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1 The Rule of Sarrus

Let K be a field.

Theorem 1.1 (Sarrus’ formula). For any matrix

A =

a b c

d e f

g h i

 ∈ M3×3(K)

we have

detA = aei+ bfg + cdh− gec− hfa− idb.

Remark 1.2. Note that this formula is particularly easy to remember using the following pattern:

a b c a b

d e f d e

g h i g h

+ + +

− − −

Proof. Applying the Laplace expansion formula to the first row yields

detA = a(ei− fh)− b(di− gf) + c(dh− eg)

= aei− afh− bdi+ bgf + cdh− ceg,

concluding the proof.
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2 Eigenvectors and Eigenvalues

Let V be a finite-dimensional K-vector space.

2.1 Recap

Definition 2.1. Let T : V → V be a linear map. A λ ∈ K is called an eigenvalue if there exists a

vector v ∈ V ∖ {0} with Tv = λv. Such a vector is called an eigenvector.

Remark 2.2. This definition can easily be extended to infinite-dimensional vector spaces.

Definition 2.3. For a matrix A ∈ Mn×n(K) we define its characteristic polynomial by

χA(x) := det(A− x · In) ∈ K[x].

Similarly, for a linear map T : V → V we define

χT (x) := χ[T ]BB
(x) = det([T ]BB − x · In),

where B is any basis of V .

Exercise 2.4. Let

A :=

2 2 3

1 2 1

2 −2 1

 .

(a) Compute χA(x).

(b) Find all eigenvalues and eigenvectors of A.

Solution.

(a) By applying Sarrus’ formula we get

χA(x) = det(A− x · In) = det

2− x 2 3

1 2− x 1

2 −2 1− x


= (2− x)2(1− x) + 4− 6− 6(2− x) + 2(2− x)− 2(1− x)

= −x3 + 5x2 − 2x− 8 = −(x+ 1)(x− 2)(x− 4).

(b) Since the set of eigenvalues is equal to the set of zeros of χA, by (a) we see that the eigenvalues

are precisely {−1, 2, 4}. The corresponding eigenvectors are given by 1

0

−1

 ,

 2

3

−2

 ,

8

5

2

 .
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2.2 Diagonalization

Why do eigenvectors diagonalize?

Let T : V → V be a linear map and B = (v1, . . . , vn) a basis of V consisting of eigenvectors of T

with corresponding eigenvalues λ1, . . . , λn. To see why this basis has nice properties, we are going

to compute the transformation matrix A := [T ]BB. Recall that A is the unique matrix making the

following diagram commute

V V

Kn Kn

T

φB ∼

LA

φB ∼

where

φB : Kn ∼−→ V,


x1

...

xn

 7→
n∑

i=1

xivi.

Observe that for any vector (a1, . . . , an) ∈ Kn we have

T (φB(a1, . . . , an)) = T
( n∑

i=1

aivi

)
=

n∑
i=1

λiaivi

and thus

A


a1
...

an

 =


λ1a1
...

λnan

 .

One now checks that this implies

[T ]BB = A =


λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

 .

Hence we see that in this case, given an appropriate basis, the map T only stretches the coordinate

axes.

Exercise 2.5. A square matrix A ∈ Mn×n(K) is called idempotent if A2 = A holds.

(a) Show that every idempotent matrix is diagonalizable.

(b) Show that two idempotent matrices are similar if and only if they have the same rank.
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Solution. Let A,B ∈ Mn×n(K) be idempotent.

(a) Proof. To diagonalize A, we will find a basis of Kn consisting of eigenvalues of A. Let v ∈ Kn

be arbitrary and observe that we have

v = Av + (In −A)v

with

A ·Av = A2v = Av,

A · (In −A)v = Av −A2v = Av −Av = 0

since A is idempotent. Hence Av is an eigenvector of A to the eigenvalue 1 and (In − A)v is

an eigenvector to the eigenvalue 0, so we have written v as a linear combination of eigenvectors.

This proves that the eigenvectors to the eigenvalues {0, 1} span Kn and thus A is diagonalizable

with values {0, 1} on the diagonal.

(b) Proof. Recall from the lecture that similar matrices have the same rank. Hence it only remains

to show that if rank(A) = rank(B) then A and B are similar. By (a) there exists an invertible

U ∈ GLn(K) such that

UAU−1 = diag( 1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0︸ ︷︷ ︸
n−r times

) =: D

with r := rank(D) = rank(A). Now since r = rank(A) = rank(B), by similar reasoning we get

that there exists a W ∈ GLn(K) with

WBW−1 = D.

Hence

A = U−1DU = U−1WBW−1U,

concluding the proof since U−1W ∈ GLn(K).
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