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Model Selection

x2-Goodness-of-Fit Analysis
For data N = (N, ..., Np) consider the one-sided test
Hy: N, ind- Poi(Av;) vs. Hy : we have over-dispersion.

Under Hj. By the aggregation theorem we have
@ ¢
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for X, i Poi(\). Hence by the CLT
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Kolmogorov-Smirnov Test
7. z d.

Theorem (Glivenko-Cantelli). If Y; Go for a un-
known distribution Gg then ||Gp —Golloo =23 0 asn — .

Assume Y A " G for a unknown continuous distribution
G and consider the null hypothesm Hy : G = Gp. Then
D, == v/n||Gr — Golloo @, Kolmogorov Distribution K

as n — 0o.
Hence we reject Hp on significance level ¢ € (0,1) if
D, > K“(1-gq).

Anderson-Darling Test

The KS test is modified by introducing a weight function
¥ :[0,1] — Ry (for example ¥(t) = (£(1—¢))~!). The new

test statistics is given by
Ap = v/nsup|Gp(y) — Go(y)]
y

Its limit is often computed numerically.

V(Go(y)).

Akaike’s Information Criterion

Assume two densities g; and g2 were MLE fitted to some

data Y = (Y1,...,Y,). Then we define the AIC values by
AICD = —24) (GMTF) 4 24

for i = 1,2, where d9 are the number of estimated param-
eters. Then

select model 1 <= AIC™M) < AIC®),

Bayesian Information Criterion

Assume two densities g; and g, were MLE fitted to some
data Y = (Y1,...,Y,). Then we define the BIC values by
BIC® := —20{) (AMLP) 4+ log(n)d®
for i = 1,2, where d*) are the number of estimated param-

eters. Then

select model 1 «—= BIC(V < BIC®,

Approximations of Compound Dis-
tributions

Assume S = ng’:l Y} has a compound distribution. Then
explicitly =Gk (1)

ZPN EP(Y1 +...+ Y, <t),

P(S <t)

where G*¥(t) is dlfﬁcult to compute for large k.

Hence for modeling insurance data, we independently de-
compose S = Sg. + S)c such that S). can be computed
explicitly and we approximate Sy, by assuming large ex-
pected numbers of small claims.

Normal Approximation (no skewness)

Theorem. Assume S ~ CompPoi(\v,G) with G having
finite second moment. Then

S — ME[Y] ﬂ)/\/(o,l)
E[Y2]

as n — oQ.

Hence in this case P(S <t) =~ ® (tME[Y]>
AE[Y2]

Translated Approximation (positive skew-
ness)

For k € R let
I'(v,c¢) or
LN(p,0?)
and fit (k,~,c) or (k, u,0?) by solving
E[X] =E[S], Var(X) = Var(95),

X=k+727 WhereZw{

SX = 6s-

Panjer Algorithm

Assume that N has a Panjer distribution, i.e. for constants
a,b € R we have py, = (a+b/k)pr—1 where p, :=P(N = k),

Im ‘= ]P)(Y = m) and fr = P(S — 7"). Then
fr=P(S=r)= >0 PrYG if r =0,
r - - 1 T .
Tugs k=1(@+0k/T)grfrok ifr> 1.

Fast Fourier Transform

Let A:={0,1,...,n—1} and f: A — R. For z € A set

n—1 )
=Y fe T Z fz
=0

If S ~ (f(I))ie is a distribution then f(z) = Mg(— 2.
Hence if S ~ f is a compound sum With Y ~ g, we have

N—ZM (log g(=

nl

f(2) = My(log j(2)) ~




Premium Calculation Principles

Net profit condition (NPC): 7 > E[5]

Utility Theory

Idea. Characterize risk via a strictly increasing wutility
function v : I — R and wu is called risk-averse if it is
strictly concave. Then

X »Y = Eu(X)] > Eu(Y))

and wu is more risk-averse than v if

VX c X uw HEu(X)]) < v HE(X))]).
Define the absolute/relative risk aversion by
. ), u(x)
Para(z) == —W7 PRraA(T) == —T w/(z) .

Then the utility indifference price m%(co) for initial capital
co is defined by the solution of
u(co) = Elu(co + m5(co) = 5)]
and for risk-averse u we have w¢(co) > E[S].
Examples. ¢ CARA: u(z) =1—a te 2 for a > 0.
zt Y
e CRRA: u(z) = {1"’ for v # 1,
logz for v=1.
Results. e m%(cy) does not depend on ¢y <= u(z) =
a—be ® fora € R, b,c>0.
e u is more risk-averse than v <= pXga = PAra
— mg(co) = mg(co)
o m¢(co) is decreasing in ¢y <= pipa(x) is decreasing.

Esscher Premium

Let S ~ F and a > 0 and assume that Mg exists on
(=r0,70). The Esscher distribution is defined by

F,(s) := f@“) /_S e dF(x)

oo
and the Esscher premium is given by

o := Eqo[S] := /deFa(s)
Mg(c)

= Tia = Vsle) > V5(0) = Els).

Probability Distortion

Let h : [0,1] — [0,1] be a distortion function, so it is con-
tinuous, increasing, concave and h(0) = 0, h(1) = 1 and
assume h(p) > p.

The probability distorted price is defined by

— N /OOO hP(S > o)) dz > E[S].

Cost-of-Capital Principles

Let o : X — R be a risk measure and set a cost-of-capital
rate rcoc > ro, where rg denotes the risk-free rate an in-
vestor receives on a risk-free bank account.
The cost-of-capital premium is defined by
TCoC = E[S] + rcoC Q(S — E[S])
A risk-measure is called coherent if it is defined on a convex
cone X containing R and fulfills
(1) normalization,
2) monotonicity,
3) translation invariance,
4) positive homogeneity,
5) subadditivity.
Examples. Let S ~ F be a distribution.
e The standard deviation risk measure

o(S) = aVar(S)1/?
is not subadditive and thus not coherent.
e The Value-at-Risk (VaR)
o(S) =VaRi_q = F* (1 —q)
is not subadditive and thus not coherent.
e The expected shortfall

NN S N

1 1
ES1—y(S) = -

q 1—q
is a coherent risk-measure. Furthermore, if F' is continuous

ES1_o(S) = E[S | § > VaRi_4(S)] = TVaRy_y(S).

VaRq(S) do



