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1.  Logic

Propositional logic (Aussagenlogik, in german), also known as zeroth-order logic,
deals with propositions and relations between them while first-order logic

(Prädikatenlogik, in german) introduces quantifiers and variables which allows to

state involved propositions.

1.1  Basics

⚠️  Warning 1. The universal quantifier ∀ and the existential quantifier ∃ should

never be exchanged. To see why this is the case, observe that

∀n ∈ N ∃m ∈ N : n < m

and

∃m ∈ N ∀n ∈ N : n < m

are two very different statements.

Claim 1. For arbitrary propositions A, B we have

(A ⟹ B) ⟺ (¬A ∨ B).

Proof. Consider the truth table:

Since the last two row match in every entry, this proves the claim. □

⚠️  Warning 2. Let X be a set and A(x) a proposition depending on x ∈ X.

Then the statement

∀x ∈ ∅ : A(x)
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is always true and the statement

∃x ∈ ∅ : A(x)

is always false.

1.2  Exercises

Exercise 1. Let A, B be arbitrary propositions. Which of the following are not
equivalent to A ∨ B?

(a) ¬A ⟹ B

(b) ¬B ⟹ A

(c) ¬(¬A ∧ ¬B)

(d) ¬(¬A ∨ ¬B)

Solution. Note that by Claim 1 we have

(¬A ⟹ B) ⟺ ¬¬A ∨ B
(1)
⟺ A ∨ B,

where at (1) we used Theorem 1.2.17 (i) from the lecture. Similarly, (b) is

equivalent to A ∨ B. Now again by Theorem 1.2.17 we have

so only (d) is not equivalent to A ∨ B.

Exercise 2. Everybody loves Alex but Alex only loves me. Who is Alex?

(a) My mother

(b) Nobody

(c) My son

(d) I am Alex

Solution. Since everybody loves Alex, he/she also loves himself/herself. But since

Alex only loves me, I have to be Alex.

Exercise 3. Let X ⊆ R be arbitrary. Under which assumptions on X can the

statement

∀ε > 0 ∃q ∈ Q ∀x ∈ X : |x − q| < ε

be proven?

(a) X is finite

(b) X is empty

¬(¬A ∧ ¬B) ⟺ ¬¬A ∨ ¬¬B ⟺ A ∨ B,

¬(¬A ∨ ¬B) ⟺ ¬¬A ∧ ¬¬B ⟺ A ∧ B,



(c) X ⊆ Q

(d) |X| = 1

Solution. If we choose X = {1, 10} then the statement is not true. (Why? Try to

prove it.) Hence the assumptions from (a) or from (c) don't suffice to prove the
statement. On the other hand, if X is empty then the statement is true since

Q ≠ ∅ by Warning 2. If |X| = 1 then the statement can also be proven since Q is

dense in R (⟶ see Analysis I). Hence (b) and (c) suffice.

2.  Fields

2.1  Exercises

Exercise 4. Let k be a finite Field and let S be the sum of all its elements. Show

that

S = 0 ⟺ |k| > 2

holds.

Proof. “⟹”. To show this direction, we want to use contraposition, so assume

|k| ≤ 2 holds. Since k is a field, we have k = {0, 1} with 1 ≠ 0 and thus

S = 0 + 1 = 1 ≠ 0.

“⟸”. Now assume that |k| > 2 holds. Using this fact, we can choose an element

a ∈ k ∖ {0, 1}.

Since k is a field and a ≠ 0, we know that a is invertible and thus the map

φ : k → k, x ↦ ax

is a bijection. Hence we have

using distributivity. Hence we get the equation

S(1 − a) = 0

and now since a ≠ 1 we can divide by the invertible element 1 − a ≠ 0 to get

S = 0

which concludes the proof. □

Exercise 5. Consider the field F5 = {0, 1, 2, 3, 4}.

(a) Compute the value of 3
4 + 1

3  in F5.

(b) Solve x3 + x2 = 6x for x in F5.

S = ∑
x∈k

x = ∑
x∈k

φ(x) = ∑
x∈k

ax = a∑
x∈k

x = aS



Solution.

(a) First observe that in F5 we have

4 ⋅ 4 = 16 = 1 ⟹
1

4
= 4

and similarly we find 1
3

= 2. Hence we get

3

4
+

1

3
= 3 ⋅ 4 + 2 = 14 = 4.

(b) By computing in F5 we simplify

Hence the solutions in F5 are given by x1 := 0 and x2 := 2.

x3 + x2 − 6x = x(x2 + x − 6)

= x(x − 2)(x + 3)

= x(x − 2)2.


