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1 The Dual Map

Definition 1.1. Let V,W be K-vector spaces and T : V → W a linear map. Then we

define the dual map of T by

T ∗ : W ∗ → V ∗, f 7→ f ◦ T.

Exercise 1.2. Consider the linear map

D : R[X] → R[X], p 7→ p′

given by taking the derivative of a polynomial.

• Find an explicit formula for the dual map D∗.

• If we define g : R[X] → R, p 7→ p(3), what is D∗(g)?

• If we define h : R[X] → R, p 7→
∫ 1

0
p(x) dx, what is D∗(h)?

Solution.

• By definition, for any f ∈ (R[X])∗ we haveD∗(f) = f◦D. Hence for any p ∈ R[X]

we get the formula

(D∗(f))(p) = (f ◦D)(p) = f(p′).
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• Applying the formula we found, we get

(D∗(g))(p) = g(p′) = p′(3)

and

(D∗(h))(p) = h(p′) =

∫ 1

0

p′ dx = p(1)− p(0)

for any p ∈ R[X].

2 Annihilator

Recall the following definition.

Definition 2.1. Let V be a vector space. For any subspace U ≤ V we define the

annihilator of U by

U⊥ := {f ∈ V ∗ | ∀u ∈ U : f(u) = 0}
= {f ∈ V ∗ | f |U = 0} ≤ V ∗.

Recall 2.2. Let V,W be two K-vector spaces. Recall that for every basis B of V and

every map f̃ : B → W there exists a unique linear map f : V → W extending f̃ ,

namely the map given by

f
( n∑

k=1

αnbn

)
=

n∑
k=1

αkf̃(bk)

for any ak ∈ K, bk ∈ B.

Exercise 2.3. Let U,W ≤ V be two subspaces of a finite dimensional K-vector space

V .

(a) Show that U ⊆ W if and only if W⊥ ⊆ U⊥.

(b) Show that we have (U ∩W )⊥ = U⊥ +W⊥.
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Solution.

(a) Proof. “=⇒”. Follows immediately by considering the definition.

“⇐=”. Assume that U ̸⊆ W , so there exists a u ∈ U ∖ W . Now choose a

basis {u, b2, . . . , bn} of V and define a linear map f : V → K by f(u) = 1 and

f(bi) = 0 for i ∈ {2, . . . , n}. But then we have f ∈ W⊥ since u ̸∈ W and

f ̸∈ U⊥ since f(u) = 1 ̸= 0 in K. This proves W⊥ ̸⊆ U⊥ and we can conclude by

contraposition.

(b) We are going to provide two different approaches to this problem. First, we

present a proof which involves some explicit constructions.

Proof 1. “⊇”. Let f ∈ U⊥ +W⊥ be arbitrary, which means that it is of the form

f = f1 + f2

for f1 ∈ U⊥ and f2 ∈ W⊥. Now since U ∩W is a subspace of U and W , we get

that for any v ∈ U ∩W we have

f(v) = f1(v) + f2(v) = 0

by definition of U⊥ and W⊥, which shows f ∈ (U ∩W )⊥.

“⊆”. Let f ∈ (U∩W )⊥ be arbitrary. Choose a basis {b1, . . . , bn} of U∩W and ex-

tend it such that {b1, . . . , bn, u1, . . . , um} is a basis of U and {b1, . . . , bn, w1, . . . , wl}
is a basis of W . Note that then then we necessarily have

{u1, . . . , um} ∩ {w1, . . . , wl} = ∅.

Now chose vectors v1, . . . , vr such that {b1, . . . , bn, u1, . . . , um, w1, . . . , wl, v1, . . . , vr}
is a basis of V . Hence we can define two linear functions f1, f2 : V → K by

f1(bi) = f1(uj) = 0, f1(wk) = f(wk), f1(vq) = f(vq),

f2(bi) = f2(wk) = 0, f2(uj) = f(uj), f2(vq) = 0

for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , l} and q ∈ {1, . . . , r}. Then

by definition we have f1 ∈ U⊥ and f2 ∈ W⊥. Furthermore, the assumption

3



Linear Algebra I: Exercise Class Eric Ceglie

f ∈ (U ∩ W )⊥ implies that f(bi) = 0 holds for all i ∈ {1, . . . , n} and thus

we have f = f1 + f2 by the uniqueness mentioned in Recall 2.2. This proves

(U ∩W )⊥ ⊆ U⊥ +W⊥.

Here is a simpler, non-constructive proof.

Proof 2. In a first step, show as in proof 1 that U⊥ +W⊥ ⊆ (U ∩W )⊥ holds and

observe that we have the identity

(U +W )⊥ = U⊥ ∩W⊥, (1)

which is straight forward to verify. Now compute

dim((U ∩W )⊥) = dim(V )− dim(U ∩W ) (2)

= dim(V ) + dim(U +W )− dim(U)− dim(W ) (3)

= dim(V ) + dim(V )− dim(V )

+ dim(U +W )− dim(U)− dim(W )

= dim(U⊥) + dim(W⊥)− dim((U +W )⊥) (4)

= dim(U⊥) + dim(W⊥)− dim(U⊥ ∩W⊥) (5)

= dim(U⊥ +W⊥) (6)

where at (2) and (4) we used theorem 6.4.5, at (3) and (6) we used theorem 3.4.4

and at (5) we used (1). Furthermore, since V is finite dimensional, V ∗ is also

finite dimensional and thus since we have U⊥ + W⊥ ⊆ (U ∩ W )⊥, the equation

above implies U⊥ +W⊥ = (U ∩W )⊥.

3 Finding an Orthonormal Basis

Definition 3.1. For n ≥ 1, we define the canonical inner product on Rn by

⟨·, ·⟩ : Rn × Rn → R,

((x1, . . . , xn), (y1, . . . , yn)) 7→ x1y1 + x2y2 + . . .+ xnyn.

4



Linear Algebra I: Exercise Class Eric Ceglie

In this case, Rn (and any of its subspaces) is also called an euclidean vector space.

Furthermore, a set B ⊆ Rn is called an orthonormal basis of Rn if it is a basis and

fulfills ⟨u, v⟩ = 0 and ⟨u, u⟩ = 1 for all u, v ∈ B with u ̸= v.

Remark 3.2. The notion of an euclidean vector space can be generalized.

Later in this course, we are going to prove the following crucial theorem.

Theorem 3.3. Every finite-dimensional euclidean vector space has an orthonormal

basis.

Based on this theorem, we can provide the following example.

Example 3.4. We want to find an orthonormal basis of the subspace

V := ⟨v1, v2, v3⟩ :=

〈
1

1

0

0

 ,


1

0

1

0

 ,


1

0

0

1


〉

≤ R4.

We are going to do this in three steps.

(1) First set w1 := v1 and normalize it, meaning that we define

b1 :=
1√

⟨w1, w1⟩
w1 =

1√
2


1

1

0

0

 .

Now ⟨b1, b1⟩ = 1 is fulfilled as desired.

(2) Set

w2 := v2 − ⟨v2, b1⟩b1 =
1

2


1

−1

2

0
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and observe that with this choice we indeed have

⟨b1, w2⟩ = ⟨b1, v2 − ⟨v2, b1⟩b1⟩ = ⟨b1, v2⟩︸ ︷︷ ︸
=⟨v2,b1⟩

−⟨v2, b1⟩ · ⟨b1, b1⟩︸ ︷︷ ︸
=1

= 0.

Now again normalize w2, so

b2 :=
1√

⟨w2, w2⟩
w2 =

√
6

6


1

−1

2

0


to achieve ⟨b2, b2⟩ = 1 and note that we still have ⟨b1, b2⟩ = 0.

(3) Similarly to step (2), set

w3 := v3 − ⟨v3, b1⟩b1 − ⟨v3, b2⟩b2 =
1

3


1

−1

−1

3


and

b3 :=
1√

⟨w3, w3⟩
w3 =

√
3

6


1

−1

−1

3

 .

Now {b1, b2, b3} indeed defines an orthonormal basis of V .

Exercise 3.5. Try to apply this algorithm to other subspaces and, while doing so,

think about why it works.
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