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1.  Matrices

Let K be a field.

1.1  Recap

Definition. For matrices A = (aij)i,j ∈ Mm×n(K) and B = (bjk)j,k ∈ Mn×p(K), we

define their product by

AB := (
n

∑
j=1

aijbjk) ∈ Mm×p(K).

Example. For

A := ∈ M3×2(F7), B := ( ) ∈ M2×2(F7),

we have

AB = ∈ M3×2(F7).

1.2  Exercises

Exercise 1. Let A,B ∈ Mn×n(K) be arbitrary. Does

(A + B)2 = A + 2AB + B2

hold in general?

Solution. No. For n = 2 and K = R consider the matrices

A := ( ), B := ( ).
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Then we have

(A + B)2 = ( )

and

A2 + 2AB + B2 = ( ).

Hence the formula does not hold in this case since 1 ≠ 2 in R.

Exercise 2. Prove that for A := ( ) the formula

holds for n ≥ 1.

Proof. We prove this by induction.

• For n = 1 one directly verifies that the formula holds.

• Now let n > 1 and assume that (1) holds for n − 1. Then we have

which concludes the proof. □

1.3  Row-Reduced Echelon Form

We know the following theorem from lecture:

Theorem. Every matrix A is row-equivalent to a matrix in row-reduced echelon

form.

⟶ Question.  How do we find an appropriate matrix W  such that WA is in

row-reduced echelon form?

We are going to introduce a general algorithm with the concrete example

A := ∈ M3×4(R).

Now our goal is to find a permutation matrix P ∈ M3×3(R) and an lower

triangular matrix L ∈ M3×3(R) such that R := PLA is in row-reduced echelon
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form. To do so, start by writing:

In a first step, we are going to apply transformations of the form M(r,λ) and

S(r, s,λ) to bring the right side in (2) into row-reduced form. While doing so,

apply the very same operations simultaneously to the left side, to receive the

matrix L. This looks as follows:

Now set

L :=

and observe that with this choice LA is in row-reduced form. In a last step, do the

same procedure with operations of the form P(r, s) as follows:

By setting

P :=

I3 ⟶ L A ⟶ “row-reduced”
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we finally get

PLA = R = .

Exercise 3. Try to apply this algorithm to other matrices and, while doing so,
think about why it works.

1.4  Inverting a Matrix

Here let A ∈ Mn×n(K) be an invertible matrix.

⟶ Question.  How can we algorithmically find A−1?

As above, we illustrate a general algorithm by applying it to the example

A = ∈ GL3(K).

Again, start by writing:

Now we are going to apply elementary row-transformations until the right side of

(3) becomes I3 as follows:
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Hence we conclude that

A−1 =

holds.

Exercise 4. Again, try to apply this algorithm to other matrices and, while doing

so, think about why it works.
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