LINEAR ALGEBRA I EXERCISE CLASS

Eric Ceglie

30. October 2023

1 Complements of Subspaces

1.1 Recap

Definition 1.1. Let V be a K-vector space and $U \leq V$ a subspace. A subspace $W \leq V$ is called a *complement* of U if

- V = U + W,
- $U \cap W = \{0\}$

hold. In this case, we also write $V = U \oplus W$.

Theorem 1.2. Every subspace of a vector space has a complement.

Theorem 1.3. Let V be a finite-dimensional vector space and $U, W \leq V$ two subspaces. Then we have

 $\dim(U+W) = \dim U + \dim W - \dim(U \cap W).$

1.2 Finding a Complement

We are going to introduce an algorithm that generally works with an example.

Example 1.4. Let $V := \mathbb{R}^4$ and consider the subspace $U := \langle v_1, v_2, v_3 \rangle$ for

$$v_1 := \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}, \quad v_2 := \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}, \quad v_3 := \begin{pmatrix} 2 \\ 3 \\ 1 \\ 2 \end{pmatrix}.$$

Find a complement $W \leq V$ of U.

Solution. Proceed in three steps as follows.

(1) Consider the matrix

$$A := \begin{pmatrix} | & | & | \\ v_1 & v_2 & v_3 & I_4 \\ | & | & | \end{pmatrix} = \begin{pmatrix} 1 & 0 & 2 & 1 & 0 & 0 & 0 \\ 2 & 1 & 3 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 2 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Note that we added the canonical basis $\{e_1, e_2, e_3, e_4\}$ of \mathbb{R}^4 to our vectors v_1, v_2, v_3 to make sure that we obtain a basis of \mathbb{R}^4 . Now we need to determine a basis that extends $\{v_1, v_2, v_3\}$ to a basis of \mathbb{R}^4 .

(2) By only using elementary row operations, transform A into a matrix in rowreduced echelon form

$$\tilde{A} := \begin{pmatrix} 1 & 0 & 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 \end{pmatrix}$$

(3) In a third step, we are now going to closely investigate the matrix \tilde{A} to conclude. First observe that the first three columns of \tilde{A} are linearly dependent and thus v_1, v_2, v_3 are also linearly dependent. But by looking at \tilde{A} we also see that

$$v_3 = 2v_1 - v_2$$

holds and that v_1 and v_2 are linearly independent, so

$$U = \langle v_1, v_2 \rangle.$$

Again by looking at \tilde{A} , we see that that the vectors v_1, v_2, e_1, e_2 are linearly independent and since dim(\mathbb{R}^4) = 4 holds they form a basis of \mathbb{R}^4 . Now using Theorem 1.3 we can conclude that we have

$$\mathbb{R}^4 = \langle v_1, v_2 \rangle \oplus \langle e_1, e_2 \rangle.$$

2 Linear Maps

2.1 Recall

Examples 2.1.

- If we consider \mathbb{C} as an \mathbb{R} -vector space, then $\{1, i\}$ is a basis of \mathbb{C} .
- If we consider \mathbb{C} as a \mathbb{C} -vector space, then $\{1\}$ is a basis of \mathbb{C} .

Definition 2.2. Let V, W be two K-vector spaces. A map $T : V \to W$ is called a *linear map* if the following conditions hold:

- (i) $\forall v_1, v_2 \in V : T(v_1 + v_2) = T(v_1) + T(v_2),$
- (ii) $\forall v \in V \,\forall \alpha \in K : T(\alpha v) = \alpha T(v).$

In this case, we also say that T is K-linear. Furthermore, a linear map $T: V \to V$ is called an *endomorphism*.

Definition 2.3. Let $m, n \ge 1$ and $A \in M_{m \times n}(K)$ for a field K. Then we define

$$T_v: K^n \to K^m, v \mapsto Av.$$

Lemma 2.4. The map T_v is linear.

Exercise 2.5. Recall that we can view $V := \mathbb{C}$ as an \mathbb{R} - or \mathbb{C} -vector space. Suppose that a map $T : V \to V$ is \mathbb{R} -linear. Is it then necessarily also \mathbb{C} -linear? Prove it or find a counter example.

Solution. The claim is false. Indeed, define

$$T: V \to V, \ z \mapsto \operatorname{Re}(z),$$

where for any $a, b \in \mathbb{R}$ we set $\operatorname{Re}(a + bi) := a$. One directly verifies that T is \mathbb{R} -linear but we also have

$$T(i \cdot 1) = T(i) = 0 \neq i = i \cdot T(1)$$

which shows that T is not \mathbb{C} -linear.

3 Equivalence Relations

3.1 Recap

Definition 3.1. Let X be a set. A *relation* on X is a subset $R \subseteq X \times X$ and for $x, y \in X$ we write

$$x \sim y \iff (x, y) \in R.$$

The relation \sim is called an *equivalence relation* if

- (i) $\forall x \in X : x \sim x$ (reflexive),
- (ii) $x, y \in X : x \sim y \implies y \sim x$ (symmetric),
- (iii) $\forall x, y, z \in X : x \sim y \text{ and } y \sim z \implies x \sim z \quad (transitive).$

In this case, we define

$$[x] := \{ y \in X \mid x \sim y \}$$

for any $x \in X$ and

$$X/\sim := \{ [x] \mid x \in X \}.$$

Exercise 3.2. Define an relation on \mathbb{R} by

$$x \sim y \iff x - y \in \mathbb{Z}$$

for $x, y \in \mathbb{R}$.

(a) Show that \sim is an equivalence relation.

Now define the map

$$f: \mathbb{R}/\sim \to \mathbb{R}, \ [x] \mapsto x - \lfloor x \rfloor,$$

where $\lfloor x \rfloor := \max\{m \in \mathbb{Z} \mid m \le x\}.$

- (b) Show that f is well-defined.
- (c) If we instead considered the relation

$$x \sim y \iff x - y \in \mathbb{Q},$$

would f still be well-defined?

Solution.

- (a) This can be proven by a straightforward computation (*try to write it out*).
- (b) *Proof.* Let $x, y \in \mathbb{R}$ be arbitrary with $x \sim y$. Then by definition of \sim there exists an integer $n \in \mathbb{Z}$ such that x y = n. Hence we have

$$\begin{aligned} x - \lfloor x \rfloor &= y + n - \lfloor y + n \rfloor \\ &= y + n - (\lfloor y \rfloor + n) \\ &= y - \lfloor y \rfloor \end{aligned}$$
(1)

which shows that f is well-defined. Note that at (1) we used a basic property of $|\cdot|$ which only holds if n is an integer. (*Can you prove this property*?)

(c) No, in this case f is not well-defined since for example

$$1.1 - \lfloor 1.1 \rfloor = 0.1 \neq 0.2 = 1.2 - \lfloor 1.2 \rfloor$$

but $1.1 \sim 1.2$.