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1 The Dual Map

Definition 1.1. Let V., W be K-vector spaces and T : V' — W a linear map. Then we
define the dual map of T by

- W*=V* f— foT.
Exercise 1.2. Consider the linear map
D :R[X]| > R[X], p—p
given by taking the derivative of a polynomial.
e Find an explicit formula for the dual map D*.
e If we define g : R[X] — R, p+— p(3), what is D*(g)?
o If we define h: R[X] - R, p+— fol p(x) dx, what is D*(h)?
Solution.

e By definition, for any f € (R[X])* we have D*(f) = foD. Hence for any p € R[X]

we get the formula

(D*(fN(p) = (f o D)(p) = [ ()
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e Applying the formula we found, we get

and

for any p € R[X].

2 Annihilator

Recall the following definition.

Definition 2.1. Let V be a vector space. For any subspace U < V we define the
annihilator of U by

Ut ={feV*|VuelU: f(u) =0}
={feV | flo=0}t<V"

Recall 2.2. Let V., W be two K-vector spaces. Recall that for every basis B of V' and
every map f : B — W there exists a unique linear map f : V — W extending f,
namely the map given by

f(i:%%) = zn:akf(bk)

for any a, € K, b, € B.

Exercise 2.3. Let U, W <V be two subspaces of a finite dimensional K-vector space
V.

(a) Show that U C W if and only if W+ C U*+.

(b) Show that we have (UNW)+ =U+ + W
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Solution.

(a)

Proof. “=". Follows immediately by considering the definition.

“«=". Assume that U € W, so there exists a v € U ~ W. Now choose a
basis {u,bs,...,b,} of V and define a linear map f : V — K by f(u) = 1 and
f(b;)) = 0 for i € {2,...,n}. But then we have f € W+ since u ¢ W and
f & Ut since f(u) =1# 0 in K. This proves W+ € U+ and we can conclude by

contraposition. ]
We are going to provide two different approaches to this problem. First, we

present a proof which involves some explicit constructions.

Proof 1. “D”. Let f € U+ W+ be arbitrary, which means that it is of the form

f=h+/
for fi € U+ and f, € W+. Now since U N W is a subspace of U and W, we get
that for any v € U N W we have
f) = fi(v) + fa(v) =0
by definition of U+ and W+, which shows f € (U N W)L

“C”. Let f € (UNW)* be arbitrary. Choose a basis {b;, ..., b,} of UNW and ex-
tend it such that {by,..., by, u1,. .., uy}isabasisof U and {by, ..., by, wy, ..., w;}

is a basis of W. Note that then then we necessarily have

{uy, ..., upn} N{wy,...,w} =0.

Now chose vectors vy, . .., v, such that {by, ... by, U1, ..., Up, W1, ..., W,V ..., 0.}

is a basis of V. Hence we can define two linear functions fy, fo : V — K by
Sibi) = filu;) =0, filwe) = flwk),  fi(vg) = f(vg),
fobi) = folwr) =0, faluy) = fuy),  f2(vg) =0

forall i € {1,...,n}, j € {1,....m}, k € {1,...,l} and ¢ € {1,...,r}. Then
by definition we have f; € U+ and f, € W+. Furthermore, the assumption
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3

f € (Un W)L implies that f(b;) = 0 holds for all i € {1,...,n} and thus
we have f = fi; + fo by the uniqueness mentioned in [Recall 2.2 This proves
Unw)tcut+wt O

Here is a simpler, non-constructive proof.

Proof 2. In a first step, show as in proof 1 that ULt + WL C (UN W)+ holds and

observe that we have the identity
(U+W)r=Urnw, (1)

which is straight forward to verify. Now compute

dim((U N W)+) = dim(V) — dim(U N W) (2)
= dim(V) + dim(U + W) — dim(U) — dim (W) (3)
= dim(V) + dim (V') — dim(V)

+ dim(U + W) — dim(U) — dim (W)

= dim(U™) + dim(W™) — dim((U + W)*) (4)
= dim(U*) 4+ dim(W+) — dim(U+ n W) (5)
= dim(U*+ + W) (6)

where at (2) and (4) we used theorem 6.4.5, at (3) and (6) we used theorem 3.4.4
and at (5) we used (1). Furthermore, since V' is finite dimensional, V* is also
finite dimensional and thus since we have U+ + W+ C (U N W)L, the equation
above implies U+ + W+ = (UNW)*. O

Finding an Orthonormal Basis

Definition 3.1. For n > 1, we define the canonical inner product on R™ by

() R"xR" - R,
(1, oy n), (Y1y oy Un)) > T1Y1 + TaYo + .o+ TpYn-
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In this case, R" (and any of its subspaces) is also called an euclidean vector space.
Furthermore, a set B C R" is called an orthonormal basis of R™ if it is a basis and
fulfills (u,v) =0 and (u,u) = 1 for all u,v € B with u # v.

Remark 3.2. The notion of an euclidean vector space can be generalized.

Later in this course, we are going to prove the following crucial theorem.

Theorem 3.3. Every finite-dimensional euclidean vector space has an orthonormal

basis.
Based on this theorem, we can provide the following example.

Example 3.4. We want to find an orthonormal basis of the subspace
120 <re,
0

(1) First set w; := v; and normalize it, meaning that we define

—_

Y

V.= <U1,’U2,U3> = <

S = O =

1
1
0
0

—_

We are going to do this in three steps.

1
b 1 1 |1
= = —
' V(w, wy) 1 V2 [0
0
Now (b1, b1) = 1 is fulfilled as desired.
(2) Set

1

1]-1

Wy ‘= Vg — <’U2,b1>b1 = — 9
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and observe that with this choice we indeed have

<b1,w2> = <b17’02 — <U2,b1>b1> = <b1,1)2> —<’U2,b1> . <b1,b1> = 0

:(027171) =1

Now again normalize ws, SO

1
1 V6 | -1
bg = Wy = ——
{(wa, ws) 6 2
0

to achieve (b, bs) = 1 and note that we still have (b, bs) = 0.

(3) Similarly to step (2), set

1
1] -1
W3 1= VU3 — <U3>bl>b1 - <U37b2>b2 - g
—1
3
and
1
1 V3| -1
b3 = W3 = ——
<’LU3,U)3> 6 -1
3

Now {b1, by, b3} indeed defines an orthonormal basis of V.

Exercise 3.5. Try to apply this algorithm to other subspaces and, while doing so,
think about why it works.



	The Dual Map
	Annihilator
	Finding an Orthonormal Basis

