LINEAR ALGEBRA I

EXERCISE CLASS

Eric Ceglie
16. October 2023

1. VECTOR SPACES AND SUBSPACES

1.1 Recap

We first recall the important definitions.

Definition. (Vector space) A wvector space over a field K is a tuple (V,+,-,0v)
consisting of a set V with two maps

+: VXV -V, (’U1,’U2)'—>’U1—|—’Ug,
c KxV =V, (Av)—= Ao

and a selected element Oy € V such that

(VRI) Yvi,v9 €V i vy + vy = vy + vy,

(VR2) Vuy,vg,v3 € Vi v1 + (v2 +v3) = (v1 + vg) + w3,
(VR3) Yo e V: Oy +v =,

(VR4Y)VoeV IweV: v+w=0y,

(VR5) Yvi,vo € VVAE K : )\-(v1+v2):)\-vl+)\-v2,
(VR6) V’UEVV)Q,)\QEK ()\1+)\2)"U:)\1-’U+)\2-’U,
(VR7) VUEVV)\l,)QEK Al - ()\2-’0):()\1-)\2)-’0,
(VR§) YveV: lg-v=n.

Definition. (Subspace) Let V be a K-vector space. A subset U C V is called a
subspace if

(UR0) U # 0,

(URI) Vui,us € U: ui1 +ug €U,

(UR2)VueUVAe K: A-uel.

In this case, we also write U < V.

1.2 Vector spaces

Exercise. Let V := R and define two operations

®:VxV-=V, (z,y)—zy
©:QxV =V, (gz)—zi

Is there an element 0y € V such that (V,®, ®,0y) is a Q-vector space?



Solution. Yes, set Oy := 1 € R+ and verify all vector space axioms (VRI)-(VRS).

Exercise. Let V := R? and define two operations

+y: VXV =V,
v RxV >V

(z,y) +v (@,y) :== (z + 2",y + ¢),
Av (@) = (A, y).

Is there an element Oy € V such that (V,+v,-v,0v) is a R-vector space?

Solution. No, the scalar multiplication -y does not fulfil the axiom (VR6).

Exercise. Let V := R" for n € N, fix a vector vg € V and define two operations

F:VxV oV, (vw)e—v+w-—1
TIRxV =V, (A\v) = A(v— ) + vo.

Is there an element Oy € V such that (V,+,7,0y) is an R-vector space?

Solution. Yes, set 0y :=wv, and verify all vector space axioms (VRI)-(VRS).
Notice how this is just the “usual” vector space structure on R™ but translated by
vo. In V the additive in inverse of a vector v € V is given by 2vg — v because

v¥ 2y —v=1vy=0yp

holds. This situation might be illustrated by the following picture.

vy

2u9— v

Try to similarly visualize the scalar multiplication ~ in V.



1.3 Subspaces

Exercise. Which of the following subsets of R? are subspaces?

(a) Vi:={(z,1,2) | z,z € R}

Solution.
(a) Since (0,0,0) & Vi, it is not a subspace.

(b) V, is indeed a subspace. Since (0,0,0) € Vo, holds, we get V5 #0.
Furthermore, for z,%,y,9,2,2 € R and A € R we have

(y+ 2, 2337 _y) + (g+ 2) 2j7 _g) = ((y+ g) + (Z—I— 2),2($ + {Ié)a _(y_l_ g)) S V2
and

My + 2,2z, —y) = Ay + Az, 2Az, —Ay) € Va.

(c) Observe that (1,0,0) € V3 holds but
-1-(1,0,0) =(-1,0,0) ¢ V3
and thus V3 is not a subspace.
(d) Since the function (z,y) — e®sin(y) is surjective, we have
Vy={(¢,0,0) | t € R}

which clearly is a subspace of R3.

Exercise. Let V be a vector space and U;,Uy <V two subspaces such that

U, UU, is also a subspace. Prove that then one of the spaces is contained in the
other.

Proof. Assume that Uy € Uy and Uy € Uy holds. Then there exist vectors
’LL1€U1\U2, us € Us N\ Uz
which fulfil w1, u2 € Uy U Us. But since Uy U Us is a subspace, we then get

U1+U2€U1UU2,



which implies WLOG wuj + us € U;. Now since —uj € Uy holds, we get us € Uy
which is a contradiction. [

Exercise. Let U;,Us <V be two subspaces of a vector space V such that
V =U; + Uy and U; N Uy = {0}. Prove that for all v € V there are unique vectors
uy € Uy and uy € Uy such that v = u; 4 uy holds.

Proof. Let v €V be arbitrary. The existence of such a representation directly
follows from V = Uy 4+ Ujy. Now let ui, 41 € Uy and use, iis € Us be vectors with

V=ul+us = U+ us.
Then we get

U1 — U1 =2 —ugy € U1 NUy
—_— =

el el
and thus by using Uy N U = {0}
uy = U1, U =1us

follows which proves uniqueness. []



