LINEAR ALGEBRA I EXERCISE CLASS Eric Ceglie

2. October 2023

1. LOGIC

Propositional logic (Aussagenlogik, in german), also known as zeroth-order logic, deals with propositions and relations between them while first-order logic (Prädikatenlogik, in german) introduces quantifiers and variables which allows to state involved propositions.

1.1 Basics

A Warning 1. The universal quantifier \forall and the existential quantifier \exists should never be exchanged. To see why this is the case, observe that

$$orall n \in \mathbb{N} \; \exists m \in \mathbb{N} : n < m$$

and

$$\exists m \in \mathbb{N} \; orall n \in \mathbb{N}: n < m$$

are two very different statements.

Claim 1. For arbitrary propositions A, B we have

$$(A \implies B) \iff (\neg A \lor B).$$

Proof. Consider the truth table:

_	A	B	$\neg A$	$ eg A \lor B$	$A \implies B$
	t	t	f	t	t
	t	f	f	f	f
	f	t	t	t	t
	f	f	t	t	t

Since the last two row match in every entry, this proves the claim. \Box

A Warning 2. Let X be a set and A(x) a proposition depending on $x \in X$. Then the statement

$$orall x \in \emptyset : A(x)$$

is always true and the statement

$$\exists x \in \emptyset : A(x)$$

is always false.

1.2 Exercises

Exercise 1. Let A, B be arbitrary propositions. Which of the following are not equivalent to $A \vee B$?

- (a) $\neg A \implies B$ (b) $\neg B \implies A$ (c) $\neg (\neg A \land \neg B)$
- (d) $\neg (\neg A \lor \neg B)$

Solution. Note that by Claim 1 we have

$$(\neg A \implies B) \iff \neg \neg A \lor B \stackrel{(1)}{\iff} A \lor B,$$

where at (1) we used **Theorem 1.2.17** (i) from the lecture. Similarly, (b) is equivalent to $A \lor B$. Now again by **Theorem 1.2.17** we have

$$egin{aligned}
end{aligned}
e$$

so only (d) is not equivalent to $A \vee B$.

Exercise 2. Everybody loves Alex but Alex only loves me. Who is Alex?

- (a) My mother
- (b) Nobody
- (c) My son
- (d) I am Alex

Solution. Since everybody loves Alex, he/she also loves himself/herself. But since Alex only loves me, I have to be Alex.

Exercise 3. Let $X \subseteq \mathbb{R}$ be arbitrary. Under which assumptions on X can the statement

$$orall arepsilon > 0 \; \exists q \in \mathbb{Q} \; orall x \in X : \; \; |x-q| < arepsilon$$

be proven?

- (a) X is finite
- (b) X is empty

(c) $X \subseteq \mathbb{Q}$

(d) |X| = 1

Solution. If we choose $X = \{1, 10\}$ then the statement is not true. (Why? Try to prove it.) Hence the assumptions from (a) or from (c) don't suffice to prove the statement. On the other hand, if X is empty then the statement is true since $\mathbb{Q} \neq \emptyset$ by **Warning 2**. If |X| = 1 then the statement can also be proven since \mathbb{Q} is dense in \mathbb{R} (\longrightarrow see Analysis I). Hence (b) and (c) suffice.

2. FIELDS

2.1 Exercises

Exercise 4. Let k be a finite Field and let S be the sum of all its elements. Show that

$$S=0 \iff |k|>2$$

holds.

Proof. " \Longrightarrow ". To show this direction, we want to use contraposition, so assume $|k| \leq 2$ holds. Since k is a field, we have $k = \{0, 1\}$ with $1 \neq 0$ and thus $S = 0 + 1 = 1 \neq 0$.

" \Leftarrow ". Now assume that |k| > 2 holds. Using this fact, we can choose an element

$$a\in k\smallsetminus \{0,1\}.$$

Since k is a field and $a \neq 0$, we know that a is invertible and thus the map

$$arphi:k
ightarrow k,x\mapsto ax$$

is a bijection. Hence we have

$$S = \sum_{x \in k} x = \sum_{x \in k} arphi(x) = \sum_{x \in k} ax = a \sum_{x \in k} x = aS$$

using distributivity. Hence we get the equation

$$S(1-a) = 0$$

and now since $a \neq 1$ we can divide by the invertible element $1 - a \neq 0$ to get

S=0

which concludes the proof. \Box

Exercise 5. Consider the field $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}.$

- (a) Compute the value of $\frac{3}{4} + \frac{1}{3}$ in \mathbb{F}_5 .
- (b) Solve $x^3 + x^2 = 6x$ for x in \mathbb{F}_5 .

Solution.

(a) First observe that in \mathbb{F}_5 we have

$$4\cdot 4 = 16 = 1 \implies \frac{1}{4} = 4$$

and similarly we find $\frac{1}{3} = 2$. Hence we get

$$\frac{3}{4} + \frac{1}{3} = 3 \cdot 4 + 2 = 14 = 4.$$

(b) By computing in \mathbb{F}_5 we simplify

$$egin{aligned} x^3 + x^2 - 6x &= x(x^2 + x - 6) \ &= x(x-2)(x+3) \ &= x(x-2)^2. \end{aligned}$$

Hence the solutions in \mathbb{F}_5 are given by $x_1 := 0$ and $x_2 := 2$.