TOPOLOGIE

O. KURZE EINFUHRUNG

i) Topologie ist Teil der Analysis, der sich mit "ally Lage" beschaftigt.

5 Satz. Sei P: IR -> IR stetig. Dann nimmt & aux [0,1] ein Min. und ein Max. an. Zudem werden alle Weste duzwischen angenammen.

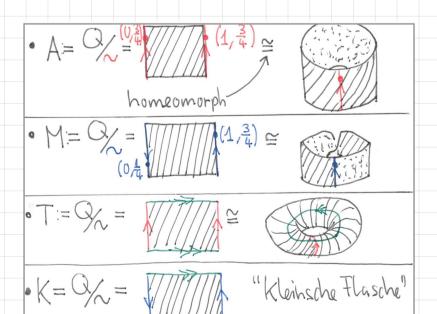
"Topologischer Grund": Bilder von lompaliten/zsmh. Mengen unter stetigen Abbildung sind wieder lumpaluten/zomh.

ii) Studium und Vonstruktion von Topologischen Räumen.

Verally. von metr. Räumen mit Folkus auf Nachbarschaft statt Distanz.

Bsp. • [0,1] CR

· Q := [0, 1] × [0, 1] = 1R2



Hilfsmittel for das Studium Top. Raume:

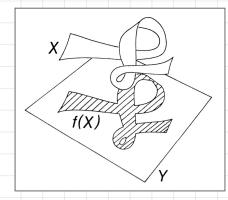
> "Algebraische hvorianten" L> Z.B. Zahlen, Gruppen, Ringe, Volpe, ... Zvordnen

> In dieser Vorlesung: Die Fundamentalgruppe

1. GRUNDLAGEN

TOPOLOGISCHE RAUME

Motivation in \mathbb{R} : $U \subseteq \mathbb{R}$ heisst offen, falls $\forall x \in U \ni \varepsilon > 0 : (x - \varepsilon, x + \varepsilon) \subseteq U$.



Def. Ein topologischer Raum ist ein Paar (X, O), bestehend Ous einer Menge X und einer Menge von Teilmengen $O \subseteq P(X)$, s.d.

- i) Beliebige Vereinigung von Mengen in O sind in O.
- ic) Der Durchschnitt von je zwei Mengen in O-liegt wieder in O.

iii) Ø, X liegen in O.

Man nennt $U \in O$ offene Menge von X und O Topologie von X.

BSP. a) Die Menge von oftenen Mengen U = IR im Sinne von 8
bilden eine Topologie von IR.

Def. Sei (x, O) ein topologischer Raum.

24.2.

- · A⊆X heisst abgeschlossen, falls XIA € O.
- $U \subseteq X$ heist Umgebung von $x \in X$, folls eine Offene Menge $V \in \mathcal{O}$ existient mit $x \in V \subseteq U$.
- Seien $x \in X$, $B \subseteq X$. Dam hebst x
 - · inner Punkt von B, folls B eine Umgebung von x ist.
 - · ourserer Punlet von B, Palls XIB eine Umgebung von x ist.

- · Randpunkt von B, folls weder B noch X/B Umgebung von × ist.
- · B° := {x ∈ X | x ist inner Punkt von B3 heisst dos Innere von B.
- · B = {x e X | x ist nicht ausser Punlit von B} heist Abechlus von B.
- $\partial B := \{x \in X \mid x \text{ ist Randpunlut von } B\}$ heiset Rand von B.

Alternative Def. von top. Raumen

- I) Folius Out abgs. Mengen.
- II) Folius and Umgebungen ("Hausoloiff'scher Zugang").
- III) Hüllenaxiome.

METRISCHE RAUME

Motivation: Eullidsche topologie auf 1R".

Def. Ein metrischer Raum ist ein Paar (x,d) mit einer

Abbildung d: X x X -> IR, s.d.

i) $\forall x, y \in X : d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$.

 $\ddot{u} \mid \forall x, y \in X : d(x, y) = d(y, x)$

iii) $\forall x, y, z \in X$: $d(x, z) \leq d(x, y) + d(y, z)$.

Def. Sei (X, d) metr. Roum. Dann heist

die von d induzierte Topologie.

d.k. es ex. eine Metrik d mit 0 = 0(d)

Frage: 1st jeder topologische Raum metrisierber?

-> Nein! Sei $X = \{a,b\}$ mit $a \neq b$ und $O = \{\varnothing, X\}$.

Dann ist O Top. von X.

Agn. X were metrisiabor, d.h. as ex. Metrilu of mit O = O(d). Sei $E := \frac{d(a,b)}{2}$. Donn gilt $B_{\epsilon}(a) = \{a\} \in O(d)$

ober {0} & O. Also ist (X, O) nicht metrisiabor.

Def: Sei X eine Menge. Dam heist Ofriva = {0, X} die triviale Topologie und Odisc = P(x) heist die distincte Topologie.

BSD.

Frage: Was valiated wir von of nach O(d)?

-> Sei (X, d) metr. Raum und setze

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} < 1.$$

Beh. O(d) = O(a).

Bew. Sei U CX. Dam 8/11

U∈ O(d) ⇔ Yx∈U∃E>O: Be(x) ⊆ U

$$\{y \in X \mid d(x,y) < \epsilon\}$$

$$\{y \in X \mid \frac{d(x,y)}{d(x,y)} < \frac{\epsilon}{1+\epsilon}\} = B_{\epsilon}^{\tilde{a}}(x)$$

(=> HXEN 3EN : Bg(x) SU

Ben. · Verschiedene Metrillen auf IR" können verschiedene Topologien induzieen

· Alle Metrihen auf IR", die von einer Norm hommen induzieren die Euhlidsche Topologie auf R".

UNTERRAUME, SUMMEN UND PRODUKTE

Notation.

- · S' := { (x,y) ∈ R ? | x2 + y2 = 1}
- · S2 := { (x, y, 2) = R3 | x2+y2+ 22 = 1}
- · Sn = { V e Rn1 | 11112 = 1}

Def. Sei (X, O) top. Raum and $X_0 \subseteq X$. Down heisst $O_{|X_0} := \{X_0 \cap U \mid U \in O\}$

Teilraum- bzw. Unterraumtopologie der auf X. induzierte
Topologie.

Dep. Seien $(X, O_x), (Y, O_y)$ top. Raume. Dann dep. wir $(X+Y, O_{x+y})$ durch

heisst (topologiscle) Summe von X und Y.

· (X x Y, Oxxy) clurch

Oxxy = {W = X x Y | V(x,y) \in W = U \in X, x \in U \in V \in W}

\[
\text{SU} \cdot \text{V} \c

heisst (topologisches) Produlut von X und Y.

BSP. Fur X=Y=R gilt

BASIS UND SUBBASEN

Motivation: Menge $U \subseteq \mathbb{R}^n$ ist offen $g.d.w. \in \mathbb{R}^n$ ex. mit $U = \bigcup B_{\epsilon_i}(x_i)$.

Def. Sei (X.O) top. Rown. Eine Teilmenge B = O heist Basis von O, falls

YUE OF 3 [Bi]ier = B : U = UBi.

BSD. Fur top. Raume X and Y bildet $B := \{ U \times V \mid U \in O_X, V \in O_Y \}$

eine Basis von Oxxy.

• Fix metr. 12 aum (X, d) bildet $B := \{B_{\varepsilon}(x) \mid x \in X\}$ eine Basis van O(d).

 $S \subseteq O$ heisst Subbasis von O, falls $\forall U \in O \exists \{B_i\}_{i \in I} \text{ mit } B_i \text{ endliche Durchschnitte}$ von Mergen aus S, s.d. $U = \bigcup_{i \in I} B_i$.

Bap. Fix $X = \{a,b,c\}$ sind $S := \{\{a,b\},\{a,c\},\{b,c\}\}$

und

B = {{0},{b}, {c}}

Sind Subbasis bew. Basis der dielweten Top. auf X.

Bem. Jede Menge von Teilmengen $S \in P(X)$ ist eine Subbanis einer eindeutigen Topologie auf X, genamt die von S erzeugte Topologie auf X.

<u>Ubigers</u>: Die von S erzeugte Top ist die Weinste Topologie, welche S enthält.

STETIGE ABBILDUNGEN

Def. Seien X, Y top. Raume und P: X-> Y Abbildung.

- Dann heizst f stetig, falls Urbilder offener Mengen offen sind, d.h. $\forall V \in O_V \Rightarrow f^{-1}(V) \in O_X$.
- Sei $x_0 \in X$. \neq heisst stetig bei x_0 , \neq alls \neq all jede Umgebung \vee von \neq (x_0) eine Umgebung \vee von \times 0 ex. mit \neq (\vee 0) \in \vee 0.

Bem. Falls X, V metr. Räuwe zind, dann stimmt obje Def.
mit den Whigen E-S-Def. Wherein.

BSP. · idx: X -> X ist stetig for jeden top. Raum X.

· P: X -> Y ist immer stetig, falls X die dishnete

oder Y die triviale Topologie tragt

Bow. (nur (a) und (b))

b) $W \subseteq Z$ offen $\Rightarrow g'(W) \subseteq Y$ offen $\Rightarrow g'(W) \subseteq X$ offen.

Damit ist gof stelig.

a) " \Rightarrow ": Sei $x \in X$ and $V \subseteq Y$ Ungeloung van f(x).

Dam ex. $\tilde{V} \subseteq V$ often in Y mit $f(x) \in \tilde{V}$.

Da \neq stetig ist, ist $\neq^{-1}(\tilde{V}) \subseteq X$ often und domit sogor Ungebung von \times mit $\Rightarrow (\neq^{-1}(\tilde{V})) \subseteq V$.

Damit ist & stetig bei x.

"E": Sei nun V = Y offen. Dann gilt

Yx∈P-'(V)∃U Umgebung von x

mit $\mathcal{L}(U_x) \subseteq V$,

da V Umgebung von $\mathcal{L}(x)$ ist. $\Rightarrow \exists \tilde{U}_x \subseteq U_x \text{ offen mit } x \in U_x \text{ und } \mathcal{L}(U_x) \subseteq V$.

Damit $\mathcal{L}(y) = \bigcup_{x \in \mathcal{L}^{-1}(V)} \{x\} \subseteq \bigcup_{x \in \mathcal{L}^{$

Eigerschaften. (Teilraum, Sumen, Produkte).

3.3.

i) Far Xo = X ist die Inclusion Xo -> X stefig.

ii) Sei P:X→Y stetig, Xo⊆X, Yo⊆Y mit P(Xo)⊆ Xo,

donn ist die Einschrächung

stelig.

iii) Die Inhlusion X -> X + Y ist stetig.

in) Sei p: X+Y -> Z. Dann ist & stetig q.dw.

Plx und fly stetig sind.

v) Die Projektion $n_x: X \times Y \rightarrow X$ uncl $n_y: X \times Y \rightarrow Y$ sind stetig.

vi) Sei & = (£x, £y): Z → X × Y. Dam ist & stetig g.d.w.

fx und fy stetig.

Def. Eine bijelitive Abbildung $f: X \rightarrow Y$ heist Homeomorphismus, warn f und f^{-1} beide stetig sind.

Bsp. o idx: X -> X ist ein Homeomrphismus.

· tan: [-~] → R ist ein Homeom.

- $\exp: \mathbb{R} \to (0, \infty)$ ist ein Homeom.

stelige Bijektion (stelig nach ii). Zudem ist $P^{-1}: S^1 \rightarrow SO_2(\mathbb{R}), (a,b) \longmapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$

eben falls stetig nach tie). Damit ist & oin Homeom.

Def. Seien X, Y top. Räume. Falls ein Homeomorphismus $f: X \to Y$

existient, dann heissen \times und Y homeomorph und wir schneiben $\times \cong Y$.

ZUSAMMENHANG

Def. Ein top. Raum X heist zusammenhängend, wenn X nicht als disjunkte Vereinigung zweier nicht-leerer, offener Mengen geschrieben werden kann.

Lemma 2.

a) Intervalle in IR sind zsmh.

b) Zsmh. Teilmengen von IR sind Intervalle

Bow. b) Sei I = IR zsmh. Seien $x, y \in I$ beliebig. Agn. es ex. ein $z \in IR \setminus I$ mit x < z = y. Dann gilt

often in I often in I

im Widespruch dazu, das I zsmh. ist. Damit ex.

heir solches z. Also ist I ein Interall.	
a) Beveis für $I = (i, j) \subseteq \mathbb{R}$ mit $i < j$ (andere Fälle ähnlich).	
Agn. I = UUV mit U,V often und nicht-leer.	
Wähle $a \in U$, $b \in V$ mit OBdA $a < b$. Setze	
$S := \sup\{x \in U \mid x < b\} \in \mathbb{R}.$	
i) Falls s∈U, so ex. $\varepsilon>0$ mit (s- ε , s+ ε) ⊆U.	
Daraus folgt b∈U und damit UnV≠Ø.	
wi) Falls $s \in V$, so $ex. \in O$ mit $(s-\varepsilon, s+\varepsilon) \subseteq V$	
und es folgt weder Unv = Ø.	П
una es togi weaes or i i .	
Satz. (Verally. cles Zwischenwertsatzers) Sei P:X -> Y stetig. Falls X. =X	
z_{smh} . ist, clann ist $P(X_0) \subseteq Y z_{smh}$.	
-> Zwischerwertsatz folgt als Korollar.	
Bow. Setze Y. = $f(x_0)$ und betrachte die stetige, surj. Abb	
$g = \mathcal{P} \chi_{\circ} : \chi_{\circ} \rightarrow \chi_{\circ}$	
Sei Vo = U u V mit U, V offen und nicht-leer. Dam gilt	
$X_{\circ} = g^{-1}(U) \cup g^{-1}(V)$	
mit g'(U), g'(V) often (da & stetis) und nicht-leer	
(da g surj.). Da X. zarth. ist, gilt	
$g^{-1}(U) \cap g^{-1}(V) \neq \emptyset.$	
Dosaus folgt Unv = 0, womit Yo zomh. ist.	
Def. · Ein top. Raum X heist wegzwammenhängend, wenn es	
For alle $a, b \in X$ ein Weg von a nach b gibt.	
· Ein Weg/Pfad von a nach b ist eine stetige	

mit Teilraumtspologie von IR

Abbildung $\alpha:[0,1] \rightarrow X$ mit $\alpha(0)=\alpha$ and $\alpha(1)=b$.

Bsp. Intervalle in R und beliebige horwere Teilmengen in R^n sind wegesmh.

Eigenschaften.

i) X wegesmh. \Rightarrow X smh.

vi) Sei $f: X \rightarrow Y$ stetig und $X_0 \in X$ wegenth. Dam ist $f(X_0)$ auch wegenth.

Bew. i) Sei $X = U \cup V$ mit U, V often, nicht-leer. Wähle $a \in U$, $b \in V$ und $u : [0,1] \rightarrow X$ stetig wie in der Def? von wegesmh.

Dann ist $I := f([0,1]) \subseteq X$ zenh. und

 $(U \cap I) \cup (V \cap I) = I_{ch} I = I_{ch} I$

und UnI # Ø = VnI. Damit ex ein ye UnInVnIeUnV.
Also gilt UnV = Ø, worit X zomh. ist.

vi) Seien $a, b \in \mathcal{P}(X_o)$. Wathle $a', b' \in X_o$ mit $\mathcal{P}(a') = a$, $\mathcal{P}(b') = b$. Dann ex. Weg & von a' nach b'.

Dann ist $\mathcal{P}(a) = a$ ein Weg von a' nach b'.

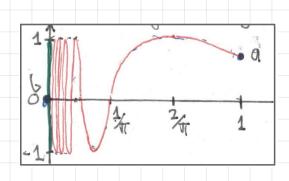
Bsp. (Topologist's sine curve)

Die Menge 2.

 $Z := (\{0\} \times [-1, 1]) \cup \{(t, sin(\frac{1}{t})) \mid t \in (0, 1]\} \subseteq \mathbb{R}^2$

3,

ist nicht wegennh., aber zemh.



• nicht wegenh. Seien $\alpha = (1, \sin(1)), b = (0, 0) \in \mathbb{Z}$.

Agn. es ex. Weg $\alpha = (\alpha_1, \alpha_2)$ von a nach b. Sei

S = min { t = [0,1] (a,(t) = 0 }

= min(x, '({o})) ~ mus ex, da x, stetig => Utbild obgs.

 $\Rightarrow \alpha_1([0,s]) \in (0,1]$ mit $\lim_{t\to s} \alpha_1(t) = 0$ and $\alpha_1(0) = 0$.

=> N,(to, s)) = (0,1]

 $= 3 (S_n)_n \text{ mit } \lim_{n\to\infty} S_n = S \text{ und } u_2(S_n) = 1.$

 $1 - = (n/2)_s \rho$ bor $2 = n/2 \rho$ tim $n/(n/2) E \Leftarrow$

=> Widerspruch, da az stetją ist.

· zomh. Sei Z= UUV mit U,V = Z offen, nicht-leer.

Agn. UnV = Ø. OBdA gilt U = Z, V = Z,

da Zo, Z, zamh. sind als Bilder zamh. Mengen

unter stetigen Abb. Da U offen ist, ex ein

ũ ⊆R² mit ũnZ=U. Domn ex. €>0 mit

BE ((0,01) = U.

⇒ ũnz, ≠Ø ⇒ UnV ≠Ø.

=Unz, =Unv

Damit ist 2 zsmh.

Ubrigers. · Also ex. Z = R" für n≥2 mit ≥ zmh. und nicht wegzsmh.

· Falls $U \subseteq \mathbb{R}^n$ often, dann ist U zamh. g.d.w. U regazmh. ist.

6.3.

Bem. Seien X, Y top. Rowne.

- o Sind $X, Y \neq \emptyset$, claim sind X and Y (ueg-) zemh g.d.w. $X \times Y$ (ueg-) zemh. ist.
- o A, B ∈ X und An B ≠ Ø. Dann gilt

 A und B (weg-) zsmh. ⇒ A v B (weg-) zsmh.
- o X ist nicht zam. g.d.w. 3f: X -> { {0,13, Oalse} } suaj., stetig

Bsp. Full $n \in \mathbb{N}$ ist $O_n(TR)$ nicht zsmh., da det: $O_n(TR) \longrightarrow \{-1, 1\}$, $M \longmapsto \det(M)$, da det stetig und surj ist.

Ubijens. Sei X top. Roum.

- o Def. a ~ b : => es ex. Weg van a rach b.

 Dies ist eine Aquivalienzrelation und die Aquivalienzhlossen
 heisen Wegzwammerhangsbamponenten. Die Menge aller
 Wegzwah.lomp. Wild mit To(X) bezeichnet.
- o Ahnlich für a~zb :=> es ex. Z ⊆ X zsmh. mit a,b ∈ Z.

 Auch Aquiv. relation und Aquiv. lubsean heissen Zusammenhangs
 homponenten.

1359. (IV, $0c_0e_n$) ist zanh. Ober nicht wegzenh. mit $TT_0(X) = \{\{n\} \mid n \in IV\}$.

DAS HAUSDORFFSCHE TRENNUNSAXIOM.

Def. Sei X top. Roum und (Xn)new eine Folge in X.

Dann heist ein a EX Limes/Grenzwet von (Xn)n,

wenn er zu jeder Umgebung U von a ein n. EIN

ex., s.d. Uner xn EU.

Bgp. • Sei (X, O_{trivial}) . Dann gilt $\lim_{n\to\infty} x_n = \alpha$ for alle $\alpha \in X$ and alle Folgen $(x_n)_n$ in X.

· Sei (IN, Ocofin). Donn gilt lim n = a für alle a = IN.

Def. Sei X top. Raum. X heiszt Housdorffraum/Hausdorff/
Tz-Raum/Tz, wenn es für je zwei verschiedene Fanlute
in X zwei disjunlute Umgebungen ex.

BSD. Sei X Ein metr. Raum. Dann ist X Hourdorffsch.

Girund: Ful $x, y \in X$ mit $x \neq y$ nehme $U = B_{\epsilon}(x)$, $B_{\epsilon}(y)$ mit $\epsilon := \frac{1}{\epsilon}d(x,y)$ als disjuncte ungeburgen.

Eigenschaften. Sei X ein Tz-Raum. Dam gilt i) Fül alle X EX ist EX3 abgs. ii) Jede Folge in X hat höchstens einen Grenzwert.

Bew. i) Fur $x \in X$ soi $y \in X \setminus \{x\}$ beliebig. Do X Hourdon fish, ex. offene Merge Uy mit $y \in U_y$, $x \notin U_y$.

Down gilt $X \setminus \{x\} = U$ Uy offen, wornit $\{x\}$ obgr. ist.

ii) Siehe Serie 3.

Bem. o Im Allg. ist T_z sein nicht erhalten unter steligen Abb: $P: [0,1] \longrightarrow \{\{a,b\}, O=\{\{a\}, \{a,b\}, a\}\}$

t > { a fall t = 1

ist stetig, curj., [0,1] ist Tz-Raum, aber {a,b} ist nicht ein Tz-Raum, da {a} nicht abgs. ist.

- o Teilmengen von Tz-Roumen sind Tz.
- · X und Y nicht-leere top. Raume. Dann gilt
 - · X x Y ist Tz q.d.w. X und Y sind Tz.
 - · X + Y ist Tz g.d.w. X und y sind Tz.

KOMPAKTHEIT

10.3.

Def. Sei X ein top. Raum. X heisst kompakt, folls jede offene Ubedeckung von X eine endliche Teilüberdeckung hat, d.h. es soll gelten

Y {Ui}ies = O mit Ui = X

 $\exists J \subseteq I$ mit $|J| < \infty$ and $\bigcup_{j \in J} U_j = X$.

Bsp. o 1st X endl., so ist X hompalt.

- o IR ist night hompalut.
- Sei X top. Rown und K=X. Donn ist K kompout begl. Olu
 g.d.w. jede offene Uberdechung von K in X eine
 endl. Teilüberdechung hat.

Eigenschaften.

i) Sei X Lampallter top. Roum. Falls $K \subseteq X$ abgeschlosren ist, dann ist K Lompallt.

ü)	Sei f	: X → A	stetig	und	κ _∈ χ	hompolit.	Dam	ist
	₽(K)	lampalet.						

Bew. (i) Sei $K \subseteq X$ alogs. und $\{U_i\}_{i \in I} \subseteq O$ offene Überderling von K in X. Dom ist $\{U_i\}_{i \in I} \cup \{X \setminus K\}$ offene Überderling von X. Da X hompelit ist, ex. $J \subseteq I$ endl. mit $X = \bigcup_{i \in J} U_i \cup X \setminus K$ $\Rightarrow K \subseteq \bigcup_{i \in J} U_i$.

(ii) Sei {Ui]ieI C Oy Offene Überderdung von f(K).

Dann ist { $f^{-1}(U_i)$ }ieI C Ox Offene Überderdung

von K. Da K hompalut ist, ex. $J \subseteq I$ endl. s.d. ${f^{-1}(U_i)}$ }ieJ offene Teilüberderdung von K ist.

Damit ist { U_i }ieJ endl. Teilüberderdung von f(K).

Lemma. Sei X ein T_2 -Roum und $K \subseteq X$ kompakt. Dann ist K abgeschlossen.

Bow. Sei $p \in X \setminus K$ beliebig. Da $X \cap T_z$ ist, ex. für alle $x \in K$ zwei U_x , $V_x \in O_x$ mit $U_x \cap V_x = \varnothing$, $x \in U_x$ and $p \in V_x$. Da K hompalit ist, ex. $x_0, ..., x_n \in K$ mit $K \subseteq U_x$.

Damit ist $V := \bigcap_{i=1}^{n} V_{X_{i}} \ni p$ often und $V \cap U_{X_{i}} = \varnothing$. Inst. gilt $V \cap K = \varnothing$ und damit $V \subseteq X \setminus K$. Damit ist $X \setminus K$ often, $d \cdot h$. K ist above.

Satz. (Homeomorphismussatz/Umluehrsatz)

Sei P: X — Y stetig, bijektiv, X kompakt und Y Tz-Raum.

Dann ist P ein Homeomorphismus.

Bew. Sei A E Ax beliebige abgeschlassene Menge von X.

Da X kompakt ist, ist A kompolit als abos. Mense.

Da X hompalit ist, ist A hompolit als objs. Merge.

Da f stelig ist, ist f(A) hompalit. Da Y T_2 -Raum ist, ist f(A) alogs. in Y. Damit ist f' stetig.

Bem. · Del Umhensatz hommt ohne "lohale Umhehbedingung" aus.

· Sei X top. Raum und E eine "Eigenschaft", die

für UUV gilt, falls sie für offene Mengen U, V & Ox

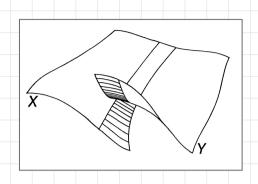
gilt. Falls E lohal gilt und X hampaht ist, so gilt E

für ganz X. (Bsp. E = "f ist beschränkt".)

2. DIE QUOTIENTENTOPOLOGIE

DER BEGRIFF DER QUOTIENTENTOPOLOGIE

Notation: Sei X eine Menge und ~ eine Āquivalen zelation auf X. Setze $X/\sim := \{[x] \mid x \in X\}$ und $\pi: X \longrightarrow X/\sim, x \longmapsto [x].$



Frage: Was ist eine sinnvolle Topologie auf X/~, falls X ein top. Raum ist.

Def. Sei X top. Rowm und ~ eine beliebige Aquivalens - relation auf X. $U \subseteq X / \sim$ heisst offen in der Quotiententopologie, wenn $N^{-1}(U) \subseteq X$ offen in X ist. Def. zudem

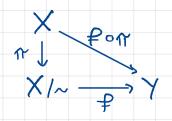
Ox := {U = X ~ | 17-1(U) = 0x }.

Dann heisst (X/~, Ox/~) Quotienterroum/Faltorroum.

Bsp. Sei X = [0,1] und $x \sim y :<=> x = y$ oder $x,y \in \{0,1\}$.

Dam gilt $X/\sim \cong S^1$.

Lemma 1. Seien X, Y top. Roume und ~ eine ĀR. out X und P: X/~ ~ Y eine Abbildung. Dann ist f stetig g.d.w. for stetig ist.



13.3.

Bow. "=" Da 11 per Def. stelig ist, ist dann auch PON stetig. "=": Sei V = y offen. Dann ist (Pon) (V) offen. Nach Def. von $O_{X/n}$ ist $f^{-1}(V) \subseteq X/n$ often. Bsp. Sei D2 = {v eR2 | ||v|| = 1} = R2 Dep. AR. durch $x \sim y : \iff x = y \text{ oder } |x| = |y| = 1.$ Beh. $\mathbb{D}^2/\sim \cong S^2 = \{v \in \mathbb{R}^3 \mid ||v|| = 1\}.$ Visualisierung von DZ=S? Bew. Sei $\mathscr{S}: \mathbb{D}_{\mathcal{I}} \longrightarrow \mathcal{E}_{\mathcal{I}}$ $\begin{cases} (0, 0, -1) & \text{for } v = (0, 0) \\ \sqrt{1 - (2|v| - 1)^2}, \frac{v}{|v|}, 2|v| - 1) & \text{sonst.} \end{cases}$ Dann ist & stetig. Zudem ist $P: \mathbb{D}^2/\sim \longrightarrow \mathbb{S}^2$, $[v] \longmapsto g(v)$ eine Bijeletion und stetig, da for= g statiq ist. Zudem ist D2/~ hompaut, do 14 statiq und D2 hompost ist. Da S2 T2-Roum ist, ist P clomit ein Homeomorphismus, d.h. $D^2/\sim \cong 5^2$. Lemma 2. Seien X, Y top. Raume, ~ AR. auf X und φ: Y -> X/~ eine Abbildung. Falls $\Phi: Y \longrightarrow X$ stetic ist mit $\varphi = Y \circ \Phi$, dann ist auch of stetig. T X Bew. Direkt.

Bsp. Sei n∈IN≥2, X=IR" und V~w: ⇔ V; = w; Pūr i = n-1

Visuali Stammay Bsp d) (n=2):

AR auf X. Sei

 $\varphi: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}^n /_{\sim}, u \longmapsto \Gamma(u, 0) J.$

Dann ist φ stetig, da

 $\Phi: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}^n \cup \longmapsto (u, O)$

stetiq ist. Zudem ist

 $P: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n-1}, [v] \longmapsto (v_1, ..., v_{n-1})$

wohlder Abbildung und stetig nach Lemma 1.

Dann gilt for = idran- und pof = idxx.

Also ist up ein Homeomorphismus.

EIGENSCHAFTEN

Eigenschaft. Sei X top. Raum und ~ AR.

i) 1st X hompalit / zsh. / wegzsh., so ist es œuch der Quotient (da n stetig und surjebtiv ist).

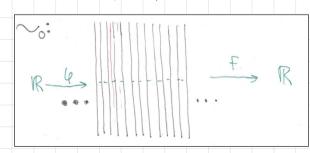
is) $\{z\} \subseteq X / \sim ist$ object g.d.w. $\pi^{-1}(z)$ object ist.

~ Inst. ist X/~ T1-Raum g.d.w. alle Aquivalenzharen in X abor sind.

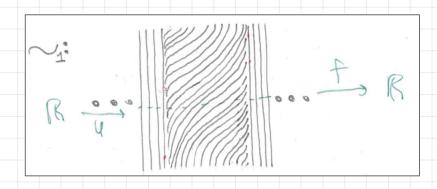
Bsp. Sei $X = \mathbb{R}^{\lambda}$.

17.3.

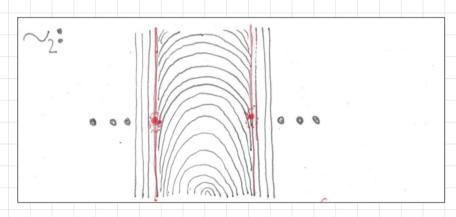
0) ~ - Wassen: {(x, y) | y \in R} far x \in R.



1) ~ - Ulassen: $\{(x,y) \mid y \in \mathbb{R}\}$ for $|x| \ge \frac{\pi}{2}$ Und $\{(aictan(y + tanx), y) \mid y \in \mathbb{R}\}$ for $|x| < \frac{\pi}{2}$



2) \sim_2 - Klassen: $\{(x,y) \mid y \in \mathbb{R}\}$ $\neq \overline{u}$ $|x| \ge \frac{\pi}{2}$ und $\{(x, -(\tan x)^2 + y) \mid x \in (-\frac{\pi}{2}, \frac{\pi}{2})\}$ $\neq \overline{u}$ $y \in \mathbb{R}$.



Beh. $\circ X/\sim$: ist T_2 -Raum φ_{α} (=0,1,2 (da \sim :- Klassen abgs. sind).

o $X/\sim_0 \cong X/\sim_1 \cong \mathbb{R}$ abor X/\sim_2 ist night T_2 .

Grund. Fは、[(-空,0)] eU offen und [(0,空)] eV offen gilt immer UnV # Ø.

BEISPIELE: HOMOGENE RAUME

Sei G eine Gruppe und H = G eine Untergruppe.

Def. Eine Gruppe G, die Zugleich ein topologischer Raum ist heisst topologische Gruppe, wern

 $m: G \times G \longrightarrow G, (a,b) \longmapsto o^-b$

stetia ist.

 $(a,b) \mapsto ab$ und $a \mapsto a^{-1}$ stetig sind

Bop. o Gr mit der dishneten topologie ist eine top. Gruppe.

- · Matrixgruppen über Q, R, C mit bulliokoher Topologie, z.B.
 - $SO_n(\Omega) \subseteq SO_n(\mathbb{R}) \subseteq SI_n(\mathbb{R}) \subseteq GL_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$
 - $\circ U_n \subseteq GL_n(\mathbb{C}) \subseteq \mathbb{C}^{n^2}$

Def. Sei G eine top. Gruppe und H = G eine Untergruppe.

Dann heisst G/H = G/~ ein homogener Raum.

Bsp. Sei $G = \mathbb{C}^{\times} = \mathbb{C} \setminus \{0\}$ mit Multiplillation und $H = \mathbb{R}_{>0} < G$ Untergruppe. Dann definiert $\mathcal{P} : G/H \longrightarrow S^{1} \subseteq \mathbb{C}^{\times}$

 $[5] \longmapsto \frac{|5|}{5}$

ein Homeomorphismus (-> segar ein Gruppenisomarphismus).

Grund P ist stetig, da $P \circ \Pi : \mathbb{C}^{\times} \longrightarrow S^{1}, \mathbb{Z} \longmapsto \frac{2}{|\mathbb{Z}|}$ stetig ist. P ist \mathbb{Z} sudem time Bijeltion, S^{1} ist \mathbb{T}_{2} und \mathbb{Z} und \mathbb{Z} \mathbb{Z} \mathbb{Z} ist \mathbb{Z} and \mathbb{Z} \mathbb{Z}

Lemma 3. Sei G eine top. Gruppe und H < Gr.

Dann ist G/H ein T_2 -Raum g.d.w. $H \leq Gr$.

abgeschlossen ist.

Korollar. Sei G top Gruppe. Da ist G Tz g.d.w. G Tz ist g.d.w. {e} = G abgs. ist.

<u>Uberraschend.</u> Stetiglieit der algebraischen Struktur ergibt informationen über die Topologie.

Bsp. Es gibt heine top. Gruppenstruktur auf \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{Q} mit der cofiniten Topologie.

Tz-Kriterium. Sei X ein top. Roum.

i) \times ist T_2 g.d.w. $\Delta_x := \{(\times, \times) \in \times \times \setminus \times \in \times\}$ in $\times \times \times$ abs. ist.

Sei desweiten ~ eine \overline{AR} auf X, s.d. $\eta: X \longrightarrow X/\sim$ often ist, d.h. $U \in \mathcal{O}_X \Longrightarrow \eta'(U) \in \mathcal{O}_{X/\sim}$.

ii) X/\sim ist T_2 g.d.w. $R_x := \{(x,y) \in X \times X \mid x \sim y\}$ in $X \times X$ obgs. ist.

Bew. Siehe Serie 4 Agb. 5.

Bem. Sei G eine top. Gruppe und H < G. Dann ist $r: G \longrightarrow G/H$, $g \longmapsto gH$ offen.

Bew. (Lemma 3)

"=>" G/H $T_2 \Rightarrow G/H$ $T_1 \Rightarrow H \in G/H$ abgs. $\Rightarrow \pi^{-1}([e]) = H \text{ abgs. in } G.$

"E": Falls H = G above ist, down ist $P = \{(a,b) \in G \times G \mid G^{-1}b \in H\}$ and $P = G^{-1}(H)$. Do more Definition

der top. Gruppe stelig ist, ist R abgs.

Also ist G/H Tz.

Bsp. "Basen auf IR" bis auf Isometie".

Bosis $B \in GL_n(\mathbb{R})$ mit $B \sim A : \Leftrightarrow \exists h \in H = O_n(\mathbb{R})$ mit $hA = B \Leftrightarrow A^{-1}B \in H = O_n(\mathbb{R})$.

~~ GLn(IR)/On(IR) homogener Roum.

Bem. (Homogene Râume und top. Gruppen Sind "homogen") Sei Greine top. Gruppe.

· Fur a ∈ G sind

und $\begin{array}{ccc}
f_a: G_1 \longrightarrow G_1, g_1 \longrightarrow ag_1 \\
F_a: G_1 \longrightarrow G_1, a_1 \longrightarrow g_2
\end{array}$

Homeomorphismen.

o Sei H < G Untergruppe und $x, y \in G/H$. Dann ex. ein Homeomorphismur $p: G/H \longrightarrow G/H$ mit p(x) = y.

BEISPIELE : ORBITRAUME

 $\underline{\mathsf{Bsp}}.\ \mathsf{SO}_n(\mathbb{R})\times\mathbb{R}^n\longrightarrow\mathbb{R}^n,\ \mathsf{A}\longmapsto\mathsf{Av}.$

Def. Sei Greine top. Gruppe und X ein top.

Raum. Eine Operation/stetige Altion/stetige Wirlung

von Grouf X ist eine stetige Abbildung $G \times X \longrightarrow X$, $(g, x) \longmapsto gx$,

so das

il Ax e X: Ex =x

ii) Yxex Yq, heG: g(hx) = (gh)x

gilt. Man nennt einen top. Raum X mit einer Operation von G auf X auch einen G-Raum. Sei X ein G-Raum und $X \in X$. Dann heist

Gx = { &x | x \in X }

der Orbit oder die Bahn von X. Die Bahnen Gx sind \sim - Klassen mit \overline{AR} . $\times \sim y :<=> \exists g \in G : g \times = y$. Zudem heisst $\times /G := \times /\sim Orbitroum / Bahnemaum$.

Bsp. Sei $G := SO_n(\mathbb{R})$. Dann gilt für alle $v \in \mathbb{R}^n$ $Gv = \{Av \in \mathbb{R}^n \mid A \in SO_n(\mathbb{R})\}$ $= \{w \in \mathbb{R}^n \mid |w| = |v|\}.$

Zuden gilt $\mathbb{R}^n/G \cong [0, \infty)$ durch $\mathbb{R}^n/G \longrightarrow [0, \infty)$, $Gv \longmapsto |v|$.

Bsp. (IRPⁿ) Sei $n \in \mathbb{N}$ und $G_1 = \mathbb{R}^{\times}$ mit Multiplihation 20.3. auf X = IRn+1, 803. Dann ist

 $G_1 \times \times \longrightarrow \times , (\land, \times) \longmapsto \lambda_{\times}.$

Dann heisst IRIP" = X/G n-dimensionaler projettiver -> Siehe Serie 4 Agb. 4. Raum.

Def. Sei X ein top. Roum und $x \in X$. Sei weiter

Greine top. Gruppe, die auf X openiert (d.h.

X ist ein Gr-Raum). Dann heisst

Gx = { g & G | g x = x} < G

die Stabilisatorgrupe / der Stabilisator von x.

Satz. (topologischer Bahnensatz) Sei X ein G-Raum und $x \in X$. Dann ist

P: Gr/Grx → Grx, &Grx → &x

eine stetige Bijektion.

Bew. of ist wohl-def., denn

$$aG_{\times} = bG_{\times} \Rightarrow \exists h \in G_{\times} : a = bh$$

$$\Rightarrow \alpha x = bhx = bx.$$

· P ist per Def. surjetiv

· P ist injeltiv, denn

$$ax = px \Rightarrow a_p px = x$$

of ist stetig, denn

ist stetig da $i:G_1 \longrightarrow G_1 \times X$, $g_1 \longmapsto (g_1 \times X)$ stetig ist.

Bsp.
$$G_1 = SO_n(\mathbb{R})$$
, $X = \mathbb{R}^n$ and $Se_1 \times = e_1$. Dam gilt $G_1 \times G_2 \times G_3 \times G_4 \times G_4 \times G_4 \times G_5 \times G_4 \times G_4 \times G_5 \times G_4 \times G_5 \times G_5 \times G_5 \times G_6 \times G_6$

$$\circ G_{1\times} = \{A \in G_{1} \mid A \times = \times \}$$

$$= \{\begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & B & \end{pmatrix} \mid B \in SO_{n-1}(\mathbb{R}) \}$$

Also ex. noch dem Sotz eine stetige Bijehtion $P: G_1/G_{1x} \longrightarrow G_1 \times = S^{n-1}$

Euclem ist S^{n-1} T_2 - Raum und G_1/G_1x ist hompalit (weil $G_1 \subseteq \mathbb{R}^{n^2}$ also und beschänlit, also hompalit ist). Also gilt $G_1/G_1x \cong S^{n-1}$.

 \rightarrow Also "SO,(P)/SO,(R) \cong Sn-1".

BEISPIELE: ZUSAMMENSCHLAGEN

Def. Sei X top. Raum und $A \subseteq X$ mit $A \neq \emptyset$.

Def. clann $X/A := X/\sim P\pi (x \sim y) \iff x = y$ oder $x,y \in A$.

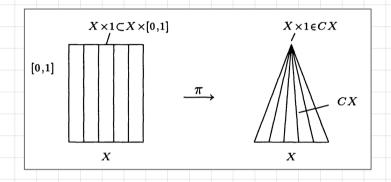
Def. Sei X ein top. Roum und $A_1, ..., A_n \subseteq X$ alle nicht-leer und paarweise disjunkt. Def. donn $X/A_1,...,A_n := X/\sim$ Pur $X \sim Y := Y = Y$ oder $\exists i \in \{1,...,n\}: X, Y \in A_i$.

Bem. Falls X metrisiobar ist und $A_1,...,A_n$ alle abgs., dann 1'st $X/A_1,...,A_n$ ein T_2 -Raum.

Konstruktion 1. (Kegel)

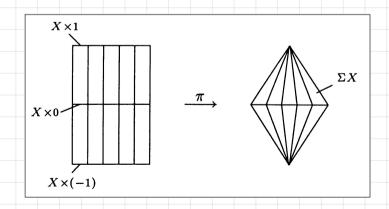
24.3.

Sei X ein top. Raum. Donn heisst $CX = X \times [0, 1] / X \times [1]$ der Kegel von X.



Konstruktion 2. (Suspension)

Sei X Ein top. Roum. Dann heisst $\Sigma X := X \times [-1,1] / X \times \{-1\}, X \times \{1\}$ die Suspension/Einhängung von X.



Bsp. Für $\{a,b\}$ mit der dishreten Topologie gilt $\Sigma \{a,b\} \cong S^1$.

Konstruktion 3. (Wedge/Smash)

Seien X und Y top. Rāume und x. ∈ X, y, ∈ Y

Basispunkte. Dann heisst

$$\times \vee$$
 $\vee := \times \times \{\gamma_0\} \cup \{x_0\} \times \vee \subseteq \times \times \vee$

wedge Produkt und

$$\times \wedge \vee := \times \times \vee / \times \vee \vee$$

heist smooth Produkt.

Bsp. Seien $X = S^n$ and $Y = S^m$ and $x \in X$, $y \in Y$.

Dann gilt X x y = 5n+m.

Grund: Es gilt sn = Pn = Pn u { \infty}.

Wahle $x_0 = \infty \in \widehat{\mathbb{R}}^r = X$ and $y = \infty \in \widehat{\mathbb{R}}^m = Y$.

Definiere

$$g:\widehat{\mathbb{R}^n}\times\widehat{\mathbb{R}^m}\longrightarrow\widehat{\mathbb{R}^n}\times\widehat{\mathbb{R}^m}$$

$$(x,y)\in\mathbb{R}^n\times\mathbb{R}^m\longmapsto(x,y)\in\mathbb{R}^n\times\mathbb{R}^m$$

$$\mathbb{R}^n\times\{\infty\}\cup\{\infty\}\times\mathbb{R}^m\longmapsto\infty.$$

Dann gilt

og ist stetig

of: $\mathbb{R}^n \wedge \mathbb{R}^m \longrightarrow \mathbb{R}^n \times \mathbb{R}^m$, $[z] \longmapsto [g(z)]$ ist wohldef, Bijehtion (da $p^{-1}(\infty) = \times \vee Y$) und p ist stetig. Also ist p Homeomorphismus (da $\mathbb{R}^n \wedge \mathbb{R}^m$ hompolit und $\mathbb{R}^n \times \mathbb{R}^m \cong \mathbb{S}^{n+m}$

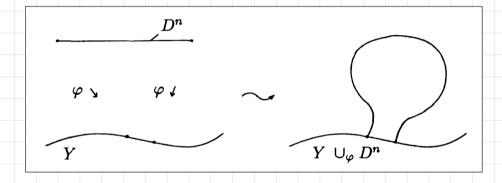
Tz-Raum).

ZUSAMMENKLEBEN VON RÄUMEN

Def. Seien X, Y top. Roume, $X_0 \subseteq X$ und $\varphi: X_0 \longrightarrow Y$

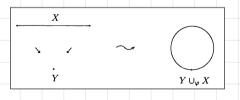
stetig. Sei ~ die von $\varphi(x) \sim x$ erzeugte \overline{AR} auf X + Y. Dann heisst

die Anhaftung/Verliebung von X an Y.



Bem.

i)
$$\times \longrightarrow Y \cup_{\varphi} X$$
, $\times \longmapsto [\times]$ ist stetig, cla
ix: $\times \longrightarrow \times + Y$ and no stetig sind.



mit $\varphi: A \longrightarrow \{p\}$ für einen abstrahten Punkt p.

iii) i: $Y \hookrightarrow Y \cup_{p} X$, $Y \longmapsto [Y]$ ist stetige Injektion und sogar Homeomorphismus auf the Bild, d.h. ily ist Homeomorphismus.

Konstruction 4. (Abbildungstorus)

Sei $\alpha: X \rightarrow X$ ein Homeomorphismus. Dann heizt $\times \times [0,1]/\alpha := \times \times [0,1]/\sim$,

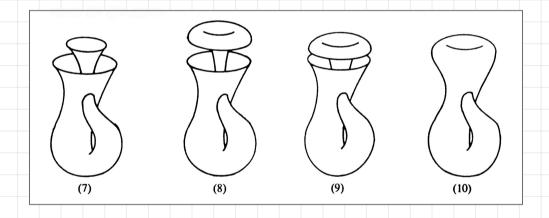
wobei ~ die von $(x, 0) \sim (a(x), 1)$ erzeugte \overline{AR} ist, der Abbildungstonus.

BSP. • Ful a: [-1,1] -> [-1,1], x -> -x heist

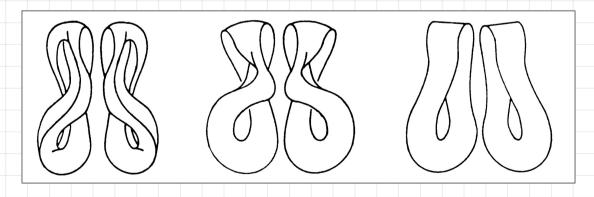
das Möbiusband.

∘ Fū(β: S¹ → S¹, z → \(\bar{z}\) heisst

die Weinsche Flasche.



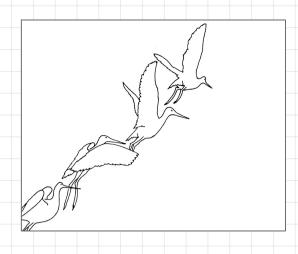
<u>Ubrigens.</u> Fūr φ: DM → DM, m → m gilt MuφM ≅ V.



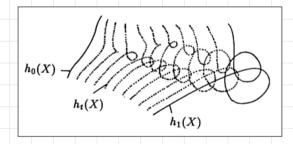
3. HOMOTOPIE

HOMOTOPE ABBILDUNGEN

Def. Seien $f,g: X \longrightarrow Y$ stetige Abbildungen. Eine stetige Abbildung $h: X \times [0,1] \longrightarrow Y$



mit h(x,0) = P(x) und h(x,1) = g(x) für alle $x \in X$ heist Hamotopi'e zwischen P und g und wir Schreiben P = g. In diesem Fall heissen P und ghomotop und wir schreiben P = g.



Bsp. o Fūr alle stetigen f, $g: X \rightarrow \mathbb{R}^n$ gilt $f \in g$ mit $h: X \cdot [0,1] \rightarrow \mathbb{R}^n$, $(x,t) \longmapsto (1-t)f(x) + tg(x)$.

o Fūr stetige f, $g: p_3 \rightarrow X$ gilt f = g g.d.w. ein We, g von f(p) nach g(p) ex.

Bem. Seien X, Y top. Raume. Donn bildet Homotopie eine AR out der Menge cler stetigen Abb. von X nach Y. Lemma. (Verliebungslemma)

Sei $P: Z \longrightarrow Y$ beliebige Abbildung mit $Z = A \cup B$ und $A, B \subseteq Z$ alogs., $P \mid A$, $P \mid B$ beide Stetig.

Dann ist P stetig.

Notation. Bezeichne [x, y] = "Menge der Homotopiellassen".

Eigenschaften.

i) Seien $P, g: X \rightarrow Y$ static und homotop und $\overline{P}, \overline{g}: Y \rightarrow Z$ static, homotop. Dann gilt $\overline{P} \circ P = \overline{q} \circ Q$.

ii) Seien $f: g: X_i \rightarrow Y_i$ homotop für $i \in \{1, 2\}$.

Dann gilt $f: X_i \rightarrow Y_i$ homotop für $f: \{1, 2\}$.

HOMOTOPIEÀQUIVALENZ

Def. Seien X, Y top. Raume. Eine stetige Abbildung $f: X \to Y$ heist Homotopieaquivolenz, wern eine stetige Abbildung $g: Y \to X$ existiert mit $g \circ f \cong idx$ und $f \circ g \cong idy$.

Dann heist g Homotopie inverse van f.

Falls eine Homotopieāquivalent \mathcal{F} von X nach Y ex., clann heist X homotopieāquivalent \mathbb{F} u Y und wir schneiben $X \cong Y$ oder $X \cong Y$.

Bem. Falls $\times \cong Y$ gilt, so folgt $\times \simeq Y$.

 $\underline{\mathsf{Bsp.}} \circ \mathbb{R}^n \simeq \{p\}$

D_v = {b}

· R" / {0} = D"/ {0} = 5"-1

Def. Ein top. Raum X heist Kontrahierbar/Zusammen-Zierbar, wenn er homotopie aquivalent zu einem Punkt ist, $d.h. X \simeq \{p\}.$

27.3.

Bem. Falls $X \simeq Y$ gilt, dam gilt

o X wegesh. g.d.w. Y negesh.

· X 35h. g.d.w. Y 25h.

• falls zusätzlich $Y \simeq Z$, dann folgt $X \simeq Z$.

— \simeq ist also eine $\overline{A}R$.

BSD. Q & Ep], Z.B. da Q nicht zsh. ist.

Def. Sei X top. Roum. Eine Teilmenge $A \subseteq X$ heisst Retrollt von X, falls eine stetige Abbildung $g: X \longrightarrow A$

mit SIA = ida existient. So ein 8 heist Retrolution.

Bsp. • A = [0,1] ist ein Retralt von $X = [0,1] \cup [4,6]$ mit Retraltion $g: X \rightarrow A, x \longrightarrow min(x,1)$.

· {a,b} = [a,b] mit a=b ist hein Retralt.

Grund: Agn. es ex. Retralition 8: [a,b] -> {a,b}.

Donn ist & stetig und surj., doch da &a, b} nicht zsh. ist, ist dies ein Wickspruch zum Zurammenhang von [a, b].

• $S^{r-1} \in \mathbb{D}^r$ ist bein Retralt.

Def. Sei X top. Raum und $A \subseteq X$. Eine Retraution $S : X \to A$ heist Deformations retralition, Palls die $S : X \to A$ heist Deformations retralition, Palls eine solche $S : X \to X$, $X \to S(X)$ homotop $S : X : X \to X$, $X \to S(X)$ homotop $S : X : X \to X$, $X \to X$, $X \to S(X)$ homotop $S : X : X \to X$, $X \to X$,

Bop. o $S^{n-1} \subseteq \mathbb{R}^n \setminus \{0\}$ ist ein starlier Deformations hontrulut mit $g: \mathbb{R}^n \setminus \{0\} \longrightarrow S^{n-1}, \ v \longmapsto_{jivii}$.

Lemma. 1st A Deformations retralit von X, donn gilt $X \simeq A$.

Bew. Sei $f: X \rightarrow A$ Deformations retrolation und $g: A \rightarrow X$, $a \mapsto a$. Dam gilt $g \circ f = id_A$.

Bep. Sei $\mathbb{R}^2 \supseteq X := 000 \cong 0 =: Y \subseteq \mathbb{R}^2$.

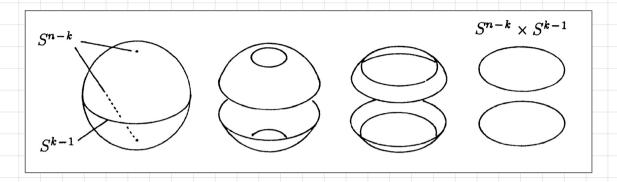
Grund: $X, Y \subseteq \mathbb{D}^2 \setminus \{\alpha, b\}$ sind beides starbe Defamations-retrabte.

Bsp. $\circ S^{n-1} \in \mathbb{D}^n \setminus \{0\}$ ist ein stacker Deformations retrolut. $\circ Sei \quad \varphi \colon S^{n-1} \longrightarrow Y \quad \text{stetig. Dann ist}$ $i(Y) \in Y \cup_{\varphi} (\mathbb{D}^n \setminus \{0\}) =: Q$

ein staller Deformationsretralit.

• Seign
$$0 < k \le n \in \mathbb{N}$$
. Dann ist
$$A := \frac{\sqrt{2}}{2} (S^{k-1} \times S^{n-k}) \subseteq S^n \setminus (S^{k-1} \times \{0\} \cup \{0\} \times S^{n-k})$$

$$=: \chi \subseteq \mathbb{R}^{n+1} = \mathbb{R}^k \times \mathbb{R}^{n-k+1}.$$



Dann ist A Starker Deformations retrakt von X.

Grand: Sei

$$B: X \longrightarrow Y$$
 $(\Lambda, M) \longrightarrow \frac{S}{2} (\frac{|\Lambda|}{\Lambda}, \frac{|M|}{M})$

und

$$((v,\omega),t) \longleftrightarrow \frac{\frac{1}{2}(tv + (1-t)\frac{v}{w}, t\omega + (1-t)\frac{\omega}{w})}{\frac{1}{2}(tv + (1-t)\frac{v}{w}, t\omega + (1-t)\frac{\omega}{w})}.$$

Lemma. Sei X top. Raum. X ist Lontrahierbar g.d.w. $\{x_0\} \subseteq X$ ein Deformations retralet ist.

Bew. "€": Per Def.

"=>": Sei &: X -> {P} mit Homotopieinverem g.

Setze X. = g(p) und

$$g: X \rightarrow \{x, \}, \times \longmapsto X_o = (g \circ f)(x).$$

Also ist $X \rightarrow X$, $x \mapsto x_0$ gleich goff and per Annahme gilt $g \circ f \cong idx$.

EXKURS: KATEGORIEN

$Q \xrightarrow{q_2} Y$ $Q \xrightarrow{q_2} Y$ $P \xrightarrow{p_2} Y$ $V \xrightarrow{p_1} V$ $X \xrightarrow{f} Z$

KATEGORIEN

Def. Eine Kategorie E besteht aus

- i) Einer Klasse von mathematischen Objekten Ob(E), Objekte genannt.
- ii) Einer Merge Mor(X,Y) pro Paar von Objekten (X,Y), genannt die Morphismen von X nach Y, wabei Mor (X,Y) und Mor (X',Y') disjunkt sind folls (X,Y) \neq (X',Y').

iil Einer Abbildung

 $o: Mor(X, Y) \times Mor(Y, Z) \longrightarrow Mor(X, Z)$

pro Tripel (X, Y, Z) von Objekten X, Y, Z, die Verlunipfung genannt, welche folgende Axiome erfüllt:

- Axiom 1. (Associativitat) Fix alle $X, Y, Z, W \in Oble)$, $P \in Mor(X, Y), g \in Mor(Y, Z) \text{ and } h \in Mor(Z, W) \text{ gilt}$ $h \circ (g \circ P) = (h \circ g) \circ P.$
- Axiom 2. (Identitat) Zu jedem Objekt $X \in Ob(E)$ ex. ein idx $\in Mor(X,X)$, s.d. $\neq i$ alle $Y \in Ob(E)$ gilt $\forall P \in Mor(X,Y): P \circ idx = P$

und $\forall g \in Ma(Y, X): idx \circ g = g.$

<u>Bsp.</u>

- 1) Set mit
 - · Ob(Set) = Wase aller Mengen
 - Mor(X,Y) = Menge aller Abbildungen von X rach Y
 - · übliche Verlnüpfung.
- 2) Jop mit:
 - · Ob(Jop) = Klasse aller top Raume
 - \circ Mor(x,y) = Merge aller stetigen Abbildungen
 - · übliche Verlnüpfung.
- 3) Die Kategorie der Gruppen Grip
- 4) Die Vategorie der Veltorräume über ehen Vorper IK, bezeichnet mit Vectik.
- 5) Kat. der Körper.
- 6) Kat. der Ringe mit 1.
- 7) Wat. der punktierten top Raume Jop. mit
 - · Ob(Jop.) := {(X, x,) | X = Top, x, = X}.
- 8) Die leere Wategorie mit Oble) = ø.
- 9) Sei G eine Gruppe. Def. eine Volegorie D durch $\circ Ob(D) = \{p\}$

- · Mor (p,p) = G
- · Mor (p,p) × Mor(p,p) -> Mor(p,p), (f,g) -> fog.

10) Die Homotopiekategorie 20 mit

- · Ob (2-Pop) = Ob (Jop)
- o Mor(X, Y) = [X, Y] = Homotopielibran von Stetigen abbildungen von X nach Y.
- $\circ [X,Y] \times [X,\Xi] \longrightarrow [X,\Xi], ([f],[g]) \longmapsto [g \circ f].$

Def. Sei C eine Wategurie und $X, Y \in Ob(C)$. Ein $P \in Mor(X, Y)$ heist Isomorphismus, falls ein $P \in Mor(Y, X)$ ex. mit $P \circ P = idx$ und $P \circ P = idy$. In diesem Fall heissen $P \circ P = idy$.

Bsp. In Hoop gilt idx = $\text{Lid}_X \in \text{Mor}(X, X)$ und $\text{LfJ} \in \text{Mor}(X, Y)$ ist ein Isomorphismus g.d.w. \neq eine Homotopieāquivalenz ist.

Achtung. Mengen sind Klassen, aber Klassen sind im alla heine Mengen.

Def. Eine Kategorie heist Weine Wategorie, wenn Ob(C)
eine Menge ist.

FUNKTOREN

BSP. Jedem Körper IX lässt sich die Einheitengruppe $\mathcal{F}(IK) = IK^{\times}$ zuordnen und jedem Körperhomamorphismus $\mathcal{P}: IK \to L$ lässt sich ein Grupperhomamorphismus $\mathcal{F}(\mathcal{P}): \mathcal{F}(IK) \longrightarrow \mathcal{F}(L), x \mapsto \mathcal{P}(x)$

zucidnen.

Def. Seien \mathcal{E} und \mathcal{D} Kategorien. Eine Zuardnung \mathcal{F} , die jedem $X \in Ob(\mathcal{E})$ genau ein $Y \in Ob(\mathcal{D})$ zuordnet und jedem Marphismus $\mathcal{F} \in Mox(X,Y)$ genau ein Marphismus $\mathcal{F}(\mathcal{F}) \in \{Mor(\mathcal{F}(X),\mathcal{F}(Y))^{(1)}\}$ zuordnet heist covarianter Funktor $\mathcal{F}(\mathcal{F}(Y),\mathcal{F}(Y))^{(2)}$ contravarianter Funktor $\mathcal{F}(\mathcal{F}(Y),\mathcal{F}(Y))^{(2)}$

i) VX E Oble): f(idx) = idg(x).

 $\mathcal{Z}(\mathcal{Y} \circ \mathcal{Y}) = \begin{cases} \mathcal{F}(\mathcal{Y}) \circ \mathcal{F}(\mathcal{Y}) \\ \mathcal{F}(\mathcal{Y}) \circ \mathcal{F}(\mathcal{Y}) \end{cases} \qquad (\text{Kellenneyel})$

BSD. Folgerales stad Lovariante Funktoren:

- · Jop → Set, (X,O) → X, P → P
- · Jop → Hop, (X,O) → (X,O), & → [*].

Bsp. C = D = Vectu, $F: C \rightarrow D$, wobei $Par V, W \in Ob(C)$ und $\varphi \in Hom(V, W)$ mit

$$\mathcal{F}(V) := V^* = Hom(V, K) \in Ob(D)$$

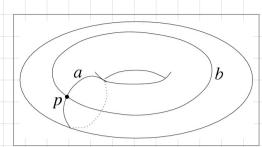
$$\mathcal{F}(\varphi) := \varphi^* \in Hom(W^*, V^*)$$

ist ein contravarionter Funktor.

Bem. Sei $\mathcal{F}: \mathcal{C} \to \mathcal{D}$ ein Funktor. Falls $X, Y \in Ob(\mathcal{C})$ und $\mathcal{P} \in Mor(X, Y)$ ein komorphismus ist, so ist $\mathcal{F}(\mathcal{P})$ auch ein komorphismus.

4. FUNDAMENTALGRUPPE

DEFINITIONEN UND FUNKTORIALITÄT



Def. Ein Weg a: [0,1] -> X heisst

Schleife (an x_0) falls $\alpha(0) = \alpha(1)$ (= x_0).

Zwei Wege α , β heisen homotop rel. Endpunkte, Palls $\alpha \simeq \beta$ via Homotopie h, s d.

 $h(0, t) = \alpha(0), h(1, t) = \alpha(1)$

für alle t∈[0,1] git.

Zwei Schleifen an X. heissen homotop rel. X., falls sie homotop rel. Endpunkte sind.

Falls a Weg von a nach b und B Weg von b nach

C ist, dann ist

C 12t, DGNN 15T $\alpha \beta : [0,1] \longrightarrow X, t \longmapsto \begin{cases} \alpha(2t) & t \leq \frac{1}{2} \\ \beta(2t-1) & t \geq \frac{1}{2} \end{cases}$

ein Weg von a nach C, Verbnüpfung von \mathcal{L} und \mathcal{E}

genannt.

Bom. Falls $\alpha \simeq \alpha'$ und $\beta \simeq \beta'$ rel. Endpunkte, so gilt $\alpha \not \models \alpha' \not \models \gamma'$ rel. Endpunkte

Def./Satz. Sei X top. Raum und x. \in X. Dan bildet $17_1(X, x_0) := \{ [a] \mid a \text{ ist Schleife on } x_0 \}$ mit der Multiplillation Wege rel. Endpunlute

 $\pi_1(X, x_*) \times \pi_1(X, x_*) \longrightarrow \pi_1(X, x_*)$

([a], [β]) → [aβ]

eine Gruppe, die Fundamentalgruppe genannt.

Bew. Die Multiplikation...

· ist wohldef: [a] = [x]. [B] = [B]

=> [aB] = [a'B']

- hat eine Eins: Sei e := [Lonstx.]. Dann gilt
 [a]e = e[a] = [a].
- hat Inverse: [a][a] = e = [a][a] + a[a] $a^-: [0, 1] \rightarrow X, t \mapsto a(1-t)$
- · ist assoziativ: Folgt direlt.

Damit ist 17, (x, x.) eine Gruppe.

Bsp. a) Sei $K \subseteq \mathbb{R}^n$ konvex and $x_o \in K$. Dan ist $n_i(K, x_o)$ trivial.

Sate 1. a) $\Gamma_1(S^n, x_0) = \{e\}$ for all $e \in \mathbb{Z}$, $e \in \mathbb{Z}^n$ b) $\psi : \mathbb{Z} \longrightarrow \Gamma_1(\mathbb{Z}^n, 1)$, $\iota \longmapsto [\alpha \iota]$ for $\alpha \iota : [\sigma, 1] \longrightarrow \mathbb{Z}^1$, $s \longmapsto e^{2\pi i \iota \iota s}$ ist ein Gruppenisomorphismus.

Bew. (nur (a)) Sei a eine Schleife on x_0 in 5^n für $n \ge 2$.

Beh. JR Schleife on xo mit u ~ B rel xo und R
ist nicht surj.

Daraus folgt [a] = [B] and $\exists x_0 \in S^n \setminus I_m(\beta)$. Mun

17.4.

ex ein Homeon

$$\varphi: S^n \setminus \{x_o\} \longrightarrow \mathbb{R}^n$$

Dann gilt $\varphi \circ \beta \simeq \text{lonst}_{\varphi(x_0)}$ via h da \mathbb{R}^n honvex ist $\Rightarrow \beta \simeq \text{horst}_{x_0} \quad \text{via } \varphi^{-1} \circ h$

Grund. (Fix die Beh) Sei u eine Schleiße an x_0 mit $lm(u) = S^n$. Sei H die obere Hamisphäre mit Zentrum x_0 . Seien $\{I_j\}_{j \in J}$ die maximalen Intervalle mit $u(I_j) \subseteq H$. Setze $\{a(s) = \{a(s) \mid \text{für } s \notin \bigcup_{i \in J} I_i \}$ $\{b(s) = \{a(s) \mid \text{für } s \in I_j, \}$

Wobei $\beta_j: I_j \longrightarrow \partial D^n$.

Lemma 1. (Funltorialitat)

i) Sei $f: X \rightarrow Y$ stetig, $X \circ \in X$ und $Y \circ \in Y$ mit $f(X \circ Y) = Y \circ D$ ann definiert

$$\mathcal{L}_*: \Upsilon_{\bullet}(X, X_{\bullet}) \longrightarrow \Upsilon_{\bullet}(Y, Y_{\bullet})$$

ein Gruppenhamomorphismus.

- ii) Es gilt (idx)* = id m,1x, x.1.
- iii) Soi zudem $g: Y \rightarrow Z$ stetic, $Z_0 \in Z$ mit $g(Y_0) = Z_0$.

 Dann gilt $(g \circ P)_* = g_* \circ P_*.$

Bew. Serie 7 Agb. 1.

Morallar. Falls $P: X \longrightarrow Y$ Homeomorphismus ist and $X_0 \in X$, dann ist P* oin Gruppenisomorphismus.

Bew. Benutze Lemma 1.

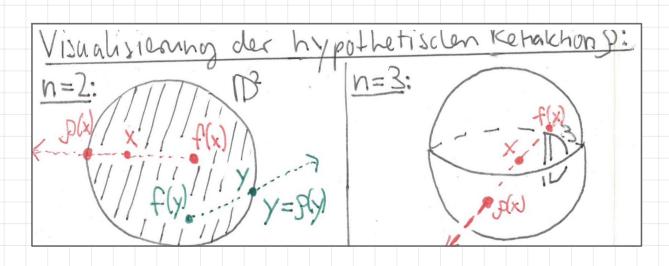
ANWENDUNGEN.

Sate 2. (Fixpunlutsate van Brouwer) Sei $n \in \mathbb{N}$ und $p: \mathbb{D}^n \longrightarrow \mathbb{D}^n$ stetig. Dann hat $p \in \mathbb{N}$ einen $p: \mathbb{N}$ und $p: \mathbb{N}$ und p:

Bow. (nur fur n = 2)

Gregerannahme: Es ex. P mit $\forall x \in D^n : P(x) \neq x$.

Schnith 1: Es ex. eine Retrolution $g: \mathbb{D}^n \longrightarrow \mathbb{S}^{n-1}$ $\longrightarrow \mathbb{D}$ efiniere g(x) als den eindeutigen Punkt mit $\{g(x)\} = \mathbb{S}^{n-1} \cap \{f(x) + f(x - f(x)) \mid f > 0\}$



21.4.

Schritt 2: Es ex. Leine solche Retraktion -> · n = 1: Bereits , gezeigt (W6 Bsp. 7) on = 2: Agn. es ex. eine Retraution 5: 102 -> 5'. \Rightarrow ids' = 80 i, wobei i: 5' \hookrightarrow D'. Aus Lemma 1 folgt $id_{N_1(S',1)} = (id_{S'})_* = (9 \circ i)_*$ = 8x 0 i* => S* surj. und i* injelutiv. Dies ist ein Widerspruch, da Sotz 1 $\Upsilon_1(\mathbb{D}^2, 1) = \{e\}, \quad \Upsilon_1(S', 1) \cong \mathbb{Z}.$ Diagrammatisch: Bem. Sei 8: X -> A Retraltion. Dom ist in immer injektiv und 8* surj. 1st 5 sogar Deformations retralet, dam sind s. und i* Gruppenisomorphismen. BSD. Es gilt

Genauer:
$$\mathbb{Z} \cong \text{rr.} (\mathbb{C}^*, 1) \text{ durch}$$

$$d \longmapsto [\alpha_d : [0,1] \longrightarrow \mathbb{C}^*, s \longmapsto e^{2\pi i d s}]$$

Satz 3. (Fundamentalsatz der Algebra) Sei p(z) = 2d + Qd-12d-1+ ... + Qz + Q. E [[z]. Dann hat p eine Nullstelle in C. Bew Giegeramahme: Agn. es ex. Leine Nullstolle. Wahle 7 > mox (2 | la,1,1) und $\alpha: [0, 1] \longrightarrow \mathbb{C}^*, s \longmapsto \frac{p(re^{2\pi is})}{p(r)}$ Schritt 1: a ~ honst, rel. Endpunute durch $h(s,t) = \frac{p(tre^{2\pi is})}{p(tr)}.$ Schnitz: az a rel- Endpunkte durch Zeige wohlder! $h(s,t) = \frac{tp(re^{2\pi is}) + (1-t)(re^{2\pi is})^{d}}{tp(r) + (1-t)r^{d}}.$ Also folgt oca ~ honst, im Widerspruch zu (*). BEISPIELE UND HOMOTOPIEAQUIVALENZ Bsp. Sei X = S1 u {2} = C. Dann git $\Upsilon_1(X, 1) \cong \mathbb{Z} \text{ and } \Upsilon_1(X, 2) = \{e\}.$ Eigenschaften. i) Sei Bein Weg von xo noch x, in X. Dann ist $\psi_{\mathbb{R}}: \mathcal{U}'(X'X') \longrightarrow \mathcal{U}'(X'X')$ $[\alpha] \longmapsto [\beta(\alpha\beta)]$ ein Gruppenisomorphismus ii) Seien X und Y top. Rāume, x. ∈ X, y. ∈ Y. Dann Silt

$$\gamma_1(X, x_0) \times \gamma_1(Y, y_0) \cong \gamma_1(X \times Y, (x_0, y_0)).$$

Bew.

· Gruppenhoman.:

$$\Psi_{\mathbb{R}}([a,][a_{2}]) = [\beta(a_{3}|\beta^{-})]$$

$$= [\beta\alpha\beta][\beta\alpha'\beta^{-}]$$

$$= [\beta\alpha\beta][\beta\alpha'\beta^{-}]$$

· Up ist bijeletiv. Up- ist Umbehrabbildung.

ill Serie 7 Agb. 4a.

Bem. • Falls X wegesh. ist, clann ist 17. (X, x.) unabhangig vom Basispunkt x. In diesem Fall kuret man oft mit 17. (X) ab.

· Es gilt 4 = 4 Falls B B B' rel. Endpunkte.

Korollar. Sei $\varphi: \mathbb{R}^2 \longrightarrow \mathbb{R}^n$ ein Homeomorphismur. Dann Bilt n=2.

Bow. Sei $n \ge 2$ and $\phi: \mathbb{R}^2 \longrightarrow \mathbb{R}^n$ ein Homeomorphismur mit OBdA $\phi(0) = 0$. Dann ist

 $\tilde{\varphi}: \mathbb{R}^{\frac{1}{2}} \{0\} \longrightarrow \mathbb{R}^{n} \setminus \{0\}, \times \longmapsto \varphi(x)$

auch Homeomorphismus. Aber aus

 $\mathbb{Z}_{\mathbb{Z}} \approx \mathbb{U}'(\mathbb{L}_{S}, \{0\}) \approx \mathbb{U}'(\mathbb{L}_{n}, \{0\})$

folgt dann n= 2.

Def. Sei $X \neq \emptyset$ ein top. Rown. X heisst einfach zusammenhängend, falls X wegesth ist und $(Y_1(X,x_0) = \{e\})$ für ein (und damit für alle) $x_0 \in X$ gilt.

Bsp. Für $n \ge 2$ ist S^n einfach zsh. und S^1 ist nicht einfach zsh nach Satz 1.

Satz 4. Sei $P: X \rightarrow Y$ eine Homotopieāquivalenz und $x \in X$. Dann ist

 $\mathcal{P}_{\bullet}: (Y_{i}(X_{i}, x_{o}) \longrightarrow Y_{i}(Y_{j} \mathcal{P}(x_{o}))$

tin Gruppenisomerphismus.

Lemma 2. Seien f_0 , $f_1: X \to Y$ homotop via h und $x_0 \in X$.

Sei weiter B der Weg

 $\beta(s) = h(x_0, s)$

von f.(xo) nach f.(xo). Dann gilt

 $(\mathcal{L}_{\circ})_{*} = \psi_{\beta} \circ (\mathcal{L}_{\circ})_{*}$

wobei

 $(\mathcal{P}_{1})_{*} \rightarrow (Y_{1} \mathcal{P}_{1}(\times_{0}))$ $(\mathcal{P}_{1})_{*} \rightarrow (Y_{1} \mathcal{P}_{1}(\times_{0}))$ $(\mathcal{P}_{0})_{*} \rightarrow (Y_{1} \mathcal{P}_{1}(\times_{0}))$

-> Spezialfall: Falls $h(x_0, s) = \beta(s) = \beta(x_0)$ gilt for alle s, dann folgt $(\beta_0) = (\beta_1) + (\beta_0) = id_{\pi(y_0, \beta_0(x_0))}$.

```
Bow. (Lemma 2)
  Setze B_t: [0,1] \longrightarrow Y, s \longmapsto \beta(st). Sei \alpha eine
  Schleife on xo. Dann all
             Po o a = B((P, o a) B-1)
  rel. Endpunkte via
            Ht = Bt ((Nt o a) Bt).
  Daraus Polat
           (\mathcal{L}_{\circ})_{*}([\alpha]) = [\mathcal{L}_{\circ} \circ \alpha] = [\beta((\mathcal{L}_{\circ} \circ \alpha)\beta^{-1})]
                        = 48 ([f, o a]) = 48 ((f)*([a])).
Bew. (Satz 3) Sei P: X-> Y Homo. aquiv. mit Homo. inv.
  g: Y->X, d.h. gof ~ idx und fog ~ idy.
  Betrachte x. EX und Px, g. bzgl. x. und P(x.).
  • \beta: [0, 1] \rightarrow \times mit \beta(s) = h(x_0, s) ist Wee wor
    g(P(xo)) rach xo Lemma 2
       => g* of* = (g of)* = 4B o (idx)* = 4B
            ist also iso nach Eigenschaft (i).
        => f* inj. und g+ surj.
  · [3]: (0,1] → y mit [3'(s) = [[+(x.)], s) is+ Weg
    von $(2($(xo))) nach $(xo).
             => P* 0 8* = NB
             => 8+ inj.
  Also ist g. + bijehtiv und damit auch P., da
```

g. of L bijektiv ist.

Folge. X hantrohierbar => X einfach zsh.

Bsp. S^1 , S^2 , $S^1 \times S^1$, $S^1 \times S^1 \times S^1$ sind paarweise nicht Nomotopi'e Equivalent.

Grand. $\Gamma_{1}(S^{1}) \cong \mathbb{Z}, \ \Pi_{1}(S^{2}) = \{e\}, \ \Pi_{1}(S^{1} \times S^{1}) \cong \mathbb{Z}^{2},$ $\Pi_{1}(S^{1} \times S^{1} \times S^{1}) \cong \mathbb{Z}^{3}.$

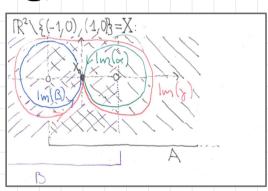
DER SATZ VON SEIFERT-VON KAMPEN

24.4.

Bsp (a). $X = \mathbb{R}^2 \setminus \{(-1,0), (1,0)\}, X_0 = (0,0) \in X$.

Sei $G := m(X, x_0)$ und $a = [a], b = [B], c = [re] \in G$

wie im Adgerden Bild.



Dann gilt c = ab und

 $A = \{(x,y) \in X \mid x > -1\} \cong \mathbb{R}^2 \setminus \{(0,0)\}$

 $B = \{(x,y) \in X \mid x < 1\} \cong \mathbb{R}^2 \setminus \{(0,0)\}$

 $\Rightarrow \alpha'(A', x^{\circ}) \cong \alpha'(B', x^{\circ}) \cong \mathbb{Z}.$

und $\pi(A \cap B, \times) \cong \{e\}.$

Wir werden sehen: OG = (a) = {a" | L ∈ ZL} = Z.

 $\circ G = \langle a, b \rangle$.

· ab ≠ ba.

o G ist die freie Gruppe mit zwei Erzeugern,
d.h. G= F2 = Z * Z.

Def. Seien Hund K zwei Gruppen (mit HoK = Ø).

- · Ein Wort in H und K ist 8,82...8. Pür n∈ INo, wobei g. = HUK (formal nur eine "Liste").
- e Ein Wort g,g,...g.n heisst reduziert, falls g; ¢ {en,eu} gilt und gi, gin immer in verschiedenen Gruppen sind.

Bem. Jedes Wort w hat eine eindeutige Redultion R(w).

Def./Satz. Seien K und H Gruppen. Dann bildet $H * K := \{ w \mid w \text{ ist reduzients } Wart \}$ mit der Multiplikation

 $(H * K) \times (H * K) \longrightarrow H * K$ Notation $(\omega_1, \omega_2) \longmapsto 7 \Re(\omega_1 \omega_2) \stackrel{=}{=} \omega_1 \omega_2$

tine Gruppe, genannt das freie Produkt/Coprodukt/Summe von H und V.

Bew. · Hat the Eins: Das leere Wat e.

- · Hat Inversen: Fire W = 8,92 9n 911 W-1 = 9-7-- 9-19-1
- · Associativitat: Folgt aus der Def. von R.

Bem. · Die Inclusion

in: H -> H * K, h -> {h Palls h = en

ist ein inj Gruppenhomomorphismus. Wir identifizieren
H < H * K

Via in.

- · Falls $V = \{e_{ik}\}$, dann gilt $H * V \cong H$.
- Falls H und K beide nicht-trivial stnd, dann ist H*K nicht hommutativ.

BSP. Seien $H = \langle a \mid a^2 = e_H \rangle$ und $K = \langle b \mid b^3 = e_K \rangle$ die zyhlischen Gruppen der Ordnung 2 und 3. Dann gilt

G=H*K = Z/2Z * Z/3Z # Z * Z.

[brigens: G = SL2(Z)/{('o'), (o'-1)} = PSL2(Z).

Eigenschaft. (Universelle Eigenschaft des freien Prodults).

Seien Gi, H, K Gruppen und

 $\phi_{\mathsf{H}}:\mathsf{H}\longrightarrow\mathsf{G}$

 $\phi_{\mathsf{K}} \cdot \mathsf{K} \longrightarrow \mathsf{G}$

Gruppenhomomorphismen. Dann ex. ein Andeutiger

Gruppenhamomorphismus $\varphi: H * K \longrightarrow G$ mit

φοin = PH

φ · ix = φx.

Grund. Definiere

und

φ(h, le, hzlez ... h, len) = φ, (h) φ, (h,) ... φ, (hn) φu(len).

Setup. Sei X top. Raum, A, B = X und

Xo E A n B. Seien

ja: M, (A) ->M, (X),

 $\mathcal{I}_{\mathcal{B}}: \mathcal{U}'(\mathcal{B}) \longrightarrow \mathcal{U}'(X)$

 $i_A : \Upsilon_1(A \circ B) \longrightarrow \Upsilon_1(A),$

 $i_{\mathsf{B}}: \Upsilon_{\mathsf{I}}(\mathsf{A} \circ \mathsf{B}) \longrightarrow \Upsilon_{\mathsf{I}}(\mathsf{B})$

die von den Intilusionen induzierten Gruppenhaum. Pür den Pixen Basispunkt xo.

Soft 2 1. (Seifert - von Nampen) Für $x \in A \cap B$, wober A, B = Xmit $A \cap B = X$, A, B wegeth und $a \neq P$ en und $A \cup B = X$ sei $\varphi : \gamma (A) * \gamma (B) \longrightarrow \gamma (X)$

der eindeutige Gruppenhoum mit

 $\varphi(a) = j_A(a),$

 $\phi(P) = 2^{\beta}(P)$

Par alle a ∈ 11, (A), b ∈ 11, (B). Dann gilt:

i) φ ist surjectiv

ii) Vern(φ) = (({ i,(c)(i,(c))-1 (c ∈ η,(AnB)))=, N

~> Notation: Für H = G sei ((H)) der Weinste Normalteiler von G, der Henthält.

Insbesondere, 914

 $(\mathcal{U}'(\mathsf{Y}) * \mathcal{U}'(\mathsf{B})) \setminus \mathsf{N} \approx \mathcal{U}'(\mathsf{X})$

Spezialfull.

i) Gilt 14, (AnB) = {e}, so ist of Gruppenisomorphismus.

" Gilt M, (A) = M, (B) = {e}, so folgt M, (X) = {e}.

BSP. (Satz 1a aus W8) Für $n \ge 2$ sei $S^n = A \cup B$ mit $A = S^n \setminus \{p_i\}$ und $B = S^n \setminus \{p_i\}$ mit $p_i \ne p_2$.

Dann gilt $(X, A) \cong (Y, B) = \{e\}$ und damit $(X, (X^n) = \{e\})$.

-> Achtung. Für n=1 gilt eben falls n, (A) = 1, (B), aber
An B ist nicht wegest, und damit gilt der Satz
von Seifert-von Vampen nicht.

Bsp. Betrachte $X = S' \vee S' = (S' \times \{1\}) \cup (\{1\} \times S')$ und sei $X_0 = (1, 1)$. Sei

> A := $(S^1 \times \{1\}) \cup \{\{1, e^{2\pi i s}\} \mid s \in (-\epsilon, \epsilon)\}$ B := $(\{1\} \times S^1) \cup \{\{e^{2\pi i s}, 1\} \mid s \in (-\epsilon, \epsilon)\}$

für e>0 Wein genug. Dam gilt

A~S1~B

und

A o B = {x.}.

Daraus Polyt

 $\gamma_{1}(S^{1} \vee S^{1}) \cong \mathbb{Z} * \mathbb{Z}.$

Bew. (von Satz 1) Sei p wie im Satz 1.

i) Sei ye: [0,1] -> X eine Schleife on xo.

Zu zeigen: $\exists w \in \Upsilon_{*}(A) * \Upsilon_{*}(B) : \varphi(w) = [ze].$

Beh. 1. Es ex. s. = 0 < s. < ... < s. = 1 mit

ye([si, si+,]) ⊆ A oder ye([si, si+,]) ⊆ B

und du(si) EAn B.

```
-> Gand. VS = [0,1] IIs = [0,1] often mit S = Is
      und de (Is) = A oder de (Is) = B.
      Da [0,1] hompold ist, ex. I, ..., Ie wie den,
      die [0, 1] überdedien Damit ex. s., .., s. mit
                 I = [0, 5,] u ... u[s,, 1]
      church volleinen unce zusammenhleben wo notion
      Sei nun
                  70: (S) = 20((1-S)Si + SSi+1)
      Pū, i∈ {0, ..., h-1} und ≥: ein Weg von X.
      nach Jels: | EAn B. Setze
                   X: = Bi(X: Bin),
      Wobei Ro := Bu := Lonstx. Dann gilt
                  [se] = [xe,][sez] ... [seu] & M. (X)
      und
                  [de,] E Bild(jA) u Bibl(jB).
             Polat
      Daraus
                    [&] & Bild(p),
      womit up surj. ist.
ii) Sei
         N := (({ in([8])(in([8]))-1 [[8] = M, (AnB))).
  Fur [8] = 14, (AnB) beliebing gill
            φ(ia[8]) = ja(ia([8]))
                     = [LANB O S]
                     = jB(iB([S])) = \p(iB([8]))
  mit Inclusion LADE -> X. Daraus folgt
```

iA([S])(iB([S]))-1 ∈ Kem(φ)

und damil N ⊆ Kem (φ).

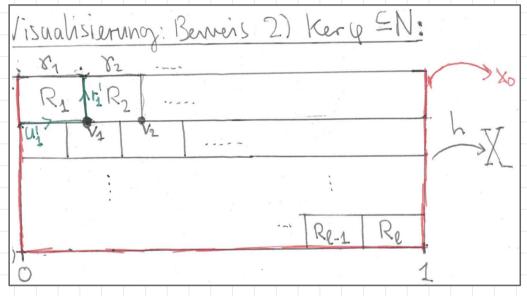
Soi nun e + w = [de,][dez] ... [de,] e M. (A) * M. (B) reducietes

Wort mit $\varphi(\omega) = e = [2e]$, wobei

Dann ex. eine Homotopie mit korstx. ~ de rel. Xo.

Beh. 2. Es ex abgs. Rechtache

mit h(Ri) = A oder h(Ri) = B.



-> Grand: Ahnlich wie Beh. 1.

Idee: Nun Pinden wir Wörter

mit W:-1N = W(N in (M(A) * M2 (B))/N.

· Withle B: Weg von X. nach h(vi) mit

und

· OBdA sei [x,1 ∈ π,(A).

Schriff 1. (via R1):

· Falls h(R,) = A:

$$[3c,] = [loret \times 3c,] = [u; c,] = [[u; k,](k, c,]]$$

$$= [u,][c,].$$

Setze

Dann gilt w=w=w,

o Falls h(R,) \$ A: Down gith h(R,) = B much Annohine und danit Bild (de,) = A∩B. Sei

Donn gilt

$$[X_{ij}] = [X_{ij}] = [X_{ij}] = [X_{ij}] = [X_{ij}]$$

Par w. := [&][&] ... [xe].

Wie for hlR.) = A finde nun W, = [u.][80]...[80]

und w = w, => w.N = w, N.

Schritt i. (via Rr.) Finde W. aus w. wie im Schritt 1
wia Ri.

Dannit ex. w = wo, w, , ..., we mit

Iregocomt felgt damit

d.h. $w = w_0 \in N$. Also folgt $kem(\psi) \subseteq N$ und damit Gleichheit.

BSD Sei $X := V S^1 := (S^1 \times J)/\{13 \times J$ for eine Indexmenge J mit der dishneten Topologie.

Dam gilt $\gamma_i(X) \cong * \mathbb{Z} (\cong \mathbb{Z}^J)$.

-> Grand: Falls 131 < 00, so folgt dies Indultiv mit Sate 1. Sonst benutze folgendes:

Sotz 2. Sei $X = \bigcup_{e \in J} Ae \text{ mit Indexmarge } J \text{ und}$ $Ae l Au Offen, wegest, xo \in \bigcap_{e \in J} Ae \text{ und}$ $\phi: * \bigcap_{i \in J} A_i A_i \longrightarrow \bigcap_{e \in J} A_i A_i A_i$

eindeutiger Grupperhamon. mit $\varphi(a) = J_{Ae}(a)$ für $a \in Ae$.

Dann git:

Ti) 10 ist surj.

ii) Falls Aen Ann A, we sah. Per alle ℓ , k, $i \in J$, so gilt $\text{Len}(\varphi) = \langle\!\langle ie, \iota(c)(iu, e(c))^{-1} | L, \ell \in J, c \in \pi, (Aun Ae) \right\} \rangle$ mit $ie, \iota : \Lambda$, $(Aen Au) \hookrightarrow \Lambda$, (Au).

Bop. Hawaiischer Ohring. Sei X = UCn = C mit

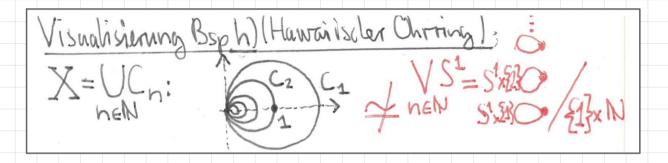
5.5.23

Cn = Bk (k)

Dann gilt X & VS1.

Grund: 17. (X) ist überabzühlbar, aber

nadhaselp tzi



Bsp. (Warum Aun Aen Ar wegesth. sein muss in Sate 2)

Sei

$$00 = 2_1 \wedge 2_1$$

und Ae := X1 {ae} far l = 1,2,3. Dann gilt

- ∘ γ, (A_ℓ) ≈ 2/
- · η, (A + η A2) = {e} far l ≠ e

aber 1/.(X) ≈ 7/. * 2/. * 2/. * 2/. * 2/.

5. ABZÁHLBARKEITSAXIOME

ERSTES & ZWEITES ABRAHLBARKEITSAXIOM

Def. Sei (x, 0) ein top. Raum.

· Sei X. ∈ X. Dann heist

U ⊆ {U ⊆ X | U ist Umgeburg von Xo}

Umgebungsbasis von X., falls jede Umgebung von X.

eine Umgebung $U \in \mathcal{U}$ enthält.

- · X erfall des erste Abzāhlbarheitsaxiom (1AA), falls jeder Punht in X eine abzāhlbare Umgebungebais hat.
- X erfullt das zweite Abzahlbarweitsaxiom (2AA), falls
 X eine abzählbare Basis hat.

<u>Bab</u>.

- · Jeder metr. Raum erfüllt 1AA.
- · Rn erfall 2AA

Bem. Es gilt 2AA => 1AA, ober nicht umgelicht.

Grund. Sei B obzāhlbore Besis von X und x. EX.

Setze dann 21 := {B & B | x. & B}.

Bem. Sei Y = X unterraum. Donn gilt

- · X exfult 1AA => Y exfult 1AA
- · X exfall 2AA => Y exfall 2AA

Bem. Falls $A \in X$ überabzählbar und distret existiert, dann erfüllt X 2AA nicht.

Grund. Sei & Bosis von X und wähle Ua Offen mit

UanA = {a}

for alle a & A. Donn gilt

YaeA3OaeB. aeOasUa

und damit ex. eine injelition

A -> B, a -> Oa.

BSP. Sei $X = \{ f \in C(R, R) \mid f \text{ beschrönlit} \}$ mit der von $\| \cdot \|_{\infty}$ induzierten Metrik dsup. Dann erfüllt X 1AA aber nicht 2AA.

Grand. X ist metr. Raum. Aber sei $\varepsilon = (\varepsilon_n)_{n \in \mathbb{N}}$ eine O - 1 - Folge und wähle ein

PE: R->R

mit $\varphi_{\varepsilon}(n) = \varepsilon_n + \overline{\omega}_{\varepsilon} \quad n \in \mathbb{N}$. Down gilt $\beta_{\varepsilon}(a) \cdot A = \{a\},$

for alle a ∈ A = { fr | r beliebige O-1-Folge}.

Da dier existiert, erfüllt X nicht DAA.

UNENDUCHE PRODUKTE

Sei $\{X_j\}_{j\in J}$ eine Familie von Mengen und Seien $Y_L: \prod_{i\in J} X_i \longrightarrow X_L$, $\{x_j\}_{j\in J} \longmapsto X_L$ die Projektionen für $L\in J$.

Def. Sei {X;}jej eine Familie von top. Raumen.

• Die Produkttopologie $z \in \mathcal{P}(\mathcal{T}_{j\in J} \times_j)$ ist die eindeutige

Topologie mit Basis $\mathcal{B} := \{ \gamma_{j_1}^{-1}(U_1) \cap \gamma_{j_2}^{-1}(U_2) \cap \dots \cap \gamma_{j_n}^{-1}(U_n) \mid n \in \mathbb{N}, \ j_i \in J, \ U_i \in X_{j_i} \text{ offen} \}.$

Notation. Fig. $X_j = X$, $j \in J$ solveibe $X^{J} = \prod_{j \in J} X_j$.

Eigenschaft. (Universelle Eigenschaft des Produkts)

· Sei Y top. Roum und Pj: Y -> Xj stetig fai je J.

Dam ex ein eindeutiges

 $P: Y \longrightarrow \prod_{i \in I} X_i$

mit & stetic und Mu of = fu

· Insb. ist due Produkttopologie die Gröbete Topologie, s.d.
alle 1/2 stetje sind.

Bau Serie 10.

BSp. Falls J überobæählber ist und X_j ein top. Raum mit nicht - trivialer Topologie. Donn erfallt TTX_j 1AA nicht. Grund. Wähle $\varnothing \neq O_j \neq X_j$ offen und $X_i \in O_j$.

Agn. für $\{x_i\}_j$ ex. eine absb. Umgebungsbans \mathcal{U} OBJA gilt

U ∈ 21 => U = 17-1/(U1) 0 -- 0 17-1/(U1)

fū; j; ∈ J und U; ⊆ Xj; offen.

Dann ex. LEJ mit ML(U) = XL Pur alle UEZ, da nur abzahlbar viele Faltoren nicht ganz Xi sind.

Dann ist Mi'(Ou) = TT X; Umgebung von X

aber Mi'(Ou) enthalt hein U aus 21 wegen & im Widerspruch ZU .

Satz 1. (Tychonoff) Sei $\{X_j\}_{j\in J}$ eine Familie von Lampalden top. Raumen. Dann ist $T_j X_j$ hompald.

DIE ROLLE DER ABZAHLBARKEITSAXIOME

Warum 1AA?

Dep. Seien X, Y top. Poune. Eine Abbildung

 $\varphi: X \to Y$

heist folgenstation, falls for alle Folgen $(x_n)_n \subseteq X$ mit $\lim_{n\to\infty} x_n = x$ gilt $\lim_{n\to\infty} \varphi(x_n) = \varphi(x)$.

Bem. P stelig => P folgenstelig.

Lemma 1. Erfüllt X 1AA, so gilt

Par P: X -> Y.

Lemma 1. Erfüllt X 1AA, so gilt

Par P: X -> Y.

<u>Bew.</u> "=>". Folgt aus Remolung.

"E". Vontraposition. Agn. P ist nicht stetig, d.h. er ex. a EX mit P nicht stetig bei a, d.h.

JV Ungebung von \$\(\text{2}\) (a) \text{V Ungebungen U von a: \$\(\text{P(U)} \display \text{V.}\)}

Sei \(2\) = \(2\), \(1\), \(1\), \(1\) \(2\), \(1\) \(2\) \(2\), \(1\) \(2\) \(2\), \(1\) \(2\) \(

```
Far alle nell, wake x, EU, nU2 no Un mit
                            Pl×n ≠ V
     nach . Nun gilt lim xn = a, ober flas ist nicht
      Limes von (f(xn))n.
BSD. (& folgenstelia ober nicht Stetia)
                                                                                       8.5.23
   · Sei X = {φ: [0,1] -> [0,1] | φ stetig}
                 \subseteq \left\{ \phi : \left[0,1\right] \rightarrow \left[0,1\right] \right\} = \left[0,1\right]^{\left[0,1\right]} = \left[\left[0,1\right]\right]^{\left[0,1\right]}
     mit Unteraumtopologie der Produktopologie.
  Beh. (Serie 10) lim φn = φ 	⇒ ∀se[0,1]: lim φn(s) = φ(s).
   · Sei Y = {φ: [0, 1] -> [0, 1] | φ stetig} mit 1 - metril, d.h.
                         d(p, y) := [ | p(s) - y(s) | ds.
   · Setze P: X -> Y, p -> p.
  Beh. P ist folgenstetig.
   Grund. Sei lim up = p in X.
                  => Vse[0,1]: lim (ρ.(s) = φ(s)
                  = \lim_{n\to\infty} d(\phi_n, \phi) = \lim_{n\to\infty} \int_{0}^{1} |\phi_n(s) - \phi(s)| ds
                                     = \int_{0}^{\infty} \lim_{s \to \infty} |\varphi_{n}(s) - \varphi(s)| ds
                                     = \bigcirc
                 => \lim_{n\to\infty} \varphi(\varphi_n) = \varphi.
  Beh. \varphi ist nicht stetiq be: \varphi_0 := \text{lanst}_0 \in X.
  Grand. Sei 0 < \epsilon < 1 and V = B_{\epsilon}(f(\phi_{\epsilon})) \in Y.
```

Sei U eine Umgebung von φ_{o} in X, d.h $\exists S_{1},...,S_{n} \in [0,1]$ und $U_{i} \subseteq [0,1]$ opper mit $O \in U_{i}$, s.d. $U \supseteq (\pi_{S_{i}}^{-1}(U_{i}) \cap ... \cap \pi_{S_{n}}^{-1}(U_{n})) \cap X$ $= \{ \varphi \cdot [0,1] - [0,1] \mid \varphi(S_{i}) \in U_{i}, \varphi \text{ stetig} \}.$ Dann $\exists \varphi \in U$ mit $\int_{i}^{1} |\varphi(s) - 0| ds = \int_{i}^{1} \varphi(s) ds > \varepsilon$ und dawit $\varphi(\varphi) \notin V \Longrightarrow \varphi(U) \notin V.$

Def. X heist folgenhompalt, falls jede Folge in X eine Lonvergente Teilfolge hat (d.h. hot mind. einen Gnenzwert).

Lemma 1.

i) Falls X 1AA erfult, dann gilt

X hompalit => X folgenhompalit.

ii) Falls X ein metr. Raum ist, donn gilt X kompalit \in X folgen kompalit.

Bew. Für (ii) siehe Aralysis.

i) Sei X hompolit und (xn)n Folge in X. Schrift 1. (Kondidaten fai Giw)

Ja∈X Y Ungebungen U⊆X van a:

Vn∈N Jm≥n: Xm ∈ U.

and. Agn. es gilt

Yae X 3 Ungebungen Ua X van a:

JnaelN Ymzn: Xm & U.

Wegen Kompaltheit ex. a,, ..., a, mit X = Ua, v ... v Ua,

und damit egilbt sich ein Widesprung zu.

Vm Z max (na.,..., na.): Xm € U.

Schrift 2. Sei $U = \{U_1, U_2, ...\}$ absorblare Ungebungsbasis von a und wohle indultiv $n_1 = n_2 = ...$ mit $X_{n_e} \in U_1, n_1 -... \cap U_n$

nach Schritt 1. Dann gilt

 $\lim_{t\to\infty}\chi_{n_e}=0$

wie im Beveir von Lemma 1.

Bem. Im alla gilt

- · lompalit => folgenhormpolit
- · folgenhompolit => hompalit

Bop.

- · [0, 1] [0,1] ist nach Tychonoff kompakt aber ist nicht folgen kompakt.
- · Die "Lange Linie" erfallt 1AA, ist folgenkompakt aber Nicht kompakt.

Warum 2.AA?

EXKURS: MANNIGFALTIGKEIT

Etimerung. $M = \mathbb{R}^n$ heisst d-dim. gotte Unternannigfaltiglieit, falls $\forall p \in M \exists V_p, U_p = \mathbb{R}^n$ of then mit $p \in U_p$ und es ex. $(p_p : U_p \longrightarrow V_p)$ Diffeomorphisms mit $(p_p : U_p \cap V_p) = V_p \cap (\mathbb{R}^d \times \{0\})$.

Def. M = R" heisst d-dim. topologische

Untermanigfaltiglieit, folls $\forall p \in M \exists V_p, U_p \in \mathbb{R}^n$ of the mit $p \in U_p$ und es ex. $(p) : U_p \longrightarrow V_p$ Homeomorphismus mit $(p) (U_p \cap M) = V_p \cap (\mathbb{R}^d \times \{0\})$.

 $\frac{Dep.}{}$ Sei \times Ein top. Roum und $d \in \mathbb{N}$. \times heist topologische Mannig-Paltiglieit, falls:

- i) $\forall p \in X \exists U \subseteq X \text{ often mit } p \in U \text{ and } U \cong \mathbb{R}^d$.
- ii) X ist Housedorffraum
- iii) X erfull dos 2. AA.

Einbettungssotz.

- a) Top. Umfg des 1R" sind top. Mannisfaltiqueiten.
- b) 1st X eine top. Mannierfaltiglieit, dann ex. $n \in \mathbb{N}_0$ und $M \subseteq \mathbb{R}^n$ eine top. Umfg. mit $M \cong X$.

6. KONSTRUKTION VON STETIGEN FUNKTIONEN

URYSOHNSCHES LEMMA

Frage: Sei X top. Down und A, B = X disjunlit und abgs. Gribt es ein

P: X → [0,1]

stetig mit +(A) = {0} und +(B) = {1} ?

Bem. Falls $f: X \to [0, 1]$ mit $f(A) = \{0\}$ and $f(B) = \{1\}$.

Dann ex. U, V = X offen, disjunct mit A = U, B = V(2. B. $U = f^{-1}([0, \frac{1}{2})], V = f^{-1}([\frac{1}{2}, 1])$.

Def. Ein top Raum X heist normal, falls für alle $A, B \in A_X$ disjunkt, disjunkte $U, V \in O_X$ ex. mit $A \in U$ and $B \in V$.

Bem. Metr. Raume sind normal.

Def. Sei X ein Tz-Raum

- · X heisst Ta-Roum, falls X normal ist.
- X heist Tz-Raum, Palls für alle A∈ Ax und
 b∈ X 1 A disjunkte Umgebungen U,V mit A∈U und
 b∈ V ex.

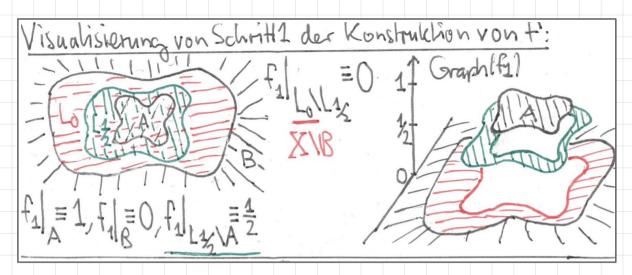
Bem. . Es gilt T4 => T3 => T1.

- · X ist T4 g.d.w X T1 und normal ist.
- · Jeder hompalite T2-Roum ist normal.

Satz 2. (Urysahraches Lemma) Sei X ein normder top. Roum. Falls A, B = X abgs. und disjunkt sind, dann ex. ein $P: X \rightarrow [0,1]$ stetiq mit P(A) = {0} und P(B) = {1} Lemma 4. (Verfeinerunge Lemma) Sei X ein normaler top. Raum und MENEX mit MEN°, dann ex. Lex mit M=L° = [= N°. Notation: M < N und M < L < N. Bow. Mn(XIN°) = & " Ju, V = X often, disjunct mit MSU und XIN°SV. WELLE L mit USLSXIV (S.B. L=U) Dann gilt MEL° ELEN°. Bow. (vom Satz)

Plan: Baue $f_n: X \rightarrow [0,1]$, s.d. $f(x) = \lim_{n \to \infty} f_n(x)$ Stefig ist und $f(A) \leq \{13, f(B) \leq \{0\}\}$.

und Pollorly = 0.



Schritt n: Seien

A < $\lfloor 1 < \lfloor \frac{1}{2} < \dots < \lfloor \frac{l+1}{2^{n-1}} < \lfloor \frac{1}{2^{n-1}} < \dots < \lfloor \frac{1}{2^{n-1}} < \lfloor \frac{1}{2^{n-1}} < \rfloor = X \setminus B$ bereits honotruiert. Fire $l \in \{0, 1, \dots, 2^{n-1} - 1\} \in X$. $l = \frac{2l+1}{2^n}$ mit $l = \frac{l+1}{2^{n-1}} < l = \frac{2l+1}{2^n} < l = \frac{l}{2^{n-1}}$ nach Lemma 4

• Setze $f_n : X \rightarrow [0, 1]$ mit $f_n|_A = 1$, $f_n|_B = 0$ und

 $f_{\nu} | \Gamma^{\frac{3\nu}{\nu}} | \Gamma^{\frac{3\nu}{\nu}} = \frac{3\nu}{\nu}$

fai le € {0,1, ..., 2°-1}.

Def. nun $f: X \rightarrow [0,1]$ durch $f(x) = \lim_{x \to \infty} f(x)$.

Dies ex., da Folge moroton steigend und beschählt ist. Nach Konstruktion gilt $P(A) = \{1\}$ und $P(B) = \{0\}$.

Sei €>0 und X∈X.

• Falls $x \in A$: Wähle n mit $2^{-n} < \varepsilon$ und set se

 $U := \left(\bigsqcup_{\frac{2^{n-1}}{3^n}} \right)^0 \supseteq A = \bigsqcup_i \ni X.$

For yell gilt

 $|f(x) - f(y)| = 1 - f(y) \le 1 - f(y)$ $\le 1 - \frac{2^{n-1}}{2^n} = 2^{-n} < \epsilon.$

Damit ist & bei x stetig.

- · Falls XEB. Ahnlich.
- · Falls X € A u B. Wähle n mit 2n-1 = E. Dann gilt

$$X / (A \cap B) = \bigcap_{n=1}^{n-1} \left(\bigcap_{n=1}^{2n} / \bigcap_{n+1}^{2n} \right)$$

Dann gilt

$$\forall y \in \mathcal{U} : \mathcal{P}(y) \in \left[\frac{k-1}{2^n}, \frac{k+1}{2^n}\right]$$

und damit

$$|f(x) - f(y)| < \frac{2}{2^n} < \varepsilon$$

Bom. Falls X normal and zsh ist and A, B = X night-leer and disjuntly, dann ex.

stelig and surjective mit PIA = 1 and PIB = 0.

TIETZSCHES ERWEITERUNGSLEMMA

Sate 3. (Tiezaher Enweiterungstemma) Seien $a, b \in \mathbb{R}$ mit a < b, X normaler Raum, $C \subseteq X$ abgs. und

$$\varphi: \subset \longrightarrow [a,b]$$

stetig. Dann ex.

$$F \cdot X \longrightarrow [a,b]$$

stetig mit Fic = P.

15.5.

Korcllor 1. Sortz 3 gilt auch für Produkte von abgeschlossenen Intervallen.

Bew. Sei P: C -> T [a,b] stetig.

 $\Rightarrow \gamma_{j} \circ f : C \longrightarrow [a,b] \text{ stetig}$ $\Rightarrow \exists F_{j} : X \longrightarrow [a,b] \text{ stetig mit } F_{j}|_{C} = \gamma_{j} \circ f_{j}$ $\Rightarrow \exists F : X \longrightarrow \prod_{j \in J} [a,b] \text{ stetig mit } \gamma_{j} \circ F = F_{j}.$

=> FIC = P.

Morollar 2. Satz 3 gilt auch \mathcal{L} ir $(-1, 1) \cong \mathbb{R}$ (und bel. Produkte davon) und auch \mathcal{L} ir $(a_1, b_1) \times \dots \times (a_n, b_n)$.

Bow. Sei $P: C \longrightarrow (-1, 1)$ stetis und $i: (-1, 1) \longrightarrow [-1, 1]$

die Inhlusian.

=> P= i of stetig

⇒ J̃F: X → [-1,1] stetig mit Fic = F.

Setze A = C und $B = \tilde{F}^{-1}(\{\pm 1\})$.

(1) 3 λ · X → [-1,1] mit λ(A) ∈ {1}, λ(B) ⊆ {0}.

Setze $\hat{F}: X \longrightarrow [-1,1], x \longmapsto \lambda(x) \tilde{F}(x),$

stelige Dann gilt $\hat{F}(X) \subseteq (-1,1)$ and $\hat{F}_{1} \subset = f$

Bew (Sat = 3) Sei OBJA +: C -> [-1, 1] stetig.

Beh. Vn∈ N 3Fr: X → [-1,1] Stetig mit

a)
$$| \varphi(c) - (F_1(c) + F_2(c) + ... + F_n(c)) | \leq (\frac{2}{3})^n$$
, $\forall c \in C$.

b) IF
$$(x) = \frac{1}{3} \left(\frac{2}{3}\right)^{n-1}$$
, $\forall x \in X$.

Setze damit

$$F: X \rightarrow [-1,1], x \mapsto \sum_{n=1}^{\infty} F_n(x).$$

Nach der Beh. ist T wohldef. mit Fic = f.

F ist zudem stetig, da

$$S_{N}(x) := \sum_{n=1}^{N} F_{n}(x)$$

gleichwassig gegen F konvegiert nach (b).

Grund der Beh.

1) Setze $A := p^{-1}([\frac{1}{3}, 1])$ und $B := p^{-1}([-1, -\frac{1}{3}])$ also.

und disjunlit. Nach dem Wyschnschen Lemma ex.

ein

shelic mit $F_1(A) \subseteq \{\frac{1}{3}\}$ and $F_1(B) \subseteq \{-\frac{1}{3}\}$. Setze $P_1 = P_1 - P_1 - P_2 - P_3 = P_3 =$

2) Setze $A_1 := f_1^{-1}([\frac{1}{3}, \frac{3}{3}, \frac{3}{3} \cdot 1])$ und $B_1 := f_1^{-1}([-1 \cdot \frac{1}{3}, \frac{3}{3} \cdot \frac{-1}{3}])$ Analog $E_{\nu}(1) \in X$.

stetig mit $F_2(A_1) = \{\frac{1}{3}, \frac{3}{3}\}$, $F_3(B) = \{-\frac{1}{3}, \frac{3}{3}\}$. Setze $P_2 := P_1 - F_{2|C}$: $C \longrightarrow [-(\frac{2}{3})^2, (\frac{2}{3})^2]$.

3) Finde analog

und def.

 $f_n := f_{n-1} - f_{n-1}c : C \longrightarrow [-(\frac{2}{3})^n, (\frac{2}{3})^n].$

Dafa gilt nun (a) und (b).

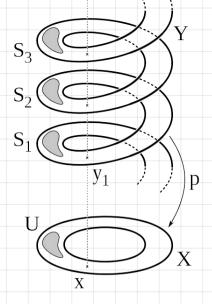
Ubrigens. (Metrisierungssatz) Ist X ein Ta-Raum und erfüllt X 2. AA, donn ist X metrisierbar.

7. Überlagerungen

19.5.

TOPOLOGISCHE RAUME LIBER X

Sei X ein top. Roum. Wir machten top.
Räume Y mit stetiger Abbildung P: Y -> X
studieren.

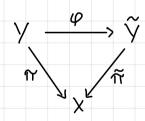


BSD. O Das Möbiusband $M = [-1,1] \times [0,1]/\alpha$ Pur $\alpha(s) = -s$ mit

nicht isomorph

stetig.

Def. Zwei stetige $1r: Y \longrightarrow X$ und $\tilde{1}r: \tilde{Y} \longrightarrow X$ heissen isomorph liber X, falls ein Homeomorphismus $\varphi: Y \longrightarrow \tilde{Y}$ ex., s.d.



Lommutient, d.h. es gilt ñοφ= n.

 \underline{Def} . Sei $n: Y \rightarrow X$ stetig.

on heisst triviale Faserung, falls ein top. Raum Fex., S.d. 14 isomorph zu

$$\tilde{n}: X \times F \longrightarrow X, (x, p) \mapsto x$$

ist, d.h. γ φ × × F hommutient. F heisst dann Faser.

on heist lobal triviale Fosering oder Foserbundel,

Palls für alle x e X eine Umgebung U von X ex.,

s.d. $\Pi_{n-1(u)}^{u}: \Pi^{-1}(u) \longrightarrow U$ eine triviale Fosering ist.

Bsp. n: M -> S1 ist nicht trivial aber lokal triviale Faserung.

Bem. 1st X Zsh. und $1Y:Y \longrightarrow X$ lokal triviale Faserung, dann gilt $n^{-1}(\{x,3\}) \cong n^{-1}(\{x,2\})$ für alle $X, X_2 \in X$

BSP. Die Abbildungen

und

 $\supset M \longrightarrow S^1$, $[(s,t)] \longmapsto e^{2\pi i t}$ $S^1 \times \{-1,1\} \longrightarrow S^1$, $(s,t) \longmapsto s$

sind lokal triviale Faserungen mit Faser = {-1,1} mit trivialer
Topologie.

ÜBERLAGERUNG,

Def. Eine stetige, surjetive Abbildung $n: Y \rightarrow X$ heisst Uberlegerung von X, falls $\forall x \in X$ $\exists U \in O_X$ mit $x \in U$

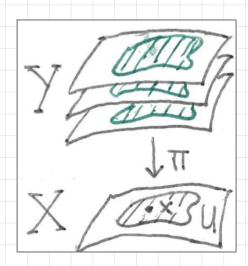
und {Uj}jej = Oy disjunlit, s.d.

 $U_{-1}(\Pi) = \prod_{i \in I} \Pi^i$

silt und

 $\mathsf{U}^{\mathsf{U}_{\mathbf{u}}}:\mathsf{U}_{\mathbf{u}}\to\mathsf{U}$

ein Homeomorphismus ist for alle je J.



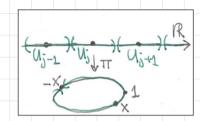
BSD. • 17: $\mathbb{R} \to S^1$, $r \mapsto e^{2\pi i r}$ ist eine Überlogerung. Grund. Sei $x \in S^1$ beliebig und setze $U = S^1 \setminus \{-x\}$.

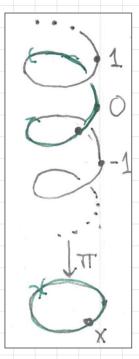
Dan gilt

$$\mathcal{H}^{-1}(U) = \mathbb{R} \setminus \mathcal{H}^{-1}(\{-\times\}) = \bigsqcup_{\vec{j} \in \mathbb{Z}} (r_0 + \vec{j}, r_0 + \vec{j} + 1)$$

far ro∈ (1-1/{x}) und

ist Homeom. mit Umhehrabb. 2007.





Ben. (Alternative Def. von Überlegerung) Sei 17: Y-> X stelig.

Dann ist 17 Uberlagerung g.d.w. 17 lokal trivale Faserung mit diskreter Faser ist.

Bem. Sei n: Y -> X (Iberlogerung.

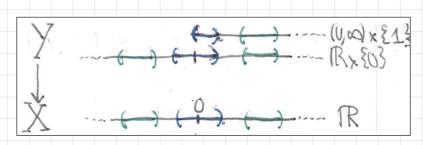
· Dann ist pr ein lokaler Homeomorphismus, d.h.

∀y∈ Y ∃y ∈ V ∈ Oy ∃U ∈ Ox: π1 " ist Homeomorphismus.

· Gilt | n-'({x}) = 1 far alle x∈X, dann ist X ein Homeomorphismus.

Bap. Die Abbildung

ist ein loualer Homeomorphismus ober Leine Überlagerung.



Def. Sei n: Y -> X eine Übeilagerung.

- o $U \in O_X$ wie in der Def. heist gleichmäsig Überlagert durch m. Die $U_i \in O_Y$ heissen Blätter von m über U.
- o Sei $n \in |N \cup \{\infty\}|$. Dann heisst $1 \le n \text{blatterige}$ Uberlagerung, falls $|1 \le n \le N = n$ alle $x \in V$ gitt.

BSD. Sei dell und r: Sd ->> Sd/~ =: RPd mit v~-v.

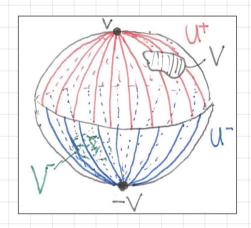
Dann of it eine 2-blattige Liberlagerung.

Grand. Sei $x \in S^{\alpha}/\sim und v \in S^{\alpha}$ mit $x = [v] = \{\pm v\}$.

Setze U:= offene Hemisphore um +v und U=11(U+)=11(U-).

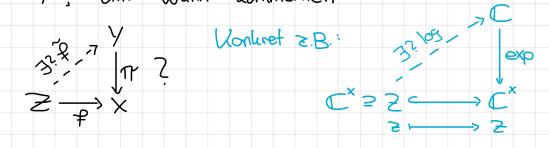
Dann ist U Heichmassig Überlagert durch ir und Uz sind

zwei Blatter.



Ziel Sei X wegesh.

- · Wazifiliation: Vonespondenz zwischen Überlagerungen (mit Y auch wegsch) und Untergruppen von 17,(X).
- Konstruktion stetiger Hochheburgen: Sei $n \cdot y \to x$ Uberlagering und $p : Z \to x$ stetig. Wann ex. dann $\tilde{p} : Z \to y$ mit $r \circ \tilde{p} = p$, d.h. wann kommutiert

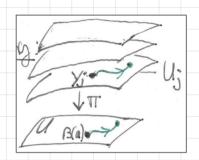


HOCHHEBEN VON WEGEN

Def. Sei $\pi: Y \to X$ eine Überbgerung und a ein Weg in X.

Ein Weg \tilde{a} in Y heist Hochhebung von a \overline{c} um

Antangspunlit $y \in Y$, falls $\tilde{\alpha}(0) = y$, and $\pi \circ \tilde{\alpha} = a$ gitt.



Lemma 1. (Hodihebung von Wegen) Sei $n_1: V \to X$ [berlagerung, $u: [a,b] \to X$ ein Weg und $y_0 \in n_1^{-1}(u(a))$ Dann ex. genau eine Hochhebung von $u: Zu y_0$, u: U(a)

$$\begin{bmatrix} a,b \end{bmatrix} \xrightarrow{\alpha} X$$

Bew. Sei OBON [c,b] = [0,1].

Weg B: [a, b] → U gilt:

Y_j ∈ π-1(β(a)) ∃! Hochhebung β zu y_j,

namlich ist für y eUj

 $\widehat{\mathbf{g}} = \widehat{\mathbf{g}}_{\mathbf{j}} := (\mathbf{M}_{\mathbf{n}^{\mathbf{j}}})^{-1} \circ \mathbf{g} : [\mathbf{a}^{\mathbf{j}} \mathbf{p}] \longrightarrow \mathbf{n}^{\mathbf{j}}.$

Indo. gilt Bild(\vec{\varkappa}_j) n Bild(\vec{\varkappa}_u) = \varkappa \frac{\varkappa_{\varkappa_1}}{J} \neq \text{le.}

Eindeutiglieit. Seien & und a zwei Höchheburgen von a

Eu y. Sei $I := \{t \in [0,1] \mid \tilde{\alpha}(t) = \bar{\alpha}(t)\}.$ Beh. I ist nicht-lear, offen und obgs.

-> o nicht-lear, denn $\tilde{\alpha}(0) = y_0 = \bar{\alpha}(0).$ o Sei $t_0 \in I$ und wähle $U \in O_x$ glm. übeloget

mit u(to) & U und wohle or = to = b mit

a(ro, b) & U falls mighich (sonst a = to color b = to).

Es gilt ~(to) = a(to) und

~ are alre, b)

Sind Hochheburgen on $\beta = a_{[cc,b]}$. Aus der Vorbernerlung felgt nun $\beta = \overline{\beta}$ und damit ist $[a,b] = \overline{I}$ ungeburg von to. Damit ist \overline{I} often.

• Sei to $\in [0,1]\setminus I$. Zeige ähnlich wie oben, dass dann Umgebung $U \subseteq [0,1]\setminus I$ von to ex. Demit ist I obes.

Da I zst. ist, felgt I = [0,1] und damit $\tilde{\alpha} = \bar{\alpha}$.

Existenz. Sei $I := \{ t \in [0,1] \mid d_{1[0,t]} \text{ besitzt Hochhebung zu yo} \}$.

Dann gilt I = [0,T) oder I = [0,T] für T := supI.

Wähle U glm. überlaget mit $\alpha(T) \in U$ und $\alpha = T = b$ wie aben. Wähle $\tilde{\beta}: [a,b] \longrightarrow U_j \ni \tilde{\alpha}(a)$, wobei $\tilde{\alpha}$ Hochhebung von $\alpha(0,a)$ ist, mit $1 \circ \tilde{\beta} = \alpha(0,b)$. Setze

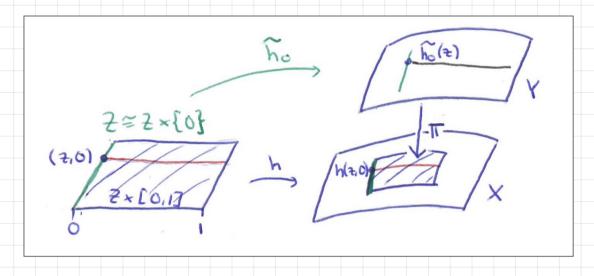
ã: [0,b] → Ui, t → Ã(t) fa t=a.

Sei $17: Y \rightarrow X$ eine Liberlogerung, Z ein top. Fourm und $h: Z \times [0,1] \longrightarrow X$ stetige Abbildung und $\tilde{h}_0: Z \longrightarrow Y$ stetige Hochhebung von $h_0: Z \longrightarrow X$, d.h. $17 \circ \tilde{h}_0 = h_0$, wabei $h_0(z) = h(z, 0)$.

Donn ex. ein eindeutiges

R: Z × [0,1] → Y

stetig mit Noh = h und h(z, 0) = h.(z)



Bew. Für zez sei

22: [0,1] → X, t → h(2,t).

Sei õz die Hochhebung von Uz zum Anfangspunkt ho(z)
nach Lemma 1. Definiere nun

~: ≥×[0,1] → Y, (≥,t) → α̂≥(t).

Wil prufen, dass is eine Hochhebung ist.

oroh = h gilt, da

· h(z, 0) = 2=(0) = h.(2) gilt ebenfalls.

oh ist auch stetig (ahrlich wie im Bow von Lemma 1).

> siehe Janich S. 156 P

Eindenticheit. Sei nun F: 2 × [0,1] -> Y eine weitere

Stetige Abbildung mit $\alpha \circ K = K$ and $K(z, 0) = \tilde{K}_{\bullet}(z)$.

Sei

 $\overline{O}_2: [0,1] \longrightarrow \forall, t \longmapsto \overline{h}(z,t).$

Nach Lemma 1 gilt dann

ZZ = 2Z

for all $z \in Z$ and domit folgt $\bar{h} = \tilde{h}$.

Korollar 1. (Monodromielemma)

Sei $n: Y \rightarrow X$ eine Überlagerung, $y_o \in Y$ und α , β Wege in X mit $\alpha \simeq \beta$ rel. Endpublie. Falls $\tilde{\alpha}$ und $\tilde{\beta}$ Hochhebungen von α und β Zu γ_o sind,

dann gilt & = B rel- Endpunlite.

Bew. Seien a = B rel. Endpunlule

và h:[0,1]² → X. Sei

 $\chi_o := \alpha(0) = \beta(0).$

 $h_{\circ}(t) = h(0, t) = x_{\circ}$

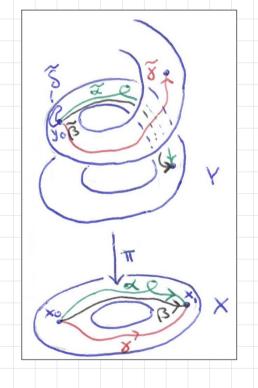
gilt, ist yo = : ho(t) Hachhebung

von $h_0(t)$. Nach Lemma Q = 31 $\tilde{K} : [0,1]^2 \longrightarrow Y$

stetig mit Non = h und hilo,t) = yo.

Dano gilt

- · ñ(·, 0) ist Hockheburg von a zu yo.
- · h(·, 1) ist Hockheburg von B zu yo.



Nach der Eindertigkelt in Lemma 1 gilt nun $\tilde{a} = \tilde{h}(\cdot, 0)$, $\tilde{\beta} = \tilde{h}(\cdot, 1)$ und damit felet $\tilde{a} = \tilde{\beta}$ via \tilde{h} . Eudem gilt $\tilde{h} = \tilde{h}(\cdot, 1) = \tilde{$

FUNDAMENTALGRUPPE & HOCHHEBEVERHALTEN

Notation. Schreibe $P: (Y, y_o) \longrightarrow (X, x_o)$ lurz für $P: Y \longrightarrow X$ mit $y_o \in Y$, $x_o \in X$ und $P(y_o) = X_o$.

Morollar 2. Sei $\eta:(Y, y_o) \longrightarrow (X, x_o)$ eine Werkgerung.

Dann ist $\eta_*: \eta_*(Y, y_o) \longrightarrow \eta_*(X, x_o)$ injektiv.

Bew. Sei [S] E Kem (n*), d.h. es gilt no S = lunetx.

rel. Xo. Zudem sind \tilde{S} und borsty. Sind Hochheldungen von $\Gamma \subset \tilde{S}$ und borstxo zu yo. Nach Korollar 1 folgt nun $\tilde{S} \cong \text{baretyo}$

rel. Yo und damit [S] = 1.

Def. Sei $M:(Y, y_*) \longrightarrow (X, x_*)$ eine Überkgerung.

Dann heisst

$$G(u, \lambda^{\circ}) = Q(u) = u^{*}(u'(\lambda^{\circ}, \lambda^{\circ})) < u'(X, x^{\circ})$$

charakteristische Untergruppe der Überlagerung 17.

 $\underline{\underline{Bsp}}, \ \overline{\Gammaai} \quad n: S' \longrightarrow S', \ \overline{z} \longmapsto \overline{z}^{n} \ \underline{Gilt}$ $G(n) \cong n \mathbb{Z} < \mathbb{Z}.$

Bem. Sei $r:(Y, y_0) \rightarrow (X, x_0)$ eine Überlogerung und 26.5. $P:(Z, z_0) \rightarrow (X, x_0)$ stetig. Sei Zuden

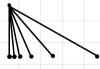
eine Hochhebung von P, d.h. \tilde{P} ist stetig und es gilt $\pi \circ \tilde{P} = P$. Dann gilt auch $\pi_* \circ \tilde{P}_* = P_*$ und domit $P_*(\pi_1(Z,z_0)) \subseteq G_1(\pi)$.

₽: (Y, y₀) -> (×, x₀)

Def. Ein top. Raum \times heisst lobal wegewarmenhängere, falls $\forall x \in X$ jede Umgebung von x eine wegest. Umgebung von x enthält.

Bap. Offene Teilmengen des IR sind lokal wegesch.

• Der Kegel $(103 \cup 11 | n \in \mathbb{N}) \subseteq \mathbb{R}^2$ ist we set, ober nicht blud wegest.



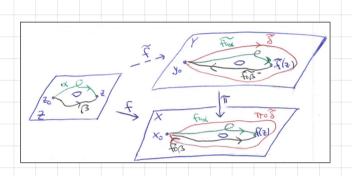
Satz. (Hothebbarkeitsbriterium)

Sei $N: (Y, Y_0) \longrightarrow (X, X_0)$ tine Uberlogening and 2 wegest and local wegest and

Dann ex. eine, und dann auch nur eine, Hochhebung $\tilde{\mathcal{P}}:(Z,Z_c)\longrightarrow (Y,Y_c)$ van $\tilde{\mathcal{P}}$ (d.h. $r\circ \tilde{\mathcal{P}}=\tilde{\mathcal{P}}$ und $\tilde{\mathcal{P}}$ stetig) g.d.w. $\tilde{\mathcal{P}}_*(\eta,(Z,Z_c))\subseteq G(\eta)$ gilt.

Bew "=>": Folgt aus obiger Bemerhung.
"=": Schnitt 1. Für jedes ze z,
wähle a Weg von zo noch z

und setze Hodnetung un paa



Schritt 2. P ist wohlder, denn sei B ein weiterer

Weg von Z. nach Z. Dann ist aß eine Schleife on Z.

Setze

Schleife an Xo. Donn gilt

 $\widehat{\varphi}(z) = (\widehat{\varphi} \circ \alpha)(1).$

d.h. $\chi \simeq 17 \circ \tilde{S}$ rel. Endpunlule für eine Schleife \tilde{S} an χ_o . Noch Korollar 1 ist die Hochhebung \tilde{S} e von de zu χ_o eine Schleife. Wegen

ist (POB-) = POB und damit

$$(\widehat{\varphi} \circ \widehat{\beta})(1) = (\widehat{\varphi} \circ \widehat{\beta})(0) = (\widehat{\varphi} \circ \alpha)(1),$$

womit & wohlder, ist.

Schnit 3. Es gilt 11 of = f, da

 $M(\tilde{\mathcal{P}}(z)) = M(\tilde{\mathcal{P}}(z)) = \mathcal{P}(\alpha(1)) = \mathcal{P}(z)$ gilt.

Schriff 4. Will zeigen Stetigheit von $\hat{\mathcal{F}}$ bei $z \in \mathbb{Z}$. Sei $V \subseteq V$ often mit $\tilde{\mathcal{F}}(z) \in V$. Sei OBJA $U := \pi(V)$ often und

MIN: V -> U

ein Homeom. Wähle wegesh. Umgebung W & Z von Z mit $f(W) \le U$ durch Ichal wegesh. von Z. Sei w & W. Sei nun & ein Weg von Z. nach Z und B ein Weg von Z nach w. Donn gilt

P(ω) = ((poα)(poβ))(1) = (poβ)(1) ∈ V,

Damit ist $\tilde{\mathcal{P}}$ stetig.

Schritt 5 Eindertigheit von P Polgt Jhnlich wie im Beweis von Lemma 1.

KLASSIFIKATION VON ÜBERLAGERUNGEN

Korollar 3. (Eindentigheitsotz)

Seien

 $\pi:(Y, y_0) \longrightarrow (X, x_0)$

und

 $\pi': (Y', y', y') \longrightarrow (X, x_{\circ})$

Liberlogerungen mit Y, Y' wegest. und Ichal

wegest. Dann ex. ein, und donn genau ein, bosispunktethaltender Isomorphismus Ewischen M' und M' 9.d.w. G(11) = G(11) .419 Bew. "=": Sei $\varphi:(\gamma,\gamma_0) \longrightarrow (\gamma_1,\gamma_0)$ ein bosispunktehalternder Isomorphismus, d.h. 1 = 11 0 p. Donn gitt G(11) = 11. (1, (7, yo)) $= (\alpha, \alpha, \alpha) + (\alpha, (\lambda, \infty))$ = 11 ((Pr (Y, y,))) $= \alpha'(\alpha, (y, y, y)) = G(\alpha').$ "=": Agr. es gilt OBdA G(11) = G(11). Dann gilt M. (M. (Y, Yo)) = G(M) = G(M') und nach obigen Satz ex. Hachhebung φ: (Y, yo) -> (Y', yo') mit 1 = 11'0 p. Analog ex. ein y. (/' /21) -> (/, 1/2) mit n'= noy. Dann ist $\Psi \circ \varphi \cdot (Y, \gamma_0) \longrightarrow (Y, \gamma_0)$ die eindentige Hochhebung von 14 bzgl. 17. Dech do id oben falls eine solche Hachhebung ist, Polgh · bi = Q · y

Analge post 40 W = id, womit of Homeon. ist.

Satz D. (Existensatz)

Sei X hinneichend $^{\circ}$ zsh., \times , \in X und $G_1 < \gamma_1(X, x_0)$

eine Untergruppe. Dann ex. eine Überlagerung $\pi:(Y,y_0)\longrightarrow(X,x_0)$

mit Y hinreichand zsh., s.d. G(17) = G gilt.

Vorbenerlung A. Sei $r \cdot (Y, Y_o) \longrightarrow (X, x_o)$ eine Überlagerung mit $G(r) = \{1\}$ und U gim überlagerte Umgebung von x_o .

Dann gilt Pür Schleifen α an x_o in U

 $\alpha = \gamma \circ \tilde{\alpha}$

Par eine Schleife $\tilde{\chi}$ on y_a . Donn gilt $[a] \in G(\eta) = \{1\}$

=) a ~ honstxo rel. Endpunkte in X.

Def: Ein top. Raum X heist semilokal einfach zwammenhängend, Palls für alle $X_0 \in X$ eine Umgebung U von $X_0 \in X_0$, $S_0 : A_0 : A_0$

*Def. Ein top. Raum X heist hinreichend zusommenhängend, wenn X zsh., lokal zsh. und semilokal einfach zsh. ist.

Bap. Offene Teilmengen des IR" sind semilokal einfach esh.

Vorbetrachtung B. Sei $X = S^1$, G = $\S1$ und Was zeichnet 17 bzw. IR aus? -> Sei r & IR. Dann 3! [x] far a Weg in S1 mit $\widetilde{\mathcal{A}}(1) = r$ and $\widetilde{\mathcal{A}}(0) = 1$. Bew.-Shizze. (vom Existenzsatz) Sei $X \setminus x_0 \in X$ und $G_1 < Y_1(X, x_0)$. $Y_{\times} := \Omega(\times, \times, \times) := \{ \times \mid \omega \text{ Weg van } \times_{\bullet} \text{ nach } X \}.$

∘ Fūi O, β∈Ω(X, Xo, X) Selze

Q~B:← [dB-] ∈ G.

· Sei yo := [hanstxo] ∈ Yxo und $M: X \longrightarrow X'$ [9] $\longrightarrow \alpha(4) = X$ -> 17 ist sury.

· Def. Topologie auf Y: Fix x \ X , U offen wegest. mit x ∈ X und a Wes von Xo nach x und y = [a] ∈ X Sefee

V(U, [a]) = { [aB] / } Weg in U mit B(0) = x}.

2.6.

Dann ist

B = {V(U, y) | U ∈ Ox wegeth. mit mly) ∈ U} Basis einer Topologie auf Y, s.d. 11 eine Überlogering ist mit G=G(A).

DECKBEWEGUNGSGRUPPE UND UNIVERSELLE

ÜBERLAGERUNG

Def. Sei n: Y -> X Uberlogerung.

· φ: Y -> Y Homeom. mit no φ= π heist

Dechbenefung.

· Deck(π) := { φ | φ ist Deckbewegung3 mit Verlinupfung heisst Deckbewegungsgruppe.

BSP. Fū(n: R→S1, (→) e^{2m}" gilt

Dech(n) ≈ Z.

Beh. Es ex ein Isomorphismus

Bgp. Sei $M_n: S^1 \longrightarrow S^1$, $z \longmapsto z^n$. Donn gill

Decl. $(M_n) \cong \mathbb{Z}/n\mathbb{Z} \cong M_n(S^1, 1)/G_n(M)$ Reducting

Sate 3. (Dediberegungegruppen)

Seien X, Y Iohal wegesh und wegesh und

 $M: (\lambda', \lambda') \longrightarrow (\chi', x^{\circ})$

eine Überlagerung und sei G = G(17). Dann Pür

[a] = NG = M1(X, X.)

ex. genou ein $\varphi_{(\alpha)} \in \text{Decl}(1)$ mit $\varphi_{(\alpha)}(y_0) = \tilde{\chi}(1)$.

Eudem ist

Ψ: Na/G -> Dech(n), [a] -> φ[a]

ein Gruppenisamorphismus, wobei

NG = {he n1(X, x.) | h-Gh = G.}.

Spezial Palle:

- · G = {1} ⇒ NG = 12,(×, x.).
- 0 G < 17, (×, x₀) ⇔ NG = 17, (×, x₀).

Bsp. Sei $n: S^n \to \mathbb{RP}^n = S^n/n$, $v \sim -v \not\in \mathbb{R}^n$ $n \ge 2$.

Dam gilt

· Deck(11) = { id, -id}, dem

"=" Sei $v \in S^n$ $\neq ix$. Es gilt $\pi^{-1}(\pi(v_0)) = \{v_0, -v_0\}$. $\varphi \in \text{Dech}(\pi) \Rightarrow \varphi(v_0) \in \{v_0, -v_0\}$

Eindeutsducit in Korollar 3 \Rightarrow $\phi \in \{ia, -ia\}.$

Noch Satz 3 gilt clamit

1, (RPT) = Ded(1) = 2/22.

 $\longrightarrow Es gilt \text{ fin}(SO_3(R)) \cong \mathbb{Z}/2\mathbb{Z}, \text{ denn}$ $SO_3(R) \cong \mathbb{D}^3/_{\sim} \cong \mathbb{RP}^3.$

Def: Sei 11: $Y \longrightarrow X$ Uberlegerung und X, Y lokal viegesh.

und wegesh.

- on heist universelle Oberlogerung, falls Y einflach zsh. ist.
- on heist normal, falls G(n) on (X, x0).

Bem. Sei 17: $Y \longrightarrow X$ Ubedagerung und X, Y lokal hegesth. und wegesth, and $x \in X$.

- 17 ist normal g.d.w. Deck(17) transitiv auf 17-1(x.) openiert.
- · | m-(x.) = | m,(X,x.) /G(m).
- · Bis auf basispunktethaltende Isomorphie ist die universelle Ubelogerung eindeutig und ex. Par hinneichend zsh X.
- Sei $\Pi: (Y, Y_0) \longrightarrow (X, x_0)$ beliebige Uberlagerung mit X, Y hinreichend zsh. und $\tilde{\Pi}: (\tilde{Y}, \tilde{Y}_0) \longrightarrow (X, x_0)$ universalle Uberlagerung. Dann ex. eindentiges $\varphi: (\tilde{Y}, \tilde{Y}_0) \longrightarrow (Y, y_0)$

stetig mit 17 0 \$\phi = \text{if und \$\phi\$ ist eine Liberlagerung.}

"Satz!" Die Universelle Überlagerung überlagert jede andere Überlagerung.