Linear Algebra II

Exercise Class

Eric Ceglie
4. March 2024

1 The Rule of Sarrus

Let K be a field.
Theorem 1.1 (Sarrus’ formula). For any matric
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we have

det A =aei+bfg+ cdh — gec — hfa — idb.
Remark 1.2. Note that this formula is particularly easy to remember using the following pattern:
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Proof. Applying the Laplace expansion formula to the first row yields

det A = a(ei — fh) — b(di — gf) + c(dh — eg)
=aei —afh —bdi + bgf + cdh — ceg,

concluding the proof.
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2 Eigenvectors and Eigenvalues

Let V be a finite-dimensional K-vector space.

2.1 Recap

Definition 2.1. Let T': V — V be a linear map. A A € K is called an eigenvalue if there exists a

vector v € V \ {0} with Tv = Av. Such a vector is called an eigenvector.
Remark 2.2. This definition can easily be extended to infinite-dimensional vector spaces.
Definition 2.3. For a matrix A € M,,«,,(K) we define its characteristic polynomial by
xa(z) :=det(A—z-1I,) € Kx].
Similarly, for a linear map 7' : V' — V we define
xr(x) = xprs(x) = det([T]5 — = - I,),
where B is any basis of V.

Exercise 2.4. Let

2 2 3
A=1[]1 2 1
2 -2 1
(a) Compute xa(x).
(b) Find all eigenvalues and eigenvectors of A.
Solution.
(a) By applying Sarrus’ formula we get
2—x 2 3
xa(z) =det(A—a - I,) = det 1 2—-z 1
2 -2 1-=z

=2-2)(1-2)+4-6-62—2)+2(2—2)—2(1 —z)
=234+ 52% — 20 — 8= —(x+ 1)(z — 2)(x — 4).

(b) Since the set of eigenvalues is equal to the set of zeros of x4, by (a) we see that the eigenvalues

are precisely {—1,2,4}. The corresponding eigenvectors are given by

1 2 8
01, 31, )
-1 -2 2
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2.2 Diagonalization

Why do eigenvectors diagonalize?

Let T : V — V be a linear map and B = (v1,...,v,) a basis of V consisting of eigenvectors of T
with corresponding eigenvalues Aq,...,\,. To see why this basis has nice properties, we are going
to compute the transformation matrix A := [T]5. Recall that A is the unique matrix making the

following diagram commute

where
I n
(,OBZK"L)V, ’—)ZIi’Ui.
i=1
T
Observe that for any vector (ay,...,a,) € K™ we have
T(pplal,...,a,)) = T( Z aivi) = Z Ai@iv;
i=1 i=1
and thus
ay )\1&1
A =
an Ann,
One now checks that this implies
A0 0
0 A
115 = 4= ’
0
0 0 A

Hence we see that in this case, given an appropriate basis, the map T only stretches the coordinate

axes.
Exercise 2.5. A square matrix A € M,,«,(K) is called idempotent if A?> = A holds.
(a) Show that every idempotent matrix is diagonalizable.

(b) Show that two idempotent matrices are similar if and only if they have the same rank.
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Solution. Let A, B € M,,x,(K) be idempotent.

(a)

Proof. To diagonalize A, we will find a basis of K™ consisting of eigenvalues of A. Let v € K"

be arbitrary and observe that we have
v=Av+ (I, — A
with

A Av = A%y = Av,
A-(I, — Ay =Av— A% = Av — Av =0

since A is idempotent. Hence Av is an eigenvector of A to the eigenvalue 1 and (I, — A)v is
an eigenvector to the eigenvalue 0, so we have written v as a linear combination of eigenvectors.
This proves that the eigenvectors to the eigenvalues {0, 1} span K™ and thus A is diagonalizable
with values {0,1} on the diagonal. O

Proof. Recall from the lecture that similar matrices have the same rank. Hence it only remains
to show that if rank(A) = rank(B) then A and B are similar. By (a) there exists an invertible
U € GL,(K) such that

UAU™! = diag(1,...,1,0,...,0 ) =: D
—— —
7 times n—r times
with 7 := rank(D) = rank(A4). Now since r = rank(A) = rank(B), by similar reasoning we get
that there exists a W € GL,,(K) with

WBW™! =D.
Hence
A=U"'DU=U""WBW™'U,
concluding the proof since U7'W € GL,(K). O
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