Linear Algebra II
 Exercise Class

Eric Ceglie

4. March 2024

1 The Rule of Sarrus

Let K be a field.

Theorem 1.1 (Sarrus' formula). For any matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \in M_{3 \times 3}(K)
$$

we have

$$
\operatorname{det} A=a e i+b f g+c d h-g e c-h f a-i d b
$$

Remark 1.2. Note that this formula is particularly easy to remember using the following pattern:

Proof. Applying the Laplace expansion formula to the first row yields

$$
\begin{aligned}
\operatorname{det} A & =a(e i-f h)-b(d i-g f)+c(d h-e g) \\
& =a e i-a f h-b d i+b g f+c d h-c e g
\end{aligned}
$$

concluding the proof.

2 Eigenvectors and Eigenvalues

Let V be a finite-dimensional K-vector space.

2.1 Recap

Definition 2.1. Let $T: V \rightarrow V$ be a linear map. A $\lambda \in K$ is called an eigenvalue if there exists a vector $v \in V \backslash\{0\}$ with $T v=\lambda v$. Such a vector is called an eigenvector.

Remark 2.2. This definition can easily be extended to infinite-dimensional vector spaces.
Definition 2.3. For a matrix $A \in M_{n \times n}(K)$ we define its characteristic polynomial by

$$
\chi_{A}(x):=\operatorname{det}\left(A-x \cdot I_{n}\right) \in K[x] .
$$

Similarly, for a linear map $T: V \rightarrow V$ we define

$$
\chi_{T}(x):=\chi_{[T]_{\mathcal{B}}^{\mathcal{B}}}(x)=\operatorname{det}\left([T]_{\mathcal{B}}^{\mathcal{B}}-x \cdot I_{n}\right)
$$

where \mathcal{B} is any basis of V.
Exercise 2.4. Let

$$
A:=\left(\begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right)
$$

(a) Compute $\chi_{A}(x)$.
(b) Find all eigenvalues and eigenvectors of A.

Solution.

(a) By applying Sarrus' formula we get

$$
\begin{aligned}
\chi_{A}(x) & =\operatorname{det}\left(A-x \cdot I_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
2-x & 2 & 3 \\
1 & 2-x & 1 \\
2 & -2 & 1-x
\end{array}\right) \\
& =(2-x)^{2}(1-x)+4-6-6(2-x)+2(2-x)-2(1-x) \\
& =-x^{3}+5 x^{2}-2 x-8=-(x+1)(x-2)(x-4)
\end{aligned}
$$

(b) Since the set of eigenvalues is equal to the set of zeros of χ_{A}, by (a) we see that the eigenvalues are precisely $\{-1,2,4\}$. The corresponding eigenvectors are given by

$$
\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \quad\left(\begin{array}{c}
2 \\
3 \\
-2
\end{array}\right), \quad\left(\begin{array}{l}
8 \\
5 \\
2
\end{array}\right)
$$

2.2 Diagonalization

Why do eigenvectors diagonalize?

Let $T: V \rightarrow V$ be a linear map and $\mathcal{B}=\left(v_{1}, \ldots, v_{n}\right)$ a basis of V consisting of eigenvectors of T with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. To see why this basis has nice properties, we are going to compute the transformation matrix $A:=[T]_{\mathcal{B}}^{\mathcal{B}}$. Recall that A is the unique matrix making the following diagram commute

$$
\begin{array}{r}
V \\
\begin{array}{r}
T \\
\varphi_{\mathcal{B}} \uparrow 2 \\
\varphi_{\mathcal{B}} \uparrow_{2} \\
K^{n} \\
\xrightarrow{L_{A}} K^{n}
\end{array}
\end{array}
$$

where

$$
\varphi_{\mathcal{B}}: K^{n} \xrightarrow{\sim} V,\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \mapsto \sum_{i=1}^{n} x_{i} v_{i} .
$$

Observe that for any vector $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ we have

$$
T\left(\varphi_{\mathcal{B}}\left(a_{1}, \ldots, a_{n}\right)\right)=T\left(\sum_{i=1}^{n} a_{i} v_{i}\right)=\sum_{i=1}^{n} \lambda_{i} a_{i} v_{i}
$$

and thus

$$
A\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda_{1} a_{1} \\
\vdots \\
\lambda_{n} a_{n}
\end{array}\right)
$$

One now checks that this implies

$$
[T]_{\mathcal{B}}^{\mathcal{B}}=A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & \lambda_{n}
\end{array}\right)
$$

Hence we see that in this case, given an appropriate basis, the map T only stretches the coordinate axes.

Exercise 2.5. A square matrix $A \in M_{n \times n}(K)$ is called idempotent if $A^{2}=A$ holds.
(a) Show that every idempotent matrix is diagonalizable.
(b) Show that two idempotent matrices are similar if and only if they have the same rank.

Solution. Let $A, B \in M_{n \times n}(K)$ be idempotent.
(a) Proof. To diagonalize A, we will find a basis of K^{n} consisting of eigenvalues of A. Let $v \in K^{n}$ be arbitrary and observe that we have

$$
v=A v+\left(I_{n}-A\right) v
$$

with

$$
\begin{aligned}
A \cdot A v & =A^{2} v=A v \\
A \cdot\left(I_{n}-A\right) v & =A v-A^{2} v=A v-A v=0
\end{aligned}
$$

since A is idempotent. Hence $A v$ is an eigenvector of A to the eigenvalue 1 and $\left(I_{n}-A\right) v$ is an eigenvector to the eigenvalue 0 , so we have written v as a linear combination of eigenvectors. This proves that the eigenvectors to the eigenvalues $\{0,1\}$ span K^{n} and thus A is diagonalizable with values $\{0,1\}$ on the diagonal.
(b) Proof. Recall from the lecture that similar matrices have the same rank. Hence it only remains to show that if $\operatorname{rank}(A)=\operatorname{rank}(B)$ then A and B are similar. By (a) there exists an invertible $U \in \mathrm{GL}_{n}(K)$ such that

$$
U A U^{-1}=\operatorname{diag}(\underbrace{1, \ldots, 1}_{r \text { times }}, \underbrace{0, \ldots, 0}_{n-r \text { times }})=: D
$$

with $r:=\operatorname{rank}(D)=\operatorname{rank}(A)$. Now since $r=\operatorname{rank}(A)=\operatorname{rank}(B)$, by similar reasoning we get that there exists a $W \in \mathrm{GL}_{n}(K)$ with

$$
W B W^{-1}=D
$$

Hence

$$
A=U^{-1} D U=U^{-1} W B W^{-1} U
$$

concluding the proof since $U^{-1} W \in \mathrm{GL}_{n}(K)$.

