is
close to Re z, and is insensitive to eigenvalues of A0 that are far from Re z.

Theorem 4.3. Let Xfree be the noncommutative model associated to a self-adjoint
random matrix X. For any z ∈ C with 0 < Im z ≤ σ(X) and q, r ∈ N, K > 4

∥(z −Xfree)
−1∥ ≤

d
3
4q (2qr + 1)

3
4q

(
∥(z −Xfree)

−1∥L4q(tr⊗τ) +

(
K

r
+

1

K − 2

)
18dσ(X)

(Im z)2

)
.

We will apply this theorem in the following form.

Corollary 4.4. Let Xfree be the noncommutative model associated to a self-adjoint
random matrix X. For any z ∈ C with Re z ∈ sp(Xfree) and Im z > 0, we have

∥(z −Xfree)
−1∥ ≤ C

(
∥(z −Xfree)

−1∥L4q(tr⊗τ) +
σ∗(X)

(Im z)2

)
for all q ≥ log d, where C is a universal constant.

The remainder of this section is devoted to the proofs of these results.

4.1. Proof of Theorems 4.1 and 4.2. The proof of Theorem 4.1 is essentially
equivalent to that of [12, Corollary 7.2]. The basic tool we will use is ultracontrac-
tivity, due in the present setting to Bozejko and Biane [10].

Lemma 4.5. Let P ∈ C⟨x1, . . . , xn⟩ be any noncommutative polynomial of degree
k with scalar coefficients. Then we have

∥P (s1, . . . , sn)∥ ≤ (k + 1)
3
2 ∥P (s1, . . . , sn)∥L2(τ).

Proof. We adopt the notation of [10, §1]. Let e1, . . . , en be the coordinate basis
of Cn. Then we can represent si = l(ei) + l∗(ei) in terms of the annihilation
and creation operators on the free Fock space F0(Cn). It follows readily from the
definitions that any polynomial of s1, . . . , sn of degree k is a linear combination of
eigenvectors of the number operator N0 with eigenvalue at most k, that is,

P (s1, . . . , sn) = P0 + · · ·+ Pk

where N0Pr = rPr. Thus

∥P (s1, . . . , sn)∥ ≤ ∥P0∥+ · · ·+ ∥Pk∥
≤ (k + 1){∥P0∥L2(τ) + · · ·+ ∥Pk∥L2(τ)}

≤ (k + 1)
3
2 ∥P (s1, . . . , sn)∥L2(τ)
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where the first line uses the triangle inequality, the second line uses [10, Theorem 4],
and the last line uses Cauchy-Schwarz and that the eigenspaces of N0 are orthogonal
with respect to the inner product of L2(τ). □

We now recall a standard trick to handle matrix coefficients.

Lemma 4.6. Let (A, τ) be a noncommutative probability space, let P ∈ Md(C)⊗A,
and denote by Pij ∈ A its matrix elements. Then we have

∥P∥ ≤ dmax
ij
∥Pij∥, max

ij
∥Pij∥L2(τ) ≤ d

1
2 ∥P∥L2(tr⊗τ).

Proof. For the first inequality, we may assume that A has been represented as a
subalgebra of B(H) for some Hilbert space H. Then by Cauchy-Schwarz

∥P∥ = sup

∣∣∣∣∣∑
i,j

⟨vi, Pijwj⟩

∣∣∣∣∣ ≤ sup
∑
i,j

∥vi∥∥Pij∥∥wj∥ ≤ dmax
ij
∥Pij∥,

where the supremum is taken over vi, wj ∈ H so that
∑

i ∥vi∥2 =
∑

j ∥wj∥2 = 1.
For the second inequality, we note that

d−
1
2 ∥Pij∥L2(τ) = ∥e1e∗1 ⊗ Pij∥L2(tr⊗τ) = ∥(e1e∗i ⊗ 1)P (eje

∗
1 ⊗ 1)∥L2(tr⊗τ)

and use that ∥e1e∗i ⊗ 1∥ = ∥eje∗1 ⊗ 1∥ = 1. □

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Fix q ∈ N and set Q = |P (s1, . . . , sn)|2q. Then the matrix
elements Qij are polynomials of s1, . . . , sn of degree 2qk. Thus

∥Q∥ ≤ dmax
i,j
∥Qij∥ ≤ d (2qk + 1)

3
2 max

ij
∥Qij∥L2(τ) ≤ d

3
2 (2qk + 1)

3
2 ∥Q∥L2(tr⊗τ)

by Lemmas 4.5 and 4.6. It remains to note that

∥Q∥ = ∥P (s1, . . . , sn)∥2q, ∥Q∥L2(tr⊗τ) = ∥P (s1, . . . , sn)∥2qL4q(tr⊗τ),

and the conclusion follows immediately. □

To deduce a corresponding bound on the resolvent (in the case that the polyno-
mial P is self-adjoint), we apply an approximation argument.

Proof of Theorem 4.2. Fix z ∈ C, Im z > 0, and write P := P (s1, . . . , sn). As
x 7→ |(z−x)−1| is (Im z)−2-Lipschitz, Jackson’s theorem [37, Corollary 1.4.1] yields

sup
x∈[−∥P∥,∥P∥]

∣∣|(z − x)−1| −Qr(x)
∣∣ ≤ 6r−1∥P∥

(Im z)2

for a polynomial Qr of degree r. Therefore

∥(z − P )−1∥ ≤ ∥Qr(P )∥+ 6r−1∥P∥
(Im z)2

≤ d
3
4q (2qkr + 1)

3
4q ∥Qr(P )∥L4q(tr⊗τ) +

6r−1∥P∥
(Im z)2

≤ d
3
4q (2qkr + 1)

3
4q

(
∥(z − P )−1∥L4q(tr⊗τ) +

12r−1∥P∥
(Im z)2

)
by Theorem 4.1, where we used that Qr ◦ P is a polynomial of degree at most kr

and that d
3
4q (2qkr + 1)

3
4q ≥ 1. This completes the proof. □
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4.2. Proof of Theorem 4.3 and Corollary 4.4. The difficulty in the proof of
Theorem 4.3 it that we must capture the fact that the resolvent (z − Xfree)

−1 is
insensitive to the eigenvalues of A0 that are far from Re z. To implement this idea,
we will use spectral perturbation theory to show that shrinking gaps in the spectrum
of A0 of size ≫ σ(X) will only result in a small perturbation of the resolvent.

We first recall an elementary fact.

Lemma 4.7. sp(Xfree) ⊆ sp(A0) + 2σ(X)[−1, 1].

Proof. We obtain sp(Xfree) ⊆ sp(A0) + ∥Xfree − A0 ⊗ 1∥[−1, 1] as in the proof of
[9, Theorem VI.3.3], while ∥Xfree −A0 ⊗ 1∥ ≤ 2σ(X) follows from [36, p. 208]. □

We now implement the spectral perturbation argument for a single gap in sp(A0).
This bound will be iterated below in order to prove Theorem 4.3.

Proposition 4.8. Fix z ∈ C with 0 < Im z ≤ σ(X), fix K > 4, and fix a, b ∈ R
with δ := b− a−Kσ(X) ≥ 0. If (a, b) ⊂ (Re z,∞)\sp(A0) we have

∥(z −Xfree)
−1 − (z −Xfree + δ1[b,∞)(A0)⊗ 1)−1∥ ≤ 9σ(X)

K − 2

1

(Im z)2
,

while if (a, b) ⊂ (−∞,Re z)\sp(A0) we have

∥(z −Xfree)
−1 − (z −Xfree − δ1(−∞,a](A0)⊗ 1)−1∥ ≤ 9σ(X)

K − 2

1

(Im z)2
.

Proof. We will only consider the case (a, b) ⊂ (Re z,∞)\sp(A0), as the comple-
mentary case follows in a completely analogous fashion. Throughout the proof, we
assume without loss of generality that Xfree is represented concretely as an operator
on a Hilbert space, so that we may work with its spectral projections 1I(Xfree).

Define X
(r)
free := Xfree − r1[b,∞)(A0 ⊗ 1) for r ∈ [0, δ]. Then∥∥∥∥ d

dr
(z −X

(r)
free)

−1

∥∥∥∥ =
∥∥(z −X

(r)
free)

−11[b,∞)(A0 ⊗ 1)(z −X
(r)
free)

−1
∥∥

≤
∥∥(z −X

(r)
free)

−11[b,∞)(A0 ⊗ 1)
∥∥ ∥∥1[b,∞)(A0 ⊗ 1)(z −X

(r)
free)

−1
∥∥.

Define A
(r)
0 := A0 − r1[b,∞)(A0), that is, A(r)

0 is obtained from A0 by subtracting r
from all eigenvalues of A0 that are greater than b, while leaving all other eigenvalues
unchanged. As r ≤ δ < b− a and A0 has no eigenvalues in (a, b), this implies

1[b,∞)(A0 ⊗ 1) = 1[b−r,∞)(A
(r)
0 ⊗ 1).

On the other hand, as sp(X
(r)
free) ⊆ sp(A

(r)
0 ) + 2σ(X)[−1, 1] by Lemma 4.7, we have

(a+ 2σ(X), b− r − 2σ(X)) ∩ sp(X
(r)
free) = ∅,

where we note that a+ 2σ(X) < b− r − 2σ(X) as r ≤ δ and K > 4. Thus∥∥1[b,∞)(A0 ⊗ 1)(z −X
(r)
free)

−1
∥∥

≤
∥∥1[b−r,∞)(A

(r)
0 ⊗ 1)1(−∞,a+2σ(X)](X

(r)
free)(z −X

(r)
free)

−1
∥∥

+
∥∥1[b−r,∞)(A

(r)
0 ⊗ 1)1[b−r−2σ(X),∞)(X

(r)
free)(z −X

(r)
free)

−1
∥∥

≤
∥∥1[b−r,∞)(A

(r)
0 ⊗ 1)1(−∞,a+2σ(X)](X

(r)
free)

∥∥
Im z

+
1

b− a− r − 2σ(X)
,
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using 1
|z−x| ≤

1
b−a−r−2σ(X) for x ≥ b − r − 2σ(X) (as Re z ≤ a ≤ b − r − 2σ(X)).

The identical bound clearly holds for ∥(z −X
(r)
free)

−11[b,∞)(A0 ⊗ 1)∥ as well.
We now apply the Davis-Kahan theorem [9, Theorem VII.3.1] to estimate

∥∥1[b−r,∞)(A
(r)
0 ⊗ 1)1(−∞,a+2σ(X)](X

(r)
free)

∥∥ ≤ ∥X(r)
free −A

(r)
0 ⊗ 1∥

b− a− r − 2σ(X)

≤ 2σ(X)

b− a− r − 2σ(X)
,

where we used the free Khintchine inequality [36, p. 208] in the second inequality.
Putting together the above estimates and using the assumption 1 ≤ σ(X)

Im z , we get∥∥∥∥ d

dr
(z −X

(r)
free)

−1

∥∥∥∥ ≤ 9σ(X)2

(b− a− r − 2σ(X))2
1

(Im z)2
.

The fundamental theorem of calculus yields∥∥(z −Xfree)
−1 − (z −X

(δ)
free)

−1
∥∥ ≤ ∫ δ

0

9σ(X)2

(b− a− r − 2σ(X))2
1

(Im z)2
dr,

and the proof is readily completed. □

We can now conclude the proof of Theorem 4.3.

Proof of Theorem 4.3. As (z −Xfree)
−1 is unchanged if we replace z ← i Im z and

A0 ← A0 − (Re z)1, we may assume without loss of generality that Re z = 0. Now
note that the connected components of R\(sp(A0)∪{0}) contain at most d bounded
intervals. If any such interval has length exceeding Kσ(X), we modify A0 using
Proposition 4.8 to shrink the size of that interval to Kσ(X) while incurring an error
9σ(X)
K−2

1
(Im z)2 . Repeating this procedure for each such interval yields a new matrix

A′
0 such that ∥A′

0∥ ≤ Kdσ(X) and X ′
free := A′

0 ⊗ 1+
∑n

i=1 Ai ⊗ si satisfies

∥(z −Xfree)
−1 − (z −X ′

free)
−1∥ ≤ 9dσ(X)

K − 2

1

(Im z)2
.

As ∥X ′
free∥ ≤ (Kd+ 2)σ(X), we further obtain

∥(z−X ′
free)

−1∥ ≤ d
3
4q (2qr+1)

3
4q

(
∥(z−X ′

free)
−1∥L4q(tr⊗τ)+

12r−1(Kd+ 2)σ(X)

(Im z)2

)
by Theorem 4.2. Combining the above bounds and using d

3
4q (2qr + 1)

3
4q ≥ 1 and

Kd+ 2 ≤ 3Kd
2 readily yields the conclusion. □

It remains to prove Corollary 4.4.

Proof of Corollary 4.4. Assume first that Im z ≤ σ(X). As

σ(X)2 = sup
∥v∥=1

n∑
i=1

d∑
k=1

⟨ek, Aiv⟩2 ≤ d sup
∥v∥=∥w∥=1

n∑
i=1

⟨w,Aiv⟩2 = d σ∗(X)2,

the conclusion follows from Theorem 4.3 with K = 2d
3
2 + 2, r = ⌈2d 3

2K⌉ ≤ 8d3.
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We now consider the case that Im z > σ(X) and Re z ∈ sp(Xfree). Then

∥(z −Xfree)
−1∥4qL4q(tr⊗τ) = (tr⊗τ)[(|z −Xfree|2)−2q]

≥ tr[((id⊗ τ)|z −Xfree|2)−2q]

= tr[((Im z)2 +E[(X −EX)2] + (Re z −A0)
2)−2q]

≥ tr[((Im z)2 + σ(X)2 + (Re z −A0)
2)−2q],

where we used Jensen’s inequality in C∗-algebras [35] in the first inequality, and
that E[(X − EX)2] ≤ σ(X)21 and trace monotonicity [17, §2.2] in the second
inequality. Now note that Lemma 4.7 ensures there is an eigenvalue of A0 within
distance 2σ(X) of Re z ∈ sp(Xfree). We can therefore estimate

∥(z −Xfree)
−1∥4qL4q(tr⊗τ) ≥

1

d

1

((Im z)2 + 5σ(X)2)2q
≥ 1

d

1

(6(Im z)2)2q
.

Thus we obtain

∥(z −Xfree)
−1∥ ≤ 1

Im z
≤ d

1
4q

√
6 ∥(z −Xfree)

−1∥L4q(tr⊗τ),

and the conclusion follows readily. □

5. Sharp matrix concentration inequalities

5.1. Proof of Theorem 2.2. As the upper bound on sp(X) was already proved
in [6], we only need to prove the corresponding lower bound. To this end, we will
follow the approach of [6, §6] with the crucial input of Corollary 4.4.

The basis for the proof is the following.

Lemma 5.1. Fix z ∈ C with Re z ∈ sp(Xfree) and Im z > 0. Then

P

[
c∥(z−Xfree)

−1∥ ≥ ∥(z−X)−1∥+ ṽ(X)4

(Im z)5
(log d)3+

σ∗(X)

(Im z)2
(
√

log d+ t)

]
≤ e−t2

for all t ≥ 0, where c is a universal constant.

Proof. We begin by noting that [6, Corollary 4.14 and (6.2)] implies

P

[
± (∥(z −X)−1∥ −E∥(z −X)−1∥) ≥ σ∗(X)

(Im z)2
t

]
≤ e−t2/2 (5.1)

for t ≥ 0. This further implies

E[∥(z −X)−1∥2p]
1
2p ≤ E∥(z −X)−1∥+ σ∗(X)

(Im z)2
2
√
p (5.2)

for all p ∈ N by [13, Theorem 2.1]
On the other hand, [6, Theorem 6.1] yields for q ∈ N

∥(z −Xfree)
−1∥L4q(tr⊗τ) ≤ E[tr |z −X|−4q]

1
4q +

8

3

ṽ(X)4

(Im z)5
(q + 1)3.

Applying (5.2) and Corollary 4.4 with q = ⌈log d⌉ yields

c∥(z −Xfree)
−1∥ ≤ E∥(z −X)−1∥+ ṽ(X)4

(Im z)5
(log d)3 +

σ∗(X)

(Im z)2

√
log d

for a universal constant c, where we used that tr |z −X|−4q ≤ ∥(z −X)−1∥4q. The
conclusion follows by applying (5.1). □

We now deduce a uniform analogue of the previous lemma.
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Lemma 5.2. Fix ε > 0. Then

P

[
c∥(z −Xfree)

−1∥ ≤ ∥(z −X)−1∥+ ṽ(X)4

ε5
(log d)3 +

σ∗(X)

ε2
(
√

log d+ t)

for all z ∈ sp(Xfree) + iε

]
≥ 1− e−t2

for all t ≥ 0, where c is a universal constant.

Proof. Using σ(X) ≤
√
d σ∗(X) as in the proof of Corollary 4.4, Lemma 4.7 yields

sp(Xfree) ⊆ sp(A0) + 2
√
d σ∗(X)[−1, 1].

As |sp(A0)| ≤ d, it follows that sp(Xfree) can be covered by at most d intervals of
length 4

√
d σ∗(X). We can therefore find N ⊂ sp(Xfree) of cardinality |N | ≤ 4d

3
2

so that each point in sp(Xfree) is within distance σ∗(X) of a point in N .
Now note that for any λ, λ′ ∈ R and ε > 0∣∣∥(λ+ iε−X)−1∥ − ∥(λ′ + iε−X)−1∥

∣∣ ≤ |λ− λ′|
ε2

,

and analogously when X is replaced by Xfree. We can therefore estimate

P

[
c′∥(z −Xfree)

−1∥ ≥ ∥(z −X)−1∥+ ṽ(X)4

ε5
(log d)3 +

σ∗(X)

ε2
(
√
log d+ t)

for some z ∈ sp(Xfree) + iε

]
≤

P

[
c∥(z −Xfree)

−1∥ ≥ ∥(z −X)−1∥+ ṽ(X)4

ε5
(log d)3 +

σ∗(X)

ε2
(
√

log d+ t)

for some z ∈ N + iε

]
≤ 4d

3
2 e−t2

for any t ≥ 0 using Lemma 5.1 and the union bound, where c, c′ are universal
constants. The conclusion follows by replacing t ← t + 2

√
log d and noting that

4d
3
2 e−(t+2

√
log d)2 ≤ e−t2 for all t ≥ 0 (recalling the standing assumption d ≥ 2). □

We can now conclude the proof of Theorem 2.2.

Proof of Theorem 2.2. It was shown in [6, Theorem 2.1] that

P
[
sp(X) ⊆ sp(Xfree) + C{ṽ(X)(log d)

3
4 + σ∗(X)t}[−1, 1]

]
≥ 1− e−t2 .

On the other hand, combining Lemma 5.2 with [6, Lemma 6.4] yields

P
[
sp(Xfree) ⊆ sp(X) + C{ṽ(X)(log d)

3
4 + σ∗(X)t}[−1, 1]

]
≥ 1− e−t2 ,

where we used that σ∗(X)
√
log d ≤ ṽ(X)(log d)

3
4 . The union bound yields

P
[
dH(sp(X), sp(Xfree)) > C{ṽ(X)(log d)

3
4 + σ∗(X)t}

]
≤ 2e−t2 .

We conclude by replacing t← t+
√
log 2 and using again that σ∗(X) ≤ ṽ(X). □
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5.2. Proof of Corollary 2.3. The proof is entirely straightforward.

Proof of Corollary 2.3. Assume first that X is self-adjoint. Then the tail bound
follows immediately from Theorem 2.2 as |∥X∥ − ∥Xfree∥| ≤ dH(sp(X), sp(Xfree)).
To deduce the bound in expectation, we estimate

|E∥X∥ − ∥Xfree∥| ≤
∫ ∞

0

P
[
|∥X∥ − ∥Xfree∥| > x

]
dx

≤ Cṽ(X)(log d)
3
4 +

∫ ∞

0

P
[
|∥X∥ − ∥Xfree∥| > Cṽ(X)(log d)

3
4 + x

]
dx

and use that σ∗(X) ≤ ṽ(X). The corresponding results for λmax(X), λmax(Xfree)
and λmin(X), λmin(Xfree) follow by an identical argument. Finally, the norm bounds
extend directly to the non-self-adjoint case by [6, Remark 2.6]. □

5.3. Proof of Theorem 2.5. The basis for the proof is the following variant of
the linearization argument of [6, Lemma 3.13].

Lemma 5.3. Fix ε > 0, and define Bε := B + (∥B∥+ 4ε2)1 and

X̆ε =

 0 X B
1
2
ε

X∗ 0 0

B
1
2
ε 0 0

 , X̆free,ε =

 0 Xfree B
1
2
ε ⊗ 1

X∗
free 0 0

B
1
2
ε ⊗ 1 0 0

 .

Then
dH(sp(X̆ε), sp(X̆free,ε)) ≤ ε

implies

dH(sp(XX∗ +B), sp(XfreeX
∗
free +B ⊗ 1) ≤ 4{∥Xfree∥+ ∥B∥

1
2 }ε+ 5ε2.

Proof. By [6, Remark 2.6], we have

sp(X̆ε) ∪ {0} = sp((XX∗ +Bε)
1
2 ) ∪ −sp((XX∗ +Bε)

1
2 ) ∪ {0},

and analogously for X̆free,ε.
Consider first any λ ∈ sp(XX∗+Bε). Then λ

1
2 ≥ 2ε by the definition of Bε, and

thus λ
1
2 ∈ sp(X̆ε). By assumption, there exists µ ∈ sp(X̆free,ε) so that |λ 1

2 −µ| ≤ ε.
This implies µ ≥ ε, so it must be that µ ∈ sp((XfreeX

∗
free +Bε ⊗ 1)

1
2 ). Moreover,

|λ− µ2| = (λ
1
2 + µ)|λ 1

2 − µ| ≤ 2µε+ ε2.

As µ2 ∈ sp(XfreeX
∗
free +Bε ⊗ 1), we have shown that

sp(XX∗ +Bε) ⊆ sp(XfreeX
∗
free +Bε ⊗ 1) + (2∥XfreeX

∗
free +Bε ⊗ 1∥ 1

2 ε+ ε2)[−1, 1].
Reversing the roles of X,Xfree yields

dH(sp(XX∗ +Bε), sp(XfreeX
∗
free +Bε ⊗ 1)) ≤ 2∥XfreeX

∗
free +Bε ⊗ 1∥ 1

2 ε+ ε2

by the identical argument.
To conclude the proof, note first that

dH(sp(XX∗+Bε), sp(XfreeX
∗
free+Bε⊗1)) = dH(sp(XX∗+B), sp(XfreeX

∗
free+B⊗1))

as Hausdorff distance is translation-invariant dH(I + t, J + t) = dH(I, J). On the
other hand, we can estimate

∥XfreeX
∗
free +Bε ⊗ 1∥ ≤ ∥Xfree∥2 + 2∥B∥+ 4ε2,

and the proof is readily completed. □
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We can now complete the proof of Theorem 2.5.

Proof of Theorem 2.5. By Lemma 5.3, we can estimate

P
[
dH(sp(XX∗ +B), sp(XfreeX

∗
free +B ⊗ 1) > 4{∥Xfree∥+ ∥B∥

1
2 }ε+ 5ε2

]
≤ P

[
dH(sp(X̆ε), sp(X̆free,ε)) > ε

]
.

We now recall that σ∗(X̆ε) = σ∗(X) and ṽ(X̆ε) ≤ 2
1
4 ṽ(X) by [6, Remark 2.6]. Thus

t ≥ ṽ(X)(log d)
3
4 implies 2t ≥ 2−

1
4 ṽ(X̆ε)(log d)

3
4 + σ∗(X̆ε)

t
σ∗(X) . The conclusion

follows from Theorem 2.2 by choosing ε = C ′t for a universal constant C ′. □

6. Phase transitions: isotropic case

6.1. Proof of Theorem 2.7. Theorem 2.7 is based on the Lehner formula (1.6).
At its core, the reason that this variational principle exhibits phase transitions in
the presence of low-rank structure is contained in the following simple observation:
the last term in the Lehner formula is small when M has low rank.

Lemma 6.1. Let M ∈ Md(C)sa have rank r. Then

∥E[(X −EX)M(X −EX)]∥ ≤ σ∗(X)2r ∥M∥.

Proof. Writing M =
∑r

i=1 λiviv
∗
i with |λi| ≤ ∥M∥ and ∥vi∥ = 1, we obtain

∥E[(X−EX)M(X−EX)]∥ = sup
∥w∥=1

∣∣∣∣ r∑
i=1

λi E[|⟨vi, (X−EX)w⟩2]
∣∣∣∣ ≤ σ∗(X)2r∥M∥

by the triangle inequality and the definition of σ∗(X). □

We first prove the upper bound in Theorem 2.7.

Lemma 6.2. Let X be any d×d self-adjoint random matrix with E[(X−EX)2] = 1
and such that EX has rank r. Then we have

λmax(Xfree) ≤ B(λmax(EX)) + 2σ∗(X)
√
r.

Proof. Denote by P the projection onto the range of EX. Then we can upper
bound λmax(Xfree) by restricting the infimum in (1.6) only to matrices of the form
M = sP + t(1− P ) for s, t > 0, and using that for such M

E[(X −EX)M(X −EX)] ≤ t+ σ∗(X)2rs

by the isotropic assumption E[(X −EX)2] = 1 and Lemma 6.1. This yields

λmax(Xfree) ≤ inf
s,t>0

λmax

(
EX + s−1P + t−1(1− P ) + t+ σ∗(X)2rs

)
≤ inf

t>0
max{λmax(EX) + t, t−1 + t}+ 2σ∗(X)

√
r,

where we used EX ≤ λmax(EX)P and s−1P ≤ s−1 in the second inequality. It
remains to note that inft>0 max{θ + t, t−1 + t} = B(θ). □

We now turn to the lower bound.

Lemma 6.3. Let X be any d×d self-adjoint random matrix with E[(X−EX)2] = 1
and such that EX has rank r with σ∗(X)

√
r ≤ 1. Then we have

λmax(Xfree) ≥ B(λmax(EX))− 2σ∗(X)
√
r.
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Proof. Let r′ ≤ r be the number of (strictly) negative eigenvalues of EX, and as-
sume without loss of generality that the associated eigenvectors are ed−r′+1, . . . , ed.
Let Q : Cd → Cd−r′ be the coordinate projection on the first d − r′ coordinate
directions. Then the Lehner formula (1.6) yields

λmax(Xfree) ≥ λmax((Q⊗ 1)Xfree(Q
∗ ⊗ 1))

= inf
M>0

λmax

(
QEX Q∗ +M−1 +QE[(X −EX)Q∗MQ(X −EX)]Q∗),

where the infimum is taken over (d− r′)-dimensional matrices M .
To proceed, note that 1−Q∗Q is a projection of rank r′ ≤ r. Thus

QE[(X −EX)Q∗Q(X −EX)]Q∗ ≥ 1− σ∗(X)2r =: β

where we used the isotropic assumption E[(X − EX)2] = 1, that QQ∗ = 1, and
Lemma 6.1. Moreover, note that β ≥ 0 by assumption. We can therefore bound

λmax

(
QEX Q∗ +M−1 +QE[(X −EX)Q∗MQ(X −EX)]Q∗)

≥ λmax

(
QEX Q∗ +M−1

)
+ βλmin(M)

≥ max{λmax(EX), (λmin(M))−1}+ βλmin(M),

where we used M−1 ≥ 0, λmax(QEX Q∗) = λmax(EX) and QEX Q∗ ≥ 0, respec-
tively, to obtain the two terms in the maximum on the last line. Thus

λmax(Xfree) ≥ inf
t>0

max{λmax(EX) + βt, t−1 + βt} = β
1
2B(β− 1

2λmax(EX)).

It remains to show that β
1
2B(β− 1

2 θ) ≥ B(θ)− 2σ∗(X)
√
r.

To this end, note first that β
1
2 ≥ 1− σ∗(X)

√
r as

√
1− x2 ≥ 1− x for x ∈ [0, 1].

We now consider two regimes. If θ ≤ 1, we have

β
1
2B(β− 1

2 θ) ≥ 2β
1
2 ≥ 2− 2σ∗(X)

√
r = B(θ)− 2σ∗(X)

√
r.

On the other hand, if θ > 1, then we have

β
1
2B(β− 1

2 θ) = θ +
β

θ
= B(θ)− σ∗(X)2r

θ
≥ B(θ)− σ∗(X)

√
r

as σ∗(X)2r ≤ σ∗(X)
√
r. The proof is complete. □

Theorem 2.7 follows immediately by combining Lemmas 6.2 and 6.3.

6.2. Proof of Theorem 2.9. Despite that we formulated Theorem 2.9 in the
context of random matrices, the argument is entirely deterministic in nature. The
proof is based on the following basic observation.

Lemma 6.4. Let X,P ∈ Md(C)sa and t > 0. Then
λmax(X)− λmax(X − tP )

t
≤ ⟨vmax(X), Pvmax(X)⟩ ≤ λmax(X + tP )− λmax(X)

t

for any unit norm eigenvector vmax(X) of X with eigenvalue λmax(X).

Proof. To prove the upper bound, note that we obtain

λmax(X + tP )− λmax(X) = sup
∥v∥=1

⟨v, (X + tP )v⟩ − ⟨vmax(X), Xvmax(X)⟩

≥ t⟨vmax(X), Pvmax(X)⟩
by choosing v ← vmax(X) in the supremum. The lower bound follows immediately
if we replace t← −t in the above inequality. □
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To exploit these inequalities in the setting of Theorem 2.7, we must estimate the
bounded differences of the function B(·).

Lemma 6.5. For any t > 0, we have

B(θ + t)− B(θ)

t
≤

(
1− 1

θ2

)
+

+ t,
B(θ)− B(θ − t)

t
≥

(
1− 1

θ2

)
+

− t.

Proof. We readily compute

dB(θ)

dθ
=

(
1− 1

θ2

)
+

,
d2B(θ)

dθ2
=

2

θ3
1θ≥1 ≤ 2.

Taylor expanding to second order yields

B(θ + t)− B(θ)

t
=

(
1− 1

θ2

)
+

+ t

∫ 1

0

∫ s

0

2

(θ + rt)3
1θ+rt≥1 dr ds.

The upper bound in the statement follows using 2
(θ+rt)3 1θ+rt≥1 ≤ 2. The lower

bound follows by the identical argument once we replace t← −t. □

We can now complete the proof.

Proof of Theorem 2.9. We begin by writing
λmax(X)− λmax(X−t)

t
≤ ⟨vmax(X), 1(θ−δ,θ](EX)vmax(X)⟩ ≤ λmax(Xt)− λmax(X)

t

using Lemma 6.4. If in addition

|λmax(Xs)− B(λmax(EXs))| ≤ ε for s ∈ {0,±t},
Lemma 6.5 yields∣∣∣∣⟨vmax(X), 1(θ−δ,θ](EX)vmax(X)⟩ −

(
1− 1

θ2

)
+

∣∣∣∣ ≤ t+
2ε

t
,

where we used that λmax(EXt) = θ + t and λmax(EX−t) = θ − t (because t ≤ δ).
It remains to note that the above condition holds with high probability

P
[
|λmax(Xs)− B(λmax(EXs))| ≤ ε for s ∈ {0,±t}

]
≥ 1− 3ρ

by the union bound, concluding the proof. □

7. Phase transitions: anisotropic case

The aim of this section is to prove Theorem 2.12. The proof consists of several
distinct parts. In section 7.1, we apply a general reduction principle to reduce the
dimension of the Lehner variational formula (1.6). In section 7.2, we approximate
the Lehner formula for Xfree, X∅,free by simplified parameters λ, λ∅ using the low-
rank structure of the model. We also obtain the quantitative bound on λ∅. We
subsequently prove the phase transition of λ in section 7.3.

Notation. The following notations will be used primarily in this section. For any
vector v ∈ Cd and matrix M ∈ Md(C), we will denote

1

v
:=

v
−1
1
...

v−1
d

 , diag(v) :=

v1 . . .
vd

 , diag−1(M) :=

M11

...
Mdd

 .
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We will denote by ICk
∈ Cd the indicator (ICk

)i = 1i∈Ck
and by ICk

:= diag(ICk
).

The elementwise (Hadamard) product of vectors or matrices is denoted as ⊙.

7.1. Reduction.

7.1.1. A general reduction principle. The Lehner formula (1.6) is a minimization
problem over d × d matrices. However, one can often reduce the dimension of
the variational problem in models with invariant structure. The following general
reduction principle greatly facilitates the analysis of such models.

Lemma 7.1 (Reduction principle). Let X be any d×d self-adjoint random matrix
and let A be any ∗-subalgebra of Md(C). Suppose that

EX ∈ A, E[(X −EX)M(X −EX)] ∈ A for all M ∈ A.

Then we have

λmax(Xfree) = inf
M∈A:M>0

λmax

(
EX +M−1 +E[(X −EX)M(X −EX)]

)
.

Proof. That λmax(Xfree) is upper bounded by the expression in the statement is
obvious from (1.6). It remains to prove the corresponding lower bound. To this
end, let π : Md(C)→ A be the conditional expectation given A (cf. [17, §4.3]). As
conditional expectations are contractive, any M ∈ Md(C) with M > 0 satisfies

λmax

(
EX +M−1 +E[(X −EX)M(X −EX)]

)
≥

λmax

(
EX + π(M)−1 + π(E[(X −EX)M(X −EX)])

)
,

where we used EX ∈ A and that π(M−1) ≥ π(M)−1 by [17, Theorem 4.16].
We now claim that

π(E[(X −EX)M(X −EX)]) = E[(X −EX)π(M)(X −EX)].

Indeed, note that σ : M 7→ E[(X − EX)M(X − EX)] is a self-adjoint linear map
on Md(C) with respect to the Hilbert-Schmidt inner product. As we assumed σ
leaves A invariant and as it is self-adjoint, it leaves A⊥ invariant as well. Thus the
claimed identity follows by writing M = π(M) +M⊥ with M⊥ ∈ A⊥.

Combining the above observations with (1.6) yields

λmax(Xfree) ≥ inf
M>0

λmax

(
EX + π(M)−1 +E[(X −EX)π(M)(X −EX)]

)
,

and the conclusion follows immediately. □

7.1.2. The invariant algebra. From now on we assume that X,X∅ are defined ac-
cording to the model in section 2.4. The first step in our analysis will be to introduce
a specific invariant ∗-algebra A for this model, to which Lemma 7.1 can be applied.
To this end, define fk ∈ Cd and Pk ∈ Md(C) as

fk :=
z ⊙ ICk√
|Ck|

, Pk := ICk
− fkf

∗
k .

The assumptions of section 2.4 imply that f1, . . . , fq are orthonormal, P1, . . . , Pq

are orthogonal projections onto nontrivial (as |Ck| > 1) orthogonal subspaces, and
P1 + · · ·+ Pq is the orthogonal projection onto {fk : k ∈ [q]}⊥.
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Definition 7.2. Define the ∗-subalgebra

A := {A(M, v) : M ∈ Mq(C), v ∈ Cq}
of Md(C), where

A(M, v) :=

q∑
k,l=1

Mklfkf
∗
l +

q∑
k=1

vkPk.

Remark 7.3. Note that A(M,v) ≃M ⊕ v11|C1|−1⊕· · ·⊕ vq1|Cq|−1, so that we have
λmax(A(M, v)) = max{λmax(M),maxi vi}. This will be used repeatedly below.

The following two lemmas show that A satisfies the assumptions of Lemma 7.1.

Lemma 7.4. EX = A
(
diag(c)

1
2B diag(c)

1
2 − diag(Bc),−Bc

)
∈ A.

Proof. Note that B =
∑q

k,l=1 BklICk
I∗Cl

, so

1

d
diag(z)Bdiag(z) =

q∑
k,l=1

√
ckBkl

√
cl fkf

∗
l ,

1

d
B1d =

q∑
k,l=1

Bklcl ICk
.

The conclusion follows using ICk
= Pk + fkf

∗
k . □

Lemma 7.5. E[(X −EX)A(X −EX)] ∈ A for every A ∈ A. More precisely,

E[(X−EX)A(M, v) (X −EX)] =

A

(
diag

(
B
(
c⊙ v +

1

d
(diag−1(M)− v)

))
+

1

d
B ⊙MT ,

B
(
c⊙ v +

1

d
(diag−1(M)− v)

)
+

1

d
v ⊙ diag−1(B)

)
for all M ∈ Mq(C) and v ∈ Cq, where MT denotes the transpose of M .

Proof. Recall that X −EX = G (cf. section 2.4). For any A ∈ Md(C), we compute

E[GAG]kl =
∑
r,s

Ars E[GkrGsl] =
1

d

∑
r,s

BkrArs(1k=s,r=l + 1k=l,r=s)

=
(1
d
B⊙AT +

1

d
diag(B(diag−1(A))

)
kl
.

We readily compute B⊙A(M, v)T = A(B ⊙MT , v ⊙ diag−1(B)), while
1

d
diag(B(diag−1(A(M,v))) =

∑
k

[
B
(
c⊙ v +

1

d
(diag−1(M)− v)

)]
k
ICk

using B =
∑

k,l BklICk
I∗Cl

. The result follows as ICk
= Pk + fkf

∗
k . □

7.2. The simplified parameters. We now aim to approximate λmax(Xfree) and
λmax(X∅,free) by simplified parameters λ, λ∅: we will use the reduction principle
of the previous section to reduce the variational principle (1.6) for d-dimensional
matrices to a variational principle for q-dimensional vectors, and we will eliminate
all the terms of order 1

d in Lemmas 7.4 and 7.5. We first consider λ.

Proposition 7.6. Define

λ := inf
v>0

max
{
λmax

(
diag(c)

1
2B diag(c)

1
2 + diag

(
B diag(c)(v − 1q)

))
,

λmax

(
diag(v)−1 + diag

(
B diag(c)(v − 1q)

))}
.
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Then

|λmax(Xfree)− λ| ≤
√

8∥B1q∥∞
d

.

Proof. The Lehner formula (1.6) and Lemmas 7.1, 7.4, and 7.5 yield

λmax(Xfree) = inf
M,v>0

λmax

(
EX +A(M−1, 1

v ) +E[GA(M,v)G]
)

using A(M,v)−1 = A(M−1, 1
v ). Moreover,

λ = inf
v>0

λmax

(
EX +A(0, 1

v ) + A(diag(B diag(c)v), B diag(c)v)
)

by Lemma 7.4. We must upper and lower bound λmax(Xfree) in terms of λ.

Upper bound. We can read off from Lemma 7.5 that

E[GA(1q, 0)G] ≤ 2∥B1q∥∞
d

, E[GA(0, v)G] ≤ A(diag(B diag(c)v), B diag(c)v)

for v > 0, where we used v⊙diag−1(B)−Bv ≤ 0. Restricting the infimum over M
in the variational principle for λmax(Xfree) to M = γ1q for γ > 0 yields

λmax(Xfree) ≤ inf
v>0

λmax

(
EX +A(0, 1

v ) +E[GA(0, v)G]
)
+ inf

γ>0

(
1

γ
+

2γ∥B1q∥∞
d

)
≤ λ+

√
8∥B1q∥∞

d
,

where we used that A(M,v) = A(M, 0) + A(0, v).

Lower bound. We can read off from Lemma 7.5 that

E[GA(0, v)G] ≥ A(diag(B diag(c− 1
d1q)v), B diag(c− 1

d1q)v)

for v > 0. Then we can estimate

λ = inf
v,w>0

λmax

(
EX +A(0, 1

v∧w ) + 1
dA(diag(B(v ∧ w)), B(v ∧ w))

+ A(diag(B diag(c− 1
d1q)(v ∧ w)), B diag(c− 1

d1q)(v ∧ w))
)

≤ inf
v,w>0

λmax

(
EX +A(0, 1

v ) + A(0, 1
w ) + 1

dA(diag(Bw), Bw) +E[GA(0, v)G]
)

≤ λmax(Xfree) + inf
w>0

λmax

(
A(0, 1

w ) + 1
dA(diag(Bw), Bw)

)
,

where v∧w denotes the elementwise minimum, and we used 1
v∧w ≤

1
v+

1
w . Choosing

w ←
√
d∥B1q∥

− 1
2∞ 1q on the last line concludes the proof. □

The parameter λ∅ arises in a completely analogous fashion.

Proposition 7.7. Define

λ∅ := inf
v>0

λmax

(
diag(v)−1 + diag

(
B diag(c)(v − 1q)

))
.

Then

|λmax(X∅,free)− λ∅| ≤
√

8∥B1q∥∞
d

.

Proof. Note that the only difference between the definitions of X and X∅ is that
EX is replaced by EX∅ = A(−diag(Bc),−Bc) ∈ A in Lemma 7.4. Thus the proof
of Proposition 7.6 carries over verbatim to the present setting. □
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We can now prove the upper bound on λ∅ in Theorem 2.12. Recall that b > 0
denotes the Perron-Frobenius (right) eigenvector of B diag(c).

Lemma 7.8. We have

λ∅ ≤ 1− mini bi
maxi bi

(
1− λmax(diag(c)

1
2B diag(c)

1
2 )

1
2

)2
.

Proof. Denote λcr := λmax(diag(c)
1
2B diag(c)

1
2 ) for simplicity. As diag(c)

1
2 b is a

positive eigenvector of diag(c)
1
2B diag(c)

1
2 , the Perron-Frobenius theorem implies

that its eigenvalue must be maximal, and thus B diag(c)b = λcrb. We now upper
bound λ∅ by restricting the infimum in its definition to v = 1q + tb. This yields

λ∅ ≤ inf
t:1q+tb>0

max
i

{
1

1 + tbi
+ tλcrbi

}
= 1− sup

t:1q+tb>0
min
i

{
tbi

1 + tbi
− tλcrbi

}
.

If we choose t = (λ
− 1

2
cr − 1) 1

maxi bi
, then 1q + tb > 0 and

min
i

{
tbi

1 + tbi
− tλcrbi

}
= min

i

{
1

λ
1
2
cr + (1− λ

1
2
cr)

bi
maxi bi

− λ
1
2
cr

}
(1− λ

1
2
cr)

bi
maxi bi

.

The conclusion follows as(
1

x+ (1− x)a
− x

)
(1− x) ≥ (1− x)2

for all x > 0 and 0 ≤ a ≤ 1. □

7.3. The phase transition. It remains to prove the phase transition for λ. To
this end, we first develop in section 7.3.1 some basic properties of the minimizers
in the definitions of λ and λ∅. While we will restrict attention to the present
model, the methods used here are quite general and extend to other Lehner-type
variational principles. We then exploit the special structure of the present model
in section 7.3.2 to complete the proof of Theorem 2.12.

Before we begin the proof, let us make a minor simplification: while we assumed
only that the matrix B is irreducible, we can assume without loss of generality that
B has strictly positive entries in the remainder of the proof. Indeed, it is clear
that all the quantities that appear in Theorem 2.12 are continuous in B. When
λmax(diag(c)

1
2B diag(c)

1
2 ) ̸= 1, we can apply the result for B ← B + ε1q1

∗
q and let

ε ↓ 0 (the preservation of the strict inequality λ∅ < 1 in the limit follows from the
quantitative estimate on λ∅). The case λmax(diag(c)

1
2B diag(c)

1
2 ) = 1 now follows

by applying the result to B ← tB and letting t→ 1 from above and below.

7.3.1. Basic properties of the minimizers. The following basic but important result
collects a number of general properties of the variational principle that defines λ∅:
existence and uniqueness of a minimizer, and first-order optimality conditions.

Lemma 7.9. The infimum in the definition of λ∅ (Proposition 7.7) is attained at a
unique vector v∗∅ > 0. Moreover, this minimizer satisfies the optimality conditions

1

v∗∅
+B diag(c)(v∗∅ − 1q) = λ∅1q (7.1)

and
λmax

(
diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−2
)
= 0. (7.2)
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Proof. Let us write λ∅ = infv>0 f(v) with f(v) = maxi(
1
v + B diag(c)(v − 1q))i.

The existence of a minimizer v∗∅ > 0 follows by a routine compactness argument
and as f(v) diverges if vi → {0,∞} for any i.

Next, we show that (7.1) must hold for any minimizer. Suppose v > 0 satisfies(
1

v
+B diag(c)(v − 1q)

)
j

< max
i

(
1

v
+B diag(c)(v − 1q)

)
i

= λ∅

for some j. As B, c have positive entries, slightly decreasing vj will strictly decrease
all ( 1v +B diag(c)(v−1q))i for i ̸= j while preserving ( 1v +B diag(c)(v−1q))j < λ∅.
The perturbed v would therefore satisfy f(v) < λ∅, contradicting the definition of
λ∅. We conclude that any minimizer must satisfy (7.1).

We now prove uniqueness. Let λ∅ = f(v0) = f(v1) and define vt = (1−t)v0+tv1
for t ∈ [0, 1]. As f is convex, we have λ∅ ≤ f(vt) ≤ (1− t)f(v0) + tf(v1) = λ∅, so
vt is also a minimizer. As we have shown (7.1) holds for any minimizer, we have

0 =
d2

dt2

(
1

vt
+B diag(c)(vt − 1q)

)
i

= 2v−3
t,i (v1 − v0)

2
i

for all i, which implies v0 = v1. Thus the minimizer is unique.
It remains to prove (7.2). Note that as B, c have positive entries, the Perron-

Frobenius theorem yields an eigenvector w > 0 associated to the maximal eigenvalue
µ of diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−2. Define vt = v∗∅ − tµdiag(c)−
1
2w, so that

d

dt

(
1

vt
+B diag(c)(vt − 1q)

)∣∣∣∣
t=0

= −µ2 diag(c)−
1
2w.

If µ ̸= 0, all entries of this vector are strictly negative, which would imply that
f(vt) < f(v0) = λ∅ for t sufficiently small. This contradicts the definition of λ∅.
We therefore must have µ = 0, which is (7.2). □

We now prove a partial counterpart of the above lemma for the variational prin-
ciple that defines λ. While more information could be obtained also in this case,
we only prove the properties that will be needed below.

Lemma 7.10. The infimum in the definition of λ (Proposition 7.6) is attained at
a vector v∗ > 0. Moreover, this minimizer satisfies

1

v∗
+B diag(c)(v∗ − 1q) = λ1q (7.3)

and
λmax

(
diag(c)

1
2B diag(c)

1
2 − diag(v∗)−1

)
≤ 0. (7.4)

Proof. The existence of a minimizer v∗ > 0 follows as in the proof of Lemma 7.9.
Now suppose there is a coordinate j so that v∗ satisfies(

1

v∗
+B diag(c)(v∗ − 1q)

)
j

< λ.

As B, c have positive entries, we can reason as in the proof of Lemma 7.9 that
slightly decreasing the jth coordinate of v∗ will yield a strictly smaller value of the
function being minimized in the definition of λ, contradicting the minimality of v∗.
We conclude that v∗ must satisfy (7.3). Finally, (7.4) follows from (7.3) and as

λmax

(
diag(c)

1
2B diag(c)

1
2 + diag

(
B diag(c)(v∗ − 1q)

))
≤ λ

by the definition of λ. □
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It is obvious from the definitions of λ, λ∅ that λ∅ ≤ λ. The aim of the remainder
of the proof is to characterize the phase transition from λ∅ < λ to λ∅ = λ. A basic
characterization of the phase regions follows directly from the variational principles.

Lemma 7.11. λ = λ∅ if and only if λmax(diag(c)
1
2B diag(c)

1
2 − diag(v∗∅)

−1) ≤ 0.

Proof. If λmax(diag(c)
1
2B diag(c)

1
2 −diag(v∗∅)

−1) ≤ 0, then choosing v ← v∗∅ in the
definition of λ (cf. Proposition 7.6) and using (7.1) yields λ ≤ λ∅. As λ∅ ≤ λ holds
trivially by the definitions of λ, λ∅, we conclude that λ = λ∅.

Now suppose that λ = λ∅. Then

λmax

(
diag(v∗)−1 + diag

(
B diag(c)(v∗ − 1q)

)
≤ λ = λ∅

by the definition of λ, which implies that v∗ is a minimizer in the definition of λ∅
(cf. Proposition 7.7). But Lemma 7.9 shows the latter is unique, so that v∗ = v∗∅.
Thus (7.4) yields λmax(diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−1) ≤ 0. □

The difficulty in applying this lemma is that the phase transition criterion is
not explicit as it involves v∗∅. In the rest of the proof, we will exploit the special
properties of the present model to explicitly characterize the phase transition.

7.3.2. Proof of Theorem 2.12. The following fact could be viewed as the basic reason
behind the special properties of the present model.

Lemma 7.12. Suppose a vector v > 0 and µ ∈ R satisfy
1

v
+B diag(c)(v − 1q) = µ1q, λmax

(
diag(c)

1
2B diag(c)

1
2 − diag(v)−1

)
= 0.

Then we must have µ = 1.

Proof. The key idea is that the first equation in the statement is equivalent to(
diag(c)

1
2B diag(c)

1
2 − diag(v)−1

)
diag(c)

1
2 (v − 1q) = (µ− 1) diag(c)

1
2 1q. (7.5)

As B, c have positive entries, the Perron-Frobenius theorem6 and the second equa-
tion in the statement yield an eigenvector w > 0 of diag(c)

1
2B diag(c)

1
2 −diag(v)−1

with eigenvalue 0. Taking the inner product of the above equation with w yields
0 = (µ− 1)⟨w,diag(c) 1

2 1q⟩, which implies µ = 1 as ⟨w,diag(c) 1
2 1q⟩ > 0. □

Using this result, we can explicitly determine v∗∅ on the boundary of the phase
region λ = λ∅ (cf. Lemma 7.11). This is the key step in the proof.

Lemma 7.13. If λmax(diag(c)
1
2B diag(c)

1
2 − diag(v∗∅)

−1) = 0, then v∗∅ = 1q.

Proof. By Lemma 7.12, the assumption and (7.1) imply that λ∅ = 1. Thus(
diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−1
)
diag(c)

1
2 (v∗∅ − 1q) = 0

by (7.5). Now note that the Perron-Frobenius theorem and (7.2) provide an eigen-
vector w > 0 of diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−2 with eigenvalue 0. Taking the
inner product of the above equation with w yields

0 = ⟨w, (diag(v∗∅)−2 − diag(v∗∅)
−1) diag(c)

1
2 (v∗∅ − 1q)⟩ = −

∑
i

wic
1
2
i

(
(v∗∅)

−1
i − 1

)2
,

which evidently implies v∗∅ = 1q. □

6If M is a self-adjoint matrix with nonnegative off-diagonal entries, M + c1 is a nonnegative
matrix for sufficiently large c. We can therefore apply the Perron-Frobenius theorem to the latter
to deduce the existence of a positive eigenvector of M associated to its maximal eigenvalue.
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Lemmas 7.11 and 7.13 show that we must have λmax(diag(c)
1
2B diag(c)

1
2 ) = 1 on

the boundary between the phase regions. This will enable us to fully characterize
the phase regions by a continuity argument, completing the proof of Theorem 2.12

Proof of Theorem 2.12. The approximation by λ, λ∅ and the estimate on λ∅ were
proved in Propositions 7.6 and 7.7 and in Lemma 7.8, respectively. The remainder
of the proof will be completed in three steps to be proved below:

1. λmax(diag(c)
1
2B diag(c)

1
2 ) > 1 implies λ∅ < λ.

2. λ∅ < λ implies λ = 1.

3. λmax(diag(c)
1
2B diag(c)

1
2 ) < 1 implies λ < 1.

Indeed, combining steps 1 and 2 yields part c of the theorem, while combining steps
2 and 3 yields part a of the theorem (as λ∅ ≤ λ). Part b of the theorem now follows
by applying the theorem to B ← tB and letting t→ 1 from above and below.

It remains to prove each of the above steps.

Step 1. Suppose λmax(diag(c)
1
2B diag(c)

1
2 ) > 1. By Lemma 7.11 and as λ∅ ≤ λ,

it suffices to show that λmax(diag(c)
1
2B diag(c)

1
2 − diag(v∗∅)

−1) > 0.
Consider first the special case B = 21q1

∗
q , so that λmax(diag(c)

1
2B diag(c)

1
2 ) = 2

as
∑

i ci = 1. Then (7.1) shows that v∗∅ is proportional to 1q, so it suffices to
minimize over v ← t1q in the definition of λ∅. A straightforward computation
yields v∗∅ = 2−

1
2 1q and thus λmax(diag(c)

1
2B diag(c)

1
2 − diag(v∗∅)

−1) > 0.
For general B, choose a continuous family t 7→ B(t) so that B(0) = 2 1q1

∗
q ,

B(1) = B, and λmax(diag(c)
1
2B(t) diag(c)

1
2 ) > 1 to all t ∈ [0, 1]. Denote by v∗∅(t)

the minimizer in the definition of λ∅ for B ← B(t). As the minimizer v∗∅(t) is unique
by Lemma 7.9, it follows by a routine argument that t 7→ v∗∅(t) is continuous. On
the other hand, Lemma 7.13 ensures that for all t ∈ [0, 1]

α(t) := λmax(diag(c)
1
2B(t) diag(c)

1
2 − diag(v∗∅(t))

−1) ̸= 0 :

otherwise we would have v∗∅(t) = 1q and thus λmax(diag(c)
1
2B(t) diag(c)

1
2 ) = 1 for

some t, which entails a contradiction. As we showed that α(0) > 0 and α(t) ̸= 0
for all t, it follows by continuity that α(1) > 0. This is the desired claim.

Step 2. Suppose that λ∅ < λ. To show this implies λ = 1, it suffices by (7.3)
and Lemma 7.12 to show that λmax(diag(c)

1
2B diag(c)

1
2 − diag(v∗)−1) = 0.

Suppose the latter is not the case. Then (7.3) and the definition of λ imply

λmax

(
diag(c)

1
2B diag(c)

1
2 + diag

(
B diag(c)(v∗ − 1q)

)
< λ

= λmax

(
diag(v∗)−1 + diag

(
B diag(c)(v∗ − 1q)

)
.

Then v∗ must also be a minimizer of the quantity on the second line: otherwise we
could slightly decrease the quantity on the second line while preserving the strict
inequality on the first line, contradicting the definition of λ. This implies by the
definition of λ∅ that λ = λ∅, which contradicts the assumption of step 2.

Step 3. Suppose that λmax(diag(c)
1
2B diag(c)

1
2 ) < 1. Then it follows readily

that λ ≤ 1 by choosing v ← 1q in the definition of λ.
Now suppose that λ = 1. Then v∗ = 1q would be a minimizer in the definition

of λ. The same argument as in the proof of step 2 now shows that v∗ must also be
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a minimizer in the definition of λ∅, so that v∗∅ = 1q. The latter contradicts (7.2).
Thus we have shown that λ < 1, concluding the proof. □

8. Applications: proofs

8.1. Decoding node labels on graphs.

Proof of Theorem 3.4. Define

Y ′ :=
Y

(4kp(1− p))
1
2

, θ′ :=
k

1
2 (1− 2p)

(4p(1− p))
1
2

.

Then we clearly have

EY ′ =
θ′

k
diag(x)Adiag(x), E[(Y ′ −EY ′)2] = 1.

Moreover, as A1d = k1d, the Perron-Frobenius theorem yields

λmax(EY ′) = θ′, vmax(EY ′) = d−
1
2x,

while 1(θ′−δ,θ′](EY ′) = d−1xx∗ for δ := θ′

k λ. Note for future reference that the
assumptions of the theorem imply that θ′ = (1 + o(1))θ and k ≫ (log d)4.

Let A =
∑d

i=1 λiviv
∗
i be an eigendecomposition of A so that λ1 = k and |λi| = si.

Then Ar :=
∑r

i=1 λiviv
∗
i has rank at most r and ∥A−Ar∥ ≤ sr+1. Define

X := Y ′ −EY ′ +
θ′

k
diag(x)Ar diag(x).

As EY = (1− 2p) diag(x)Adiag(x), we can estimate

∥(4kp(1− p))
1
2X − Y ∥ ≤ k−

1
2 θ sr+1.

On the other hand, we have

P
[
|λmax(X)− B(θ′)| > Ck−

1
2
√
r + Ck−

1
6 (log d)

2
3

]
≤ C

d2

by applying Theorems 2.2, 2.4, and 2.7 with t = 3 log d and using that σ(X) = 1,
σ∗(X) ≤ v(X) ≲ k−

1
2 , R ≲ k−

1
2 , and k ≫ (log d)4. Therefore

P
[
|λmax(Y

′)− B(θ′)| > Ck−1
{

min
1≤r≤k

{
θ sr+1 +

√
rk

}
+ k

5
6 (log d)

2
3

}]
≤ C

d2
,

where we optimized over the choice of r. The analogous estimates follow readily if
we replace Y ′ ← Y ′ + s1(θ′−δ,θ′](EY ′) and θ′ ← θ′ + s for |s| ≤ δ.

To proceed, note that the assumption of the theorem and θ′ = (1+ o(1))θ imply

k−1
{

min
1≤r≤k

{
θ sr+1 +

√
rk

}
+ k

5
6 (log d)

2
3

}
≪ min{δ, 1}.

We can therefore conclude using Theorem 2.9 that

P

[∣∣∣∣1d |⟨x, vmax(Y )⟩|2 −
(
1− 1

θ2

)
+

∣∣∣∣ > t+
o(min{δ, 1})

t

]
≤ C

d2

for 0 < t ≤ δ. It remains to choose 0 < t ≤ δ so that t+ o(min{δ,1})
t = o(1).

Finally, the existence of an estimator x̂(Y ) follows from Lemma 8.1 below. □

At the end of the proof we used the following general rounding procedure.
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Lemma 8.1. Let x ∈ {−1,+1}d and v ∈ Sd−1 satisfy 1
d |⟨x, v⟩|

2 ≥ ε. Then there
exists a randomized estimator x̂ ∈ {−1,+1}d, whose construction depends only on
d, v, ε, such that 1

d |⟨x, x̂⟩| ≥
ε
8 with probability 1− 64

dε2 .

Proof. Fix c > 0 that will be chosen shortly, and construct x̂ by choosing each entry
to be an independent random sign so that E[x̂i] =

vi
√
d

c 1|vi|
√
d≤c. Then

1

d
|E[⟨x, x̂⟩]| =

∣∣∣∣∣ ∑
i∈[d]

xivi

c
√
d
1|vi|

√
d≤c

∣∣∣∣∣ ≥
√
ε

c
−

∣∣∣∣∣ ∑
i∈[d]

xivi

c
√
d
1|vi|

√
d>c

∣∣∣∣∣ ≥
√
ε

c
− 1

c2
.

Choosing c = 2√
ε

yields 1
dE|⟨x, x̂⟩| ≥

1
d |E[⟨x, x̂⟩]| ≥ ε

4 .
Now note that Var( 1d |⟨x, x̂⟩|) ≤ Var( 1d ⟨x, x̂⟩) ≤

1
d . We can therefore estimate

P
[
1
d |⟨x, x̂⟩| <

ε
4 − t

]
≤ P

[∣∣ 1
d |⟨x, x̂⟩| −

1
dE|⟨x, x̂⟩|

∣∣ > t
]
≤ 1

dt2

by Chebyshev’s inequality. Choosing t = ε
8 yields the conclusion. □

8.2. Tensor PCA. We begin with some basic observations.

Lemma 8.2. M is a d× d self-adjoint random matrix with d =
(
n
ℓ

)
, such that

E[(M −EM)2] = σ(M)21 with σ(M)2 =

(
ℓ

p/2

)(
n− ℓ

p/2

)
.

Moreover, we have

v(M)2 =

(
p

p/2

)(
n− p

ℓ− p/2

)
.

In particular, σ(M)2 ≍ n
p
2 and v(M)2 ≍ nℓ− p

2 as n→∞ (with p, ℓ fixed).

Proof. We readily compute for |S| = |T | = ℓ

E[(M −EM)2]S,T =
∑
|R|=ℓ

E[ZS△RZT△R] = |{R ⊆ [n] : |R| = ℓ, |R△S| = p}| 1S=T

using S△R = T△R if and only if S = T . As |R| = |S|, we have |R\S| = |S\R| =
1
2 |R△S|, so each R satisfying |R| = ℓ, |R△S| = p is formed by replacing p

2 elements
of S by p

2 elements not in S. The number of all such R is evidently σ2.
Now note that |S| = |T | = ℓ and |U | = p satisfy MS,T −EMS,T = ZU if and only

if S△T = U . Thus given U , all such S, T are formed by choosing p
2 elements of U

to place in S (the remaining ones are placed in T ), then choosing ℓ − p
2 elements

not in U to place in S ∩ T . Thus there are m :=
(

p
p/2

)(
n−p
ℓ−p/2

)
matrix elements of

M −EM that coincide with each independent standard Gaussian variable ZU . As
Cov(M) is block-diagonal with blocks of the form 1m1∗m, the conclusion follows. □

Next, we show that EM is approximately of low rank.

Lemma 8.3. Let s1 ≥ · · · ≥ sd be the singular values of EM . Then

λmax(EM) = s1 =

(
ℓ

p/2

)(
n− ℓ

p/2

)
λ, sr+1 ≤

p

n
s1,

where r =
(

n
ℓ−p/2

)
≍ nℓ− p

2 as n→∞ (with p, ℓ fixed).
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Proof. The first statement is [44, eq. (14)]. Next, by [44, Proposition A.1], the
matrix EM

λ has ℓ+1 distinct eigenvalues µ0 > · · · > µℓ so that µm has multiplicity(
n
m

)
−
(

n
m−1

)
. Moreover, it is shown in the proof of [44, Lemma A.3] that |µm| ≤ p

nµ0

for m > ℓ− p
2 . It follows readily that sr+1 ≤ p

n s1 for

r =

ℓ−p/2∑
m=0

((
n

m

)
−
(

n

m− 1

))
=

(
n

ℓ− p/2

)
,

concluding the proof. □

We can now complete the proof of Theorem 3.7.

Proof of Theorem 3.7. Let d =
(
n
ℓ

)
≍ nℓ and r =

(
n

ℓ−p/2

)
≍ nℓ− p

2 . By Lemma 8.3,
we can decompose EM = B + (EM − B) so that B has rank r, λmax(B) = λk∗,
and ∥EM −B∥ ≤ λp

n k∗. Now define the random matrix

X := k
− 1

2
∗ (M −EM +B).

Then E[(X −EX)2] = 1 and v(X) ≲ n
ℓ−p
2 by Lemma 8.2. We obtain

P
[
|λmax(X)− B(λk

1
2
∗ )| > Cn

4ℓ−3p
4 + Cn

ℓ−p
4 (log d)

3
4

]
≤ 1

dβ

by applying Corollary 2.3 and Theorem 2.7 with t←
√
β log d, where we used that

σ∗(X) ≤ v(X) and C depends on β. Therefore

P
[
|λmax(k

− 1
2

∗ M)− B(λk
1
2
∗ )| > Cpn−1λk

1
2
∗ + Cn

4ℓ−3p
4 + Cn

ℓ−p
4 (log d)

3
4

]
≤ 1

dβ
.

The conclusion follows readily. □

8.3. Spike detection in block-structured models.

Proof of Theorem 3.10. Note that X,X∅ are precisely of the form (2.4) with B =
1
∆ and z = x. Moreover, that σ(X)2 ≤ 2

d∥B1d∥∞ ≤ 2β and σ∗(X)2 ≤ v(X)2 ≤ 4β
d

follows from a straightforward computation. Thus

P
[
|λmax(X)− λmax(Xfree)| > Cβ

1
2 d−

1
4 (log d)

3
4

]
≤ e−d

1
2

by applying Corollary 2.3 with t ← d
1
4 , and the analogous bound holds for X∅.

Now note that for λ, λ∅ as in Theorem 2.12, we have

|λmax(Xfree)− λ| ≤
√

8qβ

d
, |λmax(X∅,free)− λ∅| ≤

√
8qβ

d
.

The conclusion follows from Theorem 2.12, where we set µ = λ∅. □

Remark 8.4. The assumption that x ∈ {−1,+1}d was used in the proof only in
order to ensure the assumption of section 2.4 that

∑
i∈Ck

z2i = |Ck| for each k.
Let us consider instead the case that x is a random vector with i.i.d. entries such

that E[x2
i ] = 1, as is assumed in [32]. Then the above condition does not hold

exactly for z ← x, but it holds approximately by the law of large numbers. In
particular, in this case we may choose z ∈ Rd to be defined by

zi =
xi(

1
|Ck|

∑
j∈Ck

x2
j

) 1
2

for all i ∈ Ck, k ∈ [q].
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Then z satisfies the assumption of section 2.4 by construction, while the law of
large numbers ensures that we have∥∥∥∥1d diag(z)B diag(z)− 1

d
diag(x)Bdiag(x)

∥∥∥∥ = o(1)

with probability 1−o(1) as long as mink |Ck| → ∞ and q, β do not grow too rapidly.
We can therefore replace x by z in the analysis up to a negligible error, and the
remainder of the analysis proceeds verbatim as in the proof of Theorem 3.10.

The above argument is readily implemented without any further assumption in
the asymptotic setting where q,∆, c and the distribution of xi are fixed as d→∞
by using the classical law of large numbers. However, implementing this procedure
in a nonasymptotic setting would require us to quantify the error in the law of large
numbers. This is readily accomplished in many situations, but the details of the
bounds depend on the precise assumptions that are made on the distribution of xi

(for example, if they are subgaussian, we may use Bernstein’s inequality to obtain
nonasymptotic bounds.) As this part of the argument is completely independent
of the random matrix analysis, we do not pursue it further here.

We now turn to the proof of Theorem 3.13.

Proof of Theorem 3.13. Let B = 1
∆ . We aim to apply Lemma 6.4 with P = 1

dxx
∗.

Let us therefore define Xt := X + t
dxx

∗, so that in the notation of Lemma 7.4

EXt = A
(
diag(c)

1
2 (B + t1q1

∗
q) diag(c)

1
2 − diag(Bc),−Bc

)
.

Note that the precise form of EX played no role in the proof of Proposition 7.6, so
that it transfers verbatim to the present setting. In particular, if we define

λt := inf
v>0

max
{
λmax

(
diag(c)

1
2 (B + t1q1

∗
q) diag(c)

1
2 + diag

(
B diag(c)(v − 1q)

))
,

λmax

(
diag(v)−1 + diag

(
B diag(c)(v − 1q)

))}
,

then the proofs of Proposition 7.6 and Theorem 3.10 readily yield

P
[
|λmax(Xt)− λt| > Cβ

1
2

(
(log d)

3
4

d
1
4

+ q
1
2

d
1
2

)]
≤ e−d

1
2

for every t ∈ R. We therefore obtain for any t > 0

λ0 − λ−t

t
− o(1) ≤ 1

d
|⟨x, vmax(X)⟩|2 ≤ λt − λ0

t
+ o(1)

with probability 1− o(1) as d→∞ using Lemma 6.4.
The major simplification of the asymptotic setting where q,B, c are fixed as

d→∞ is that the definition of λt is then independent of d. To conclude the proof
it therefore suffices to gain a qualitative, rather than quantitative, understanding
of the behavior of λt−λ0. In the remainder of the proof, we will consider the three
cases SNR(∆) < 1, SNR(∆) > 1, and SNR(∆) = 1 separately.

Case 1. Suppose that SNR(∆) < 1, so that λ0 =: λ = λ∅ by Theorem 2.12.
Denote by v∗ the minimizer in the definition of λ0. Then it can be read off from
the proof of Lemma 7.11 and from Lemma 7.13 that

λmax

(
diag(c)

1
2B diag(c)

1
2 + diag

(
B diag(c)(v∗ − 1q)

))
< λ0,

λmax

(
diag(v∗)−1 + diag

(
B diag(c)(v∗ − 1q)

))
= λ0.
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Thus choosing v ← v∗ in the definition of λt shows that λt ≤ λ0 when t > 0 is
sufficiently small. The conclusion follows immediately.

Case 2. Suppose that SNR(∆) > 1, so that λ0 =: λ > λ∅ by Theorem 2.12.
Denote by v∗ the minimizer in the definition of λ0. Then it follows from step 2 in
the proof of Theorem 2.12 that we must have

λmax

(
diag(c)

1
2B diag(c)

1
2 + diag

(
B diag(c)(v∗ − 1q)

))
= λ0, (8.1)

λmax

(
diag(v∗)−1 + diag

(
B diag(c)(v∗ − 1q)

))
= λ0. (8.2)

Moreover, v∗ is not a minimizer of the left-hand side of (8.2), as that would con-
tradict λ > λ∅. Now note that the largest eigenvalue in (8.1) is simple and the
associated eigenvector w > 0 has strictly positive entries by the Perron-Frobenius
theorem. Thus w is not orthogonal to diag(c)

1
2 1q, so we must have7

λmax

(
diag(c)

1
2 (B − t1q1

∗
q) diag(c)

1
2 + diag

(
B diag(c)(v∗ − 1q)

))
< λ0 (8.3)

for every t > 0. But as v∗ is not a minimizer of (8.2), we can slightly perturb v∗ to
decrease the latter while preserving the strict inequality in (8.3). This shows that
λ−t < λ0 for every t > 0. The conclusion follows immediately.

Case 3. Suppose that SNR(∆) = 1. Then λ0 =: λ = 1 by Theorem 2.12, and
v∗ = 1q is a minimizer in the definition of λ0.

Denote by b > 0 be the Perron-Frobenius eigenvector of B diag(c), and choose
s > 0 sufficiently large that λmax(diag(c)

1
2 1q1

∗
q diag(c)

1
2 − sdiag(b)) ≤ 0. Then

choosing v ← 1q − tsb in the definition of λt readily yields

λt − λ0 ≤ max
{
0,max

i

{ 1

1− tsbi
− 1− tsbi

}}
for all sufficiently small t > 0, where we used that λmax(diag(c)

1
2B diag(c)

1
2 ) =:

SNR(∆) = 1 implies that the Perron-Frobenius eigenvalue of B diag(c) is 1.
To conclude, note that 1

1−x−1−x = x2

1−x , so we have shown that λt−λ0 ≤ O(t2)
for t > 0 sufficiently small. The conclusion follows immediately. □

8.4. Contextual stochastic block models.

Proof of Theorem 3.14. Let d = n + p, and partition [d] = C1 ⊔ C2 into C1 =
{1, . . . , n} and C2 = {n+ 1, . . . , n+ p}. Define B ∈ M2(R)sa and ẑ ∈ Rd as

B =
d

n

[
λ2 µ
µ 0

]
, ẑ =

[
v

u
√
p

]
.

Then the random matrix X̂ is of the form (2.4) with z ← ẑ.
Next, define the random matrix X as in (2.4) with

z =

[
v

u
√
p

∥u∥

]
.

The random matrix X satisfies all the assumptions of section 2.4. On the other
hand, as u ∼ N(0, 1

p1p), we have ∥u∥ = 1 + o(1) with probability 1 − o(1) by the

7Let M be a self-adjoint matrix whose top eigenvalue is simple with eigenvector w, and let x
be a vector not orthogonal to w. Then we have d

dt
λmax(M − txx∗)|t=0 = −|⟨x,w⟩|2 < 0.
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law of large numbers. Using ∥diag(x)M diag(y)∥ ≤ maxij |Mij | ∥x∥ ∥y∥, we obtain

∥X − X̂∥ ≤ 1

d
max
i,j
|Bij | (∥z∥+ ∥ẑ∥) ∥z − ẑ∥ = o(1)

with probability 1− o(1), where we used that maxi,j |Bij | → (1 + 1
γ )max{λ2, µ}.

To reason about v̂, we would like to apply Lemma 6.4 to X̂t = X̂ + t
nIC1zz

∗I∗C1
.

Approximating X̂ by X and reasoning as in the proof of Theorem 3.13, we have

λmax(X̂t) = λt + o(1) with probability 1− o(1),

where λt is defined by

λt := inf
v>0

max
{
λmax

(
te1e

∗
1 + diag(c)

1
2 B̄ diag(c)

1
2 + diag

(
B̄ diag(c)(v − 12)

))
,

λmax

(
diag(v)−1 + diag

(
B̄ diag(c)(v − 12)

))}
where we define

B̄ = (1 + 1
γ )

[
λ2 µ

µ 0

]
, c =

[
γ

1+γ
1

1+γ

]
.

We can now follow the remainder of the proof of Theorem 3.13 verbatim to show
that there is asymptotically positive overlap between v and v̂ if and only if

1

2

(
λ2 +

√
λ4 + 4µ2

γ

)
= λmax

(
diag(c)

1
2 B̄ diag(c)

1
2

)
> 1.

Now note that
1

2

(
λ2 +

√
λ4 + 4µ2

γ

)
= 1 if and only if λ2 + µ2

γ = 1

and both 1
2

(
λ2 +

√
λ4 + 4µ2

γ

)
and λ2 + µ2

γ are monotone in λ2 and µ2, so

1

2

(
λ2 +

√
λ4 + 4µ2

γ

)
> 1 if and only if λ2 + µ2

γ > 1.

This concludes the proof. □

8.5. Sample covariance error. In the following, we define Σ̂ = 1
nXX∗ and Σ as

in (3.1)—(3.2) and let δ = p
n , d = max{n, p}. We begin by applying Theorem 2.5.

Lemma 8.5. For n ≥ (log d)3, we have

P
[∣∣∥Σ̂∥ − ∥ 1nXfreeX

∗
free∥

∣∣ > C(1 + λ+ δ)n− 1
4 (log d)

3
4

]
≤ e−Cn

1
2 ,

P
[
dH

(
sp(Σ̂− Σ), sp( 1nXfreeX

∗
free − Σ⊗ 1)

)
> C(1 + λ+ δ)n− 1

4 (log d)
3
4

]
≤ e−Cn

1
2 .

Proof. We readily compute

σ∗(X)2 = v(X)2 = ∥Σ∥ = 1 + λ

and
σ(X)2 = nmax{1 + λ, δ + λ

n} ≤ 2n(1 + λ+ δ).

Moreover, note that ∥Xfree∥ ≤ 2σ(X) by [36, p. 208]. The conclusion now follows
readily by applying Theorem 2.5 with X ← n− 1

2X, t← 2(1+λ+δ)1/2n− 1
4 (log d)

3
4 ,

and either B ← 0 or B ← −Σ, respectively. (Note that while Theorem 2.5 is
formulated for d× d matrices X, it is applicable here as we can always add enough
zero rows or columns to X to make it d×d without changing the relevant norms.) □
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We must now estimate the spectra of the free operators that appear in the
above lemma. In principle, this can be achieved using methods that are sketched
in the work of Lehner [27, §5], which requires some lengthy computations. These
computations are considerably simplified by a quadratic counterpart of Lehner’s
formula obtained in [33]. For our present purposes, we may work with the following
result that arises as a special case of the general formulas in [33].

Lemma 8.6 ([33]). Let X be the p × n random matrix whose columns are i.i.d.
N(0,Σ), and denote the eigenvalues of Σ as µ1 ≥ · · · ≥ µp ≥ 0. Then

∥ 1nXfreeX
∗
free∥ = inf

0<a<1
inf

x∈∆p

max
i∈[p]

{
µi

naxi
+

µi

1− a

}
,

λmax(
1
nXfreeX

∗
free − Σ⊗ 1) = inf

0<a<1
inf

x∈∆p

max
i∈[p]

{
µi

naxi
+

aµi

1− a

}
,

−λmin(
1
nXfreeX

∗
free − Σ⊗ 1) = inf

a>0
inf

x∈∆p

max
i∈[p]

{
µi

naxi
+

aµi

1 + a

}
,

where ∆p := {x ∈ Rp : x > 0,
∑

i xi = 1}.

In our setting, we have µ1 = 1 + λ and µ2 = · · · = µp = 1. We claim that
it then suffices to minimize in the above variational principles only over vectors x
such that x2 = · · · = xp. That the latter yields an upper bound is obvious (as we
are restricting the infimum to a smaller set). For the lower bound, we may use that

max
2≤i≤n

1

xi
≥ 1

n− 1

n∑
i=2

1

xi
≥ 1

1
n−1

∑n
i=2 xi

by convexity to argue that for any vector x, the function being optimized can only
decrease if we replace all x2, . . . , xn by their average.

Lemma 8.7. In the setting of Theorem 3.16, we have∣∣∥ 1nXfreeX
∗
free∥ − S(λ, δ)

∣∣ ≤ C(1 + λ+ δ)n− 1
2 ,∣∣λmax(

1
nXfreeX

∗
free − Σ⊗ 1)−H+(λ, δ)

∣∣ ≤ C(1 + λ+ δ)n− 1
2 .

Proof. Restricting the infimum over x in Lemma 8.6 to x = (b, 1−b
p−1 , · · · ,

1−b
p−1 ) yields

∥ 1nXfreeX
∗
free∥ = inf

0<a,b<1
max

{
1 + λ

nab
+

1 + λ

1− a
,

p− 1

na(1− b)
+

1

1− a

}
,

λmax(
1
nXfreeX

∗
free − Σ⊗ 1) = inf

0<a,b<1
max

{
1 + λ

nab
+

(1 + λ)a

1− a
,

p− 1

na(1− b)
+

a

1− a

}
by the above observation. We can rewrite the first line as

∥ 1nXfreeX
∗
free∥ = inf

x∈∆3

sup
0<π<1

{
π

(
1 + λ

nx1
+

1 + λ

x3

)
+ (1− π)

(
p− 1

nx2
+

1

x3

)}
= sup

0<π<1

(√
π(1 + λ)

n
+

√
(1− π)(p− 1)

n
+
√
1 + πλ

)2

,
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where we used the Sion minimax theorem and infx∈∆r

∑r
i=1

ai

xi
=

(∑r
i=1

√
ai
)2.

By exactly the same argument, the second line becomes

λmax(
1
nXfreeX

∗
free − Σ⊗ 1) =

sup
0<π<1

{(√
π(1 + λ)

n
+

√
(1− π)(p− 1)

n
+
√
1 + πλ

)2

− (1 + πλ)

}
,

where we used that a
1−a = 1

1−a − 1.
To conclude the proof, we note that

S(λ, δ) = sup
0<π<1

(√
(1− π)δ +

√
1 + πλ

)2
,

H+(λ, δ) = sup
0<π<1

{(√
(1− π)δ +

√
1 + πλ

)2 − (1 + πλ)
}
.

The conclusion now follows readily. □

It remains to estimate the smallest eigenvalue of the centered case. The proof is
similar to that of Lemma 8.7, but differs in the details of the computation.

Lemma 8.8. In the setting of Theorem 3.16, we have∣∣λmin(
1
nXfreeX

∗
free − Σ⊗ 1)−H−(λ, δ)

∣∣ ≤ C(1 + λ+ δ)n− 1
2 .

Proof. As in Lemma 8.7, we may restrict the infimum over x in the last equation
display of Lemma 8.6 to x = (b, 1−b

p−1 , · · · ,
1−b
p−1 ). This yields

− λmin(
1
nXfreeX

∗
free − Σ⊗ 1) =

sup
0<π<1

inf
a>0

inf
0<b<1

{
π

(
1 + λ

nab
+

(1 + λ)a

1 + a

)
+ (1− π)

(
p− 1

na(1− b)
+

a

1 + a

)}
,

where we used the Sion minimax theorem as in the proof of Lemma 8.7.
Now note that for u, v > 0, we have inf0<b<1

(
u
b + v

1−b

)
= (
√
u+
√
v)2 and

φ(u, v) := inf
a>0

{
a

1 + a
u+

1

a
v

}
=

{
2
√
uv − v if v < u,

u otherwise.

We therefore obtain

− λmin(
1
nXfreeX

∗
free − Σ⊗ 1) =

sup
0<π<1

φ

(
1 + πλ,

(√
π(1 + λ)

n
+

√
(1− π)(p− 1)

n

)2)
.

Using the explicit formula for φ, we readily estimate∣∣∣∣λmin(
1
nXfreeX

∗
free − Σ⊗ 1) + sup

0<π<1
φ(1 + πλ, (1− π)δ)

∣∣∣∣ ≤ C(1 + λ+ δ)n− 1
2 .

Now note that (1− π)δ < 1 + πλ holds if and only if π > δ−1
δ+λ . Therefore

sup
0<π<1

φ(1 + πλ, (1− π)δ) = sup
δ−1
δ+λ≤π<1

{
2
√

(1 + πλ)(1− π)δ − (1− π)δ
}
,

where we used that φ(1+πλ, (1−π)δ) is increasing for 0 < π < δ−1
δ+λ . The supremum

on the right-hand side equals −H−(λ, δ), concluding the proof. □

Combining Lemmas 8.5, 8.7, and 8.8 completes the proof of Theorem 3.16.
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