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Model Selection

χ2-Goodness-of-Fit Analysis

For data N = (N1, . . . , NT ) consider the one-sided test

H0 : Nt
ind.∼ Poi(λvt) vs. H1 : we have over-dispersion.

Under H0. By the aggregation theorem we have

Nt
(d)
=

vt∑
k=1

Xk

for Xk
i.i.d.∼ Poi(λ). Hence by the CLT

Nt/vt − λ√
λ/vt

(d)
=

∑n
k=1Xk − vtλ√

vtλ

(d)−−→ N (0, 1).

Thus for vt large enough

χ∗(N) :=

T∑
t=1

(Nt/vt − λ)2

λ/vt

(d)
≈ χ2

T

and

χ̂∗(N) :=

T∑
t=1

(Nt/vt − λ̂MLE)2

λ̂MLE/vt

(d)
≈ χ2

T−1.

Kolmogorov-Smirnov Test

Theorem (Glivenko-Cantelli). If Yi
i.i.d.∼ G0 for a un-

known distribution G0 then ∥Ĝn−G0∥∞
a.s.−−→ 0 as n→ ∞.

Assume Yi
i.i.d.∼ G for a unknown continuous distribution

G and consider the null hypothesis H0 : G = G0. Then

Dn :=
√
n∥Ĝn −G0∥∞

(d)−−→ Kolmogorov Distribution K

as n→ ∞.
Hence we reject H0 on significance level q ∈ (0, 1) if
Dn > K←(1− q).

Anderson-Darling Test

The KS test is modified by introducing a weight function
ψ : [0, 1] → R+ (for example ψ(t) = (t(1− t))−1). The new

test statistics is given by

An :=
√
n sup

y
|Ĝn(y)−G0(y)|

√
ψ(G0(y)).

Its limit is often computed numerically.

Akaike’s Information Criterion

Assume two densities g1 and g2 were MLE fitted to some
data Y = (Y1, . . . , Yn). Then we define the AIC values by

AIC(i) := −2ℓ
(i)
Y (θ̂MLE

i ) + 2d(i)

for i = 1, 2, where d(i) are the number of estimated param-
eters. Then

select model 1 ⇐⇒ AIC(1) ≤ AIC(2).

Bayesian Information Criterion

Assume two densities g1 and g2 were MLE fitted to some
data Y = (Y1, . . . , Yn). Then we define the BIC values by

BIC(i) := −2ℓ
(i)
Y (θ̂MLE

i ) + log(n)d(i)

for i = 1, 2, where d(i) are the number of estimated param-
eters. Then

select model 1 ⇐⇒ BIC(1) ≤ BIC(2).

Approximations of Compound Dis-
tributions

Assume S =
∑N

k=1 Yk has a compound distribution. Then
explicitly

P(S ≤ t) =

∞∑
k=0

P(N = k)

=G∗k(t)︷ ︸︸ ︷
P(Y1 + . . .+ Yk ≤ t),

where G∗k(t) is difficult to compute for large k.
Hence for modeling insurance data, we independently de-
compose S = Ssc + Slc such that Slc can be computed
explicitly and we approximate Ssc by assuming large ex-
pected numbers of small claims.

Normal Approximation (no skewness)

Theorem. Assume S ∼ CompPoi(λv,G) with G having
finite second moment. Then

S − λvE[Y ]√
λvE[Y 2]

(d)−−→ N (0, 1) as n→ ∞.

Hence in this case P(S ≤ t) ≈ Φ

(
t−λvE[Y ]√
λvE[Y 2]

)
.

Translated Approximation (positive skew-
ness)

For k ∈ R let

X = k + Z, where Z ∼

{
Γ(γ, c) or

LN(µ, σ2)

and fit (k, γ, c) or (k, µ, σ2) by solving

E[X] = E[S], Var(X) = Var(S), ςX = ςS .

Panjer Algorithm

Assume that N has a Panjer distribution, i.e. for constants
a, b ∈ R we have pk = (a+b/k)pk−1 where pk := P(N = k),
gm := P(Y = m) and fr := P(S = r). Then

fr = P(S = r) =

{∑∞
k=0 pkg

k
0 if r = 0,

1
1−ag0

∑r
k=1(a+ bk/r)gkfr−k if r ≥ 1.

Fast Fourier Transform

Let A := {0, 1, . . . , n− 1} and f : A → R. For z ∈ A set

f̂(z) :=

n−1∑
l=0

f(l)e−
2πi
n lz ⇝ f(l) =

1

n

n−1∑
z=0

f̂(z)e
2πi
n zl.

If S ∼ (f(l))l∈A is a distribution then f̂(z) =MS(− 2πi
n z).

Hence if S ∼ f is a compound sum with Y ∼ g, we have

f̂(z) ≈Mn(log ĝ(z))⇝ f(l) ≈ 1

n

n−1∑
z=0

Mn(log ĝ(z))e
2πi
n zl.
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Premium Calculation Principles

Net profit condition (NPC): π > E[S]

Utility Theory

Idea. Characterize risk via a strictly increasing utility
function u : I → R and u is called risk-averse if it is
strictly concave. Then

X ≽ Y :⇐⇒ E[u(X)] ≥ E[u(Y )]

and u is more risk-averse than v if

∀X ∈ X : u−1(E[u(X)]) ≤ v−1(E[v(X)]).

Define the absolute/relative risk aversion by

ρuARA(x) := −u
′′(x)

u′(x)
, ρuRRA(x) := −xu

′′(x)

u′(x)
.

Then the utility indifference price πu
S(c0) for initial capital

c0 is defined by the solution of

u(c0) = E[u(c0 + πu
S(c0)− S)]

and for risk-averse u we have πu
S(c0) > E[S].

Examples. • CARA: u(x) = 1− α−1e−αx for α > 0.

• CRRA: u(x) =

{
x1−γ

1−γ for γ ̸= 1,

log x for γ = 1.

Results. • πu
S(c0) does not depend on c0 ⇐⇒ u(x) =

a− be−cx for a ∈ R, b, c > 0.
• u is more risk-averse than v ⇐⇒ ρuARA ≥ ρvARA

=⇒ πu
S(c0) ≥ πv

S(c0)
• πu

S(c0) is decreasing in c0 ⇐⇒ ρuARA(x) is decreasing.

Esscher Premium

Let S ∼ F and α > 0 and assume that MS exists on
(−r0, r0). The Esscher distribution is defined by

Fα(s) :=
1

Ms(α)

∫ s

−∞
eαx dF (x)

and the Esscher premium is given by

πα := Eα[S] :=

∫
R
s dFα(s)

=
M ′S(α)

MS(α)
= b′S(α) > b′S(0) = E[S].

Probability Distortion

Let h : [0, 1] → [0, 1] be a distortion function, so it is con-
tinuous, increasing, concave and h(0) = 0, h(1) = 1 and
assume h(p) > p.
The probability distorted price is defined by

πh := Eh[S] :=

∫ ∞
0

h(P(S > x)) dx > E[S].

Cost-of-Capital Principles

Let ϱ : X → R be a risk measure and set a cost-of-capital
rate rCoC > r0, where r0 denotes the risk-free rate an in-
vestor receives on a risk-free bank account.
The cost-of-capital premium is defined by

πCoC := E[S] + rCoC ϱ(S − E[S]).
A risk-measure is called coherent if it is defined on a convex
cone X containing R and fulfills
(1) normalization,
(2) monotonicity,
(3) translation invariance,
(4) positive homogeneity,
(5) subadditivity.
Examples. Let S ∼ F be a distribution.
• The standard deviation risk measure

ϱ(S) = αVar(S)1/2

is not subadditive and thus not coherent.
• The Value-at-Risk (VaR)

ϱ(S) = VaR1−q = F←(1− q)

is not subadditive and thus not coherent.
• The expected shortfall

ES1−q(S) =
1

q

∫ 1

1−q
VaRα(S) dα

is a coherent risk-measure. Furthermore, if F is continuous

ES1−q(S) = E[S | S ≥ VaR1−q(S)] = TVaR1−q(S).
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