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1 Complements of Subspaces

1.1 Recap

Definition 1.1. Let V be a K-vector space and U ≤ V a subspace. A subspace W ≤ V

is called a complement of U if

• V = U +W ,

• U ∩W = {0}

hold. In this case, we also write V = U ⊕W .

Theorem 1.2. Every subspace of a vector space has a complement.

Theorem 1.3. Let V be a finite-dimensional vector space and U,W ≤ V two subspaces.

Then we have

dim(U +W ) = dimU + dimW − dim(U ∩W ).

1.2 Finding a Complement

We are going to introduce an algorithm that generally works with an example.
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Example 1.4. Let V := R4 and consider the subspace U := ⟨v1, v2, v3⟩ for

v1 :=


1

2

0

1

 , v2 :=


0

1

−1

0

 , v3 :=


2

3

1

2

 .

Find a complement W ≤ V of U .

Solution. Proceed in in three steps as follows.

(1) Consider the matrix

A :=

 | | |
v1 v2 v3 I4

| | |

 =


1 0 2 1 0 0 0

2 1 3 0 1 0 0

0 −1 1 0 0 1 0

1 0 2 0 0 0 1

 .

Note that we added the canonical basis {e1, e2, e3, e4} of R4 to our vectors v1, v2, v3

to make sure that we obtain a basis of R4. Now we need to determine a basis

that extends {v1, v2, v3} to a basis of R4.

(2) By only using elementary row operations, transform A into a matrix in row-

reduced echelon form

Ã :=


1 0 2 0 0 0 1

0 1 −1 0 0 −1 0

0 0 0 0 1 1 −2

0 0 0 1 0 0 −1

 .

(3) In a third step, we are now going to closely investigate the matrix Ã to conclude.

First observe that the first three columns of Ã are linearly dependent and thus

v1, v2, v3 are also linearly dependent. But by looking at Ã we also see that

v3 = 2v1 − v2
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holds and that v1 and v2 are linearly independent, so

U = ⟨v1, v2⟩.

Again by looking at Ã, we see that that the vectors v1, v2, e1, e2 are linearly in-

dependent and since dim(R4) = 4 holds they form a basis of R4. Now using

Theorem 1.3 we can conclude that we have

R4 = ⟨v1, v2⟩ ⊕ ⟨e1, e2⟩.

2 Linear Maps

2.1 Recall

Examples 2.1.

• If we consider C as an R-vector space, then {1, i} is a basis of C.

• If we consider C as a C-vector space, then {1} is a basis of C.

Definition 2.2. Let V,W be two K-vector spaces. A map T : V → W is called a

linear map if the following conditions hold:

(i) ∀v1, v2 ∈ V : T (v1 + v2) = T (v1) + T (v2),

(ii) ∀v ∈ V ∀α ∈ K : T (αv) = αT (v).

In this case, we also say that T is K-linear. Furthermore, a linear map T : V → V is

called an endomorphism.

Definition 2.3. Let m,n ≥ 1 and A ∈ Mm×n(K) for a field K. Then we define

Tv : K
n → Km, v 7→ Av.

Lemma 2.4. The map Tv is linear.
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2.2 Exercises

Exercise 2.5. Recall that we can view V := C as an R- or C-vector space. Suppose

that a map T : V → V is R-linear. Is it then necessarily also C-linear? Prove it or find

a counter example.

Solution. The claim is false. Indeed, define

T : V → V, z 7→ Re(z),

where for any a, b ∈ R we set Re(a + bi) := a. One directly verifies that T is R-linear
but we also have

T (i · 1) = T (i) = 0 ̸= i = i · T (1)

which shows that T is not C-linear.

3 Equivalence Relations

3.1 Recap

Definition 3.1. Let X be a set. A relation on X is a subset R ⊆ X × X and for

x, y ∈ X we write

x ∼ y :⇐⇒ (x, y) ∈ R.

The relation ∼ is called an equivalence relation if

(i) ∀x ∈ X : x ∼ x (reflexive),

(ii) x, y ∈ X : x ∼ y =⇒ y ∼ x (symmetric),

(iii) ∀x, y, z ∈ X : x ∼ y and y ∼ z =⇒ x ∼ z (transitive).

In this case, we define

[x] := {y ∈ X | x ∼ y}

for any x ∈ X and

X/∼ := {[x] | x ∈ X}.
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Exercise 3.2. Define an relation on R by

x ∼ y :⇐⇒ x− y ∈ Z

for x, y ∈ R.

(a) Show that ∼ is an equivalence relation.

Now define the map

f : R/∼ → R, [x] 7→ x− ⌊x⌋,

where ⌊x⌋ := max{m ∈ Z | m ≤ x}.

(b) Show that f is well-defined.

(c) If we instead considered the relation

x ∼ y :⇐⇒ x− y ∈ Q,

would f still be well-defined?

Solution.

(a) This can be proven by a straightforward computation (try to write it out).

(b) Proof. Let x, y ∈ R be arbitrary with x ∼ y. Then by definition of ∼ there exists

an integer n ∈ Z such that x− y = n. Hence we have

x− ⌊x⌋ = y + n− ⌊y + n⌋
= y + n− (⌊y⌋+ n) (1)

= y − ⌊y⌋

which shows that f is well-defined. Note that at (1) we used a basic property of

⌊ · ⌋ which only holds if n is an integer. (Can you prove this property?)

(c) No, in this case f is not well-defined since for example

1.1− ⌊1.1⌋ = 0.1 ̸= 0.2 = 1.2− ⌊1.2⌋

but 1.1 ∼ 1.2.
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