LINEAR ALGEBRA I

EXERCISE CLASS

Eric Ceglie

16. October 2023

1. VECTOR SPACES AND SUBSPACES

1.1 Recap

We first recall the important definitions.

Definition. (*Vector space*) A vector space over a field K is a tuple $(V, +, \cdot, 0_V)$ consisting of a set V with two maps

 $egin{array}{lll} +: & V imes V
ightarrow V, \; (v_1,v_2)\mapsto v_1+v_2, \ & \cdot: \; K imes V
ightarrow V, \; (\lambda,v)\mapsto \lambda\cdot v \end{array}$

and a selected element $0_V \in V$ such that $(VR1) \ \forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1,$ $(VR2) \ \forall v_1, v_2, v_3 \in V : v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3,$ $(VR3) \ \forall v \in V : 0_V + v = v,$ $(VR4) \ \forall v \in V \ \exists w \in V : v + w = 0_V,$ $(VR5) \ \forall v_1, v_2 \in V \ \forall \lambda \in K : \lambda \cdot (v_1 + v_2) = \lambda \cdot v_1 + \lambda \cdot v_2,$ $(VR6) \ \forall v \in V \ \forall \lambda_1, \lambda_2 \in K : (\lambda_1 + \lambda_2) \cdot v = \lambda_1 \cdot v + \lambda_2 \cdot v,$ $(VR7) \ \forall v \in V \ \forall \lambda_1, \lambda_2 \in K : \lambda_1 \cdot (\lambda_2 \cdot v) = (\lambda_1 \cdot \lambda_2) \cdot v,$ $(VR8) \ \forall v \in V : 1_K \cdot v = v.$

Definition. (Subspace) Let V be a K-vector space. A subset $U \subseteq V$ is called a subspace if (UR0) $U \neq \emptyset$, (UR1) $\forall u_1, u_2 \in U : u_1 + u_2 \in U$, (UR2) $\forall u \in U \ \forall \lambda \in K : \lambda \cdot u \in U$.

In this case, we also write U < V.

1.2 Vector spaces

Exercise. Let $V := \mathbb{R}_{>0}$ and define two operations

$$igoplus : V imes V o V, \quad (x,y) \mapsto xy \ \odot : \mathbb{Q} imes V o V, \quad (q,x) \mapsto x^q.$$

Is there an element $0_V \in V$ such that $(V, \oplus, \odot, 0_V)$ is a \mathbb{Q} -vector space?

Solution. Yes, set $0_V := 1 \in \mathbb{R}_{>0}$ and verify all vector space axioms (VR1)-(VR8).

Exercise. Let $V := \mathbb{R}^2$ and define two operations

$$+_V: V imes V o V, \ \cdot_V : \mathbb{R} imes V o V$$

by

$$egin{aligned} &(x,y)+_V(x',y'):=(x+x',y+y'),\ &\lambda\cdot_V(x,y):=(\lambda x,y). \end{aligned}$$

Is there an element $0_V \in V$ such that $(V, +_V, \cdot_V, 0_V)$ is a \mathbb{R} -vector space?

Solution. No, the scalar multiplication \cdot_V does not fulfil the axiom (VR6).

Exercise. Let $V := \mathbb{R}^n$ for $n \in \mathbb{N}$, fix a vector $v_0 \in V$ and define two operations

$$ec{+}:V imes V o V, \quad (v,w)\mapsto v+w-v_0\ ec{\cdot}:\mathbb{R} imes V o V, \quad (\lambda,v)\mapsto \lambda(v-v_0)+v_0$$

Is there an element $0_V \in V$ such that $(V, \vec{+}, \vec{\cdot}, 0_V)$ is an \mathbb{R} -vector space?

Solution. Yes, set $0_V := v_0$ and verify all vector space axioms (VR1)-(VR8). Notice how this is just the "usual" vector space structure on \mathbb{R}^n but translated by v_0 . In V the additive in inverse of a vector $v \in V$ is given by $2v_0 - v$ because

$$v ert 2 v_0 - v = v_0 = 0_V$$

holds. This situation might be illustrated by the following picture.

Try to similarly visualize the scalar multiplication $\vec{\cdot}$ in V.

1.3 Subspaces

Exercise. Which of the following subsets of \mathbb{R}^3 are subspaces?

$$\begin{array}{ll} \text{(a)} \ V_1 := \{(x,1,z) \mid x,z \in \mathbb{R}\} \\ \text{(b)} \ V_2 := \{(y+z,2x,-y) \mid x,y,z \in \mathbb{R}\} \\ \text{(c)} \ V_3 := \{(x^2,0,0) \mid x \in \mathbb{R}\} \\ \text{(d)} \ V_4 := \{(e^x \sin(y),0,0) \mid x,y \in \mathbb{R}\} \end{array}$$

Solution.

- (a) Since $(0, 0, 0) \notin V_1$, it is not a subspace.
- (b) V_2 is indeed a subspace. Since $(0,0,0) \in V_2$ holds, we get $V_2 \neq \emptyset$. Furthermore, for $x, \tilde{x}, y, \tilde{y}, z, \tilde{z} \in \mathbb{R}$ and $\lambda \in \mathbb{R}$ we have

$$(y+z,2x,-y)+(ilde y+ ilde z,2 ilde x,- ilde y)=((y+ ilde y)+(z+ ilde z),2(x+ ilde x),-(y+ ilde y))\in V_2$$
 and

and

$$\lambda(y+z,2x,-y)=(\lambda y+\lambda z,2\lambda x,-\lambda y)\in V_2$$
 .

(c) Observe that $(1,0,0) \in V_3$ holds but

$$-1 \cdot (1,0,0) = (-1,0,0)
ot \in V_3$$

and thus V_3 is not a subspace.

(d) Since the function $(x, y) \mapsto e^x \sin(y)$ is surjective, we have

$$V_4=\{(t,0,0)\mid t\in\mathbb{R}\}$$

which clearly is a subspace of \mathbb{R}^3 .

Exercise. Let V be a vector space and $U_1, U_2 \leq V$ two subspaces such that $U_1 \cup U_2$ is also a subspace. Prove that then one of the spaces is contained in the other.

Proof. Assume that $U_1 \nsubseteq U_2$ and $U_2 \nsubseteq U_1$ holds. Then there exist vectors

$$u_1\in U_1\smallsetminus U_2, \quad u_2\in U_2\smallsetminus U_1$$

which fulfil $u_1, u_2 \in U_1 \cup U_2$. But since $U_1 \cup U_2$ is a subspace, we then get

$$u_1+u_2\in U_1\cup U_2,$$

which implies WLOG $u_1 + u_2 \in U_1$. Now since $-u_1 \in U_1$ holds, we get $u_2 \in U_1$ which is a contradiction. \Box

Exercise. Let $U_1, U_2 \leq V$ be two subspaces of a vector space V such that $V = U_1 + U_2$ and $U_1 \cap U_2 = \{0\}$. Prove that for all $v \in V$ there are unique vectors $u_1 \in U_1$ and $u_2 \in U_2$ such that $v = u_1 + u_2$ holds.

Proof. Let $v \in V$ be arbitrary. The existence of such a representation directly follows from $V = U_1 + U_2$. Now let $u_1, \tilde{u}_1 \in U_1$ and $u_2, \tilde{u}_2 \in U_2$ be vectors with

$$v=u_1+u_2= ilde{u}_1+ ilde{u}_2.$$

Then we get

$$\underbrace{u_1- ilde u_1}_{\in U_1}=\underbrace{ ilde u_2-u_2}_{\in U_2}\in U_1\cap U_2$$

and thus by using $U_1 \cap U_2 = \{0\}$

$$u_1= ilde{u}_1, \quad u_2= ilde{u}_2$$

follows which proves uniqueness. \Box