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1. LocGIC

Propositional logic (Aussagenlogik, in german), also known as zeroth-order logic,
deals with propositions and relations between them while first-order logic
(Pradikatenlogik, in german) introduces quantifiers and variables which allows to
state involved propositions.

1.1 Basics

! Warning 1. The universal quantifier V and the ezistential quantifier 3 should
never be exchanged. To see why this is the case, observe that

VneNImeN:n<m
and
dnmeNVneN:n<m
are two very different statements.
Claim 1. For arbitrary propositions A, B we have
(A = B) < (-AVB).

Proof. Consider the truth table:

A|B|-A|-AVB|A — B
tlt] f t t
t|f| f f f
fle] ¢ t ¢
flr] ¢ ¢ ¢

Since the last two row match in every entry, this proves the claim. [

! Warning 2. Let X be a set and A(z) a proposition depending on z € X.
Then the statement

Ve e: A(x)



is always true and the statement
dz € 0: A(x)
is always false.

1.2 Exercises

Exercise 1. Let A, B be arbitrary propositions. Which of the following are not
equivalent to AV B?

(a) A = B
(b)-B = A
(¢) ~(=AA—-B)
(d) ~(=4V —B)
Solution. Note that by Claim 1 we have

1
(A = B) < ——AVB <¥—)> AV B,

where at (1) we used Theorem 1.2.17 (i) from the lecture. Similarly, (b) is
equivalent to AV B. Now again by Theorem 1.2.17 we have

—(nAAN-B) < ——AV-—-B <= AV B,
—(-mAV-B) < ——AA-—-B < AAB,

so only (d) is not equivalent to AV B.

Exercise 2. Everybody loves Alex but Alex only loves me. Who is Alex?
(a) My mother

(b) Nobody

(c) My son

(d) T am Alex

Solution. Since everybody loves Alex, he/she also loves himself/herself. But since
Alex only loves me, I have to be Alex.

Exercise 3. Let X CR be arbitrary. Under which assumptions on X can the
statement

Ve>03dgeQVeeX: |z—¢q|<e
be proven?
(a) X is finite

(b) X is empty



(c) X<cQ
(d) [X]| =1

Solution. If we choose X = {1,10} then the statement is not true. (Why? Try to
prove it.) Hence the assumptions from (a) or from (c) don't suffice to prove the
statement. On the other hand, if X is empty then the statement is true since
Q # 0 by Warning 2. If | X| = 1 then the statement can also be proven since Q is
dense in R (— see Analysis I). Hence (b) and (c) suffice.

2. FIELDS
2.1 Exercises

Exercise 4. Let k be a finite Field and let S be the sum of all its elements. Show
that

S=0 < |kl >2
holds.

Proof. “=". To show this direction, we want to use contraposition, so assume
|k| <2 holds. Since k is a field, we have k= {0,1} with 1#0 and thus
S=0+1=1+#0.

“«—=". Now assume that |k| > 2 holds. Using this fact, we can choose an element
ack~{0,1}.
Since k is a field and a # 0, we know that a is invertible and thus the map
p:k—kzx— ax

is a bijection. Hence we have

S:Zx:ZLp(:E):Zaw:aZx:aS

zek zek zek zek

using distributivity. Hence we get the equation

S(1—a)=0
and now since a # 1 we can divide by the invertible element 1 — a # 0 to get

S=0
which concludes the proof. [J
Exercise 5. Consider the field F5 = {0, 1,2, 3,4}.
(a) Compute the value of 3 + % in Fs.

(b) Solve z® + x? = 6z for z in Fs.



Solution.

(a) First observe that in F5 we have
1
4-4=16=1 = Z:4
and similarly we find % = 2. Hence we get

Wl =

_I_

| o

(b) By computing in F5 we simplify

>+ 22 — 6z = z(z® +x —6)
= z(z — 2)(z + 3)
= z(x —2)%

Hence the solutions in F5 are given by z; := 0 and z3 := 2.



