LINEAR ALGEBRA I

EXERCISE CLASS

Eric Ceglie

23. October 2023

1. VECTOR SPACES

1.1 The Vector Space \mathbb{R}^{I}

Here we introduce an important object that often comes up very naturally, although it might seem somewhat abstract at first sight.

For any set I, we define \mathbb{R}^{I} to be the set of all functions $f: I \to \mathbb{R}, i \mapsto a_{i}$. Then using pointwise addition and multiplication \mathbb{R}^{I} naturally becomes an \mathbb{R} -vector space.

How can we think of \mathbb{R}^{I} ? Note that we can uniquely identify any function $f \in \mathbb{R}^{I}$ by its values $(a_{i})_{i \in I}$. Hence if I is finite with $n := |I| < \infty$, we have

 \mathbb{R}^{I} "=" \mathbb{R}^{n} .

Now what if $I = \mathbb{N}$ holds? Then any vector $f \in \mathbb{R}^{\mathbb{N}}$ can be identified with its values $(a_i)_{i \in \mathbb{N}}$ and thus $\mathbb{R}^{\mathbb{N}}$ is just the vector space of all real-values sequences. The picture

$$f \; ``="\; (a_i)_{i \in \mathbb{N}} = (a_1, a_2, a_3, \ldots)$$

might help to draw connections. Similarly, any $f \in \mathbb{R}^{\mathbb{Z}}$ might be visualized by

$$f \ ``=" \ (\dots,a_{-1},a_0,a_1,\dots).$$

What if $I = \mathbb{R}$ holds? In this situation, the picture

$$f "=" (\ldots, a_0, \ldots, a_{0.001}, \ldots, a_{\pi}, \ldots)$$

is just *very misleading* because (as Cantor's diagonal argument shows) any attempt to *actually list* all real numbers fails.

We see that our intuition does not cover all possibilities and thus to *really* understand \mathbb{R}^{I} , one needs to rigorously proof mathematical statements. This process is often a *delicate interplay between intuition and logic*.

Claim. The set of all functions with *finite support*

$$\mathbb{R}^{(I)} := \{(a_i)_{i \in I} \in \mathbb{R}^I \mid a_i = 0 ext{ for all but finitely many } i \in I\}$$

is a subspace of the vector space \mathbb{R}^{I} .

Exercise. Try to prove this.

1.2 Exercise Sheet 4

Exercise 3. Let X be a set and V a K-vector space. Then $\mathcal{F} := \mathcal{F}(X, V) = V^X$ denotes the K-vector space of all function $f: X \to V$ equipped with pointwise addition and scalar multiplication.

Now fix $y \in X$ and $v \in V$ set

$$\mathcal{F}_{y,v}:=\{f\in\mathcal{F}\mid f(y)=v\}.$$

- (a) Prove that $\mathcal{F}_{y,v}$ is a subspace of \mathcal{F} if and only if v = 0 holds.
- (b) Find a subspace $W \leq \mathcal{F}$ such that

$$\mathcal{F}=\mathcal{F}_{y,v}+W \quad ext{and} \quad \mathcal{F}_{y,v}\cap W=\{0_{\mathcal{F}}\}.$$

Solution. Can be found on Lineare Algebra I Herbst 2023.

2. Span and Basis

2.1 How to Find a Basis

In exercise 6 on exercise sheet 5 you are going to prove the following result, which is very useful to determine whether given vectors are independent or not.

Proposition 1. Let K be a field, $n, m \in \mathbb{N}$ and let $A \in M_{n \times n}(K)$ be an invertible matrix. Then $v_1, \ldots, v_m \in K^n$ are linearly independent if and only if Av_1, \ldots, Av_m are linearly independent.

Example. Let

$$v_1 := egin{pmatrix} 1 \ -2 \ 3 \ 4 \end{pmatrix}, \quad v_2 := egin{pmatrix} 0 \ -3 \ 2 \ 1 \end{pmatrix}, \quad v_3 := egin{pmatrix} 2 \ 5 \ 0 \ 5 \end{pmatrix}.$$

Which of the vectors above form a basis of $\langle v_1, v_2, v_3 \rangle \leq \mathbb{R}^4$?

For this, define the matrix

$$A:=(v_1,v_2,v_3)=egin{pmatrix} 1&0&2\-2&-3&5\3&2&0\4&1&5 \end{pmatrix}\in M_{4 imes 3}(\mathbb{R}).$$

Now using elementary row-operations, we can find an invertible matrix $W \in M_{4\times 4}(\mathbb{R})$ such that

$$WA = egin{pmatrix} 1 & 0 & 2 \ 0 & 1 & -3 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}.$$

Now we can immediately see that

$$2v_1 - 3v_2 - v_3 = 0$$

holds which means that $\{v_1, v_2, v_3\}$ are not linearly independent. Thus we need to remove at least one vector to obtain a basis. Note that the equation above also implies

$$\langle v_1,v_2,v_3
angle=\langle v_1,v_2
angle.$$

But we can also observe that

$$Av_1 = egin{pmatrix} 1 \ 0 \ 0 \ 0 \end{pmatrix}, \quad Av_2 = egin{pmatrix} 0 \ 1 \ 0 \ 0 \end{pmatrix}$$

are linearly independent and thus by **proposition 1** this implies that v_1 and v_2 are indeed linearly independent. Putting everything together, this proves that $\{v_1, v_2\}$ is a basis of $\langle v_1, v_2, v_3 \rangle$.

2.2 Vector Space of Polynomials

In example 3.1.3. from the lecture notes you have seen that the set of polynomials with real coefficients and degree ≤ 3 , denoted by $\mathbb{R}[X]^{\leq 3}$, is an \mathbb{R} -vector space.

Exercise. Is tthe set $B := \{X + X^3, X^2 + 2X, X^3 - X^2\}$ a basis of $\mathbb{R}[X]^{\leq 3}$.

Solution. We first check if the vectors of B are independent. For this, let $a, b, c \in \mathbb{R}$ be arbitrary with

$$a(X+X^3)+b(X^2+2X)+c(X^3-X^2)=0.$$

Rearranging the equation yields

$$(a+2b)X + (b-c)X^2 + (a+c)X^3 = 0$$

and by comparing the coefficients we obtain the following system of equations:

$$a + 2b = 0$$

 $b - c = 0$
 $a + c = 0$

One can directly check that a = b = c = 0 is the unique solution of this system of linear equations. This proves that the vectors of B are indeed linearly independent.

But again by comparing coefficients, one can show that the polynomial $1 \in \mathbb{R}[X]^{\leq 3}$ cannot be represented as a linear combination of vectors in B. Hence B is not a basis of $\mathbb{R}[X]^{\leq 3}$.