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1 The Quotient Space

Exercise 1.1. Let V := R[0,1] be the R-vector space of all functions f : [0, 1] → R and

consider

U := {f ∈ V | f(0) = f(1) = 0}.

(a) Show that U is a subspace of V .

(b) Identify V/U .

*(c) Find a subspace W ⊆ V such that V/W ∼= RN.

Solution.

(a) Proof. For any f, g ∈ U and λ ∈ R we have

(λf + g)(0) = λf(0) + g(0) = 0

and similarly (λf + g)(1) = 0, so λf + g ∈ U . Furthermore, we have 0V ∈ U and

thus U is indeed a subspace.

(b) Claim. V/U ∼= R2.
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Proof. For any (x, y) ∈ R2 define a function

f(x,y) : [0, 1] → R, t 7→


x if t = 0

0 if 0 < t < 1

y if t = 1

and observe that f(x,y) ∈ V . Using this, define

φ : R2 → V/U, (x, y) 7→ f(x,y) + U.

Then φ is well-defined and for any (x1, y1), (x2, y2) ∈ R2 and λ ∈ R we have

φ(λ(x1, y1) + (x2, y2)) = f(λ(x1,y1)+(x2,y2)) + U

= λf(x1,y1) + f(x2,y2) + U

= λ(f(x1,y1) + U) + f(x2,y2) + U

= λφ(x1, y2) + φ(x2, y2)

which proves that φ is a linear map.

Injectivity. Let (x, y) ∈ R2 be arbitrary with φ(x, y) = f(x,y) + U = 0V/U .

Equivalently, we then have f(x,y) ∈ U , so by definition of U we get

f(x,y)(0) = f(x,y)(1) = 0.

But by definition of f(x,y) we also have

f(x,y)(0) = x, f(x,y)(1) = y

and thus (x, y) = (0, 0). This proves ker(φ) = {0} and thus φ is injective.

Surjectivity. Let f + U ∈ V/U be arbitrary and set

x := f(0), y := f(1).

We want to prove that now φ(x, y) = f holds. Observe that we have

(f − f(x,y))(0) = f(0)− f(x,y)(0)

= f(0)− x

= f(0)− f(0) = 0
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and by the same reasoning (f − f(x,y))(1) = 0 follows. But this means that

f − f(x,y) ∈ U or equivalently

f + U = f(x,y) + U = φ(x, y),

which proves surjectivity.

*(c) Take W := {f ∈ V | ∀n ∈ N : f( 1
n
) = 0}. To see that this indeed fulfills

V/W ∼= RN, define a map

ψ : RN → V/W, (xn)n∈N 7→ f(xn)n∈N +W,

where

f(xn)n∈N : [0, 1] → R, t 7→

xn if ∃n ∈ N : t = 1
n

0 else

and proceed as in (b).

Exercise 1.2. For n ∈ N, set V :=Mn×n(R) and

U := {A ∈ V | AT + A = 0}.

(a) Show that U is a subspace if V and compute dim(U).

(b) Identify V/U .

Hint. Use the first isomorphism theorem.

(c) Using (b), find a complement of U .

Solution.

(a) Direct computation shows that U is indeed a subspace and we have dim(U) =
n(n−1)

2
. Here we omit a proof (the idea is to explicitly write down a basis of U).

(b) Claim. V/U ∼= {A ∈ V | AT = A} = {A ∈ V | A is symmetric} =: W .
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Key idea. Find an appropriate linear map T : V → V with ker(T ) =

U and identify im(T ). By the first isomorphism theorem, we then have

V/U = V/ker(T ) ∼= im(T ).

Proof. Define

T : V → V, A 7→ A+ AT

and observe that T is linear and ker(T ) = U follows immediately.

Claim. We have im(T ) = W .

“⊆”. Let B ∈ im(T ), so there exists a matrix A ∈ V with

B = A+ AT .

Now compute

BT = (A+ AT )T = AT + (AT )T = AT + A = B

and thus B is symmetric, so B ∈ W .

“⊇”. Let B ∈ W be any symmetric matrix and write B = (bij)i,j=1,...,n. Then

since BT = B holds, we have

∀i, j ∈ {1, . . . , n} : bij = bji.

Now set

aij :=


bij if i < j
bij
2

if i = j

0 if i > j

for i, j ∈ {1, . . . , n} and A := (aij)i,j=1,...,n ∈ V , so

A =



b11
2

b12 b13 . . . b1n

0 b22
2

b23 . . . b2n
... 0

. . . . . .
...

...

0 0 . . . 0 bnn

2


.
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Then we have

T (A) = A+ AT = B

and thus B ∈ im(T ).

Hence we have shown that im(T ) = W holds. Now using the first isomorphism

theorem, we get

V/U = V/ker(T ) ∼= im(T ) = W

which concludes the proof.

(c) By theorem 7.1.6 from the lecture notes, any complementW ′ ≤ V of U must fulfill

W ′ ∼= V/U . By (b), this might suggest to take W ′ := W to find a complement of

U . One directly verifies that W ≤ V and that we have U ∩W = {0}. Combining

(a) and (b) we get

dim(W ) = dim(V/U) = dim(V )− dim(U) = n2 − n(n− 1)

2
=
n(n+ 1)

2
.

Hence dim(U +W ) = n2 = dim(V ) and thus V = U ⊕W .

Note that this means that we can uniquely decompose any matrix into a sum of

a symmetric and an antisymmetric matrix.
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