skip to content
Dominik Schröder

Matrix Concentration Inequalities and Free Probability II. Two-sided Bounds and Applications

Afonso Bandeira, Giorgio Cipolloni, Ramon van Handel, Dominik Schröder

preprint(2024)

Summary

We determine the approximate location of the extreme eigenvalues for a large class of random matrix models. These two-sided bounds are fundamentally beyond the reach of classical matrix concentration inequalities.

Example: Sample covariance matrix

Consider a rank-one perturbation of the identity matrix IRp×pI\in \mathbb R^{p\times p} as a population covariance matrix

Σ=I+λvv,\Sigma = I + \lambda vv^\top,

where vRpv\in\mathbb{R}^p is a unit vector and λ>0\lambda>0 is a parameter. Then draw nn random vectors x1,,xnx_1, \ldots, x_n from the distribution N(0,Σ)\mathcal N(0, \Sigma) and consider the sample covariance matrix

Σ^=1ni=1nxixi.\hat \Sigma = \frac{1}{n}\sum_{i=1}^n x_i x_i^\top.

We are able to show that this model exhibits two phase transitions. Denoting the the ratio of dimensions p,np,n by δ:=p/n\delta:=p/n the largest eigenvalue λmax(Σ^Σ)\lambda_{\max}(\hat\Sigma-\Sigma) satisfies

λmax{(1+δ)21, if λ<1+δ,1+λ2λ(δ+δ+4λ)δ, if λ1+δ, \lambda_{\max} \approx \begin{cases} (1 + \sqrt\delta)^2 - 1, & \text{ if } \lambda < 1 + \sqrt\delta,\\ \frac{1 + \lambda}{2\lambda} (\sqrt\delta + \sqrt{\delta + 4 \lambda}) \sqrt\delta, & \text{ if } \lambda \geq 1 + \sqrt\delta, \end{cases}

while the smallest eigenvalue λmin(Σ^Σ)\lambda_{\min}(\hat\Sigma-\Sigma) satisfies

λmin{(1δ)21, if λ<1δ,1+λ2λ(δδ+4λ)δ, if λ1δ\lambda_{\min} \approx \begin{cases} (1 - \sqrt\delta)^2 - 1, & \text{ if } \lambda < 1 - \sqrt\delta,\\ \frac{1 + \lambda}{2\lambda} (\sqrt\delta - \sqrt{\delta + 4 \lambda}) \sqrt\delta, & \text{ if } \lambda \geq 1 - \sqrt\delta \end{cases}

exactly as the corresponding free model suggests.

Numerical illustration

MaxMin
0.00.10.20.30.40.50.60.70.80.91.0↑ ρ−2.5−2.0−1.5−1.0−0.50.00.51.01.52.02.5