Linear Algebra II Exercise Class

Eric Ceglie

8. April 2024

1 The Jordan Normal Form

1.1 Exercises

Exercise 1.1. Let $A \in M_{7 \times 7}(\mathbb{R})$ and assume that

$$
\chi_{A}(x)=(x-2)^{2}(x-3)^{5}
$$

and

$$
\left(A-3 I_{7}\right)^{3}+\left(A-3 I_{7}\right)^{4}=0 .
$$

What are all the possible Jordan normal forms for A, up to permutation of the Jordan blocks?
Solution. Observe that

$$
\left(A-3 I_{7}\right)^{3}+\left(A-3 I_{7}\right)^{4}=\left(A-3 I_{7}\right)^{3}\left(A-2 I_{7}\right)
$$

and thus we have

$$
m_{A}(x) \mid(x-3)^{3}(x-2)
$$

for the minimal polynomial of A. Hence the possible Jordan normal forms are

$$
\left(\begin{array}{lllllll}
2 & & & & & & \\
& 2 & & & & & \\
& & 3 & 1 & & & \\
& & & 3 & 1 & & \\
& & & & 3 & & \\
& & & & & 3 & \\
& & & & & & 3
\end{array}\right),\left(\begin{array}{lllllll}
2 & & & & & & \\
& 2 & & & & & \\
& & 3 & 1 & & & \\
& & & 3 & 1 & & \\
& & & & 3 & & \\
& & & & & 3 & 1 \\
& & & & & & 3
\end{array}\right)
$$

if $m_{A}(x)=(x-3)^{3}(x-2)$ and

$$
\left(\begin{array}{lllllll}
2 & & & & & & \\
& 2 & & & & & \\
& & 3 & 1 & & & \\
& & & 3 & & & \\
& & & & 3 & & \\
& & & & & 3 & \\
& & & & & & 3
\end{array}\right),\left(\begin{array}{lllllll}
2 & & & & & & \\
& 2 & & & & & \\
& & 3 & 1 & & & \\
& & & 3 & & & \\
& & & & 3 & 1 & \\
& & & & & 3 & \\
& & & & & & 3
\end{array}\right)
$$

if $m_{A}(x)=(x-3)^{2}(x-2)$ and

$$
\left(\begin{array}{lllllll}
2 & & & & & & \\
& 2 & & & & & \\
& & 3 & & & & \\
& & & 3 & & & \\
& & & & 3 & & \\
& & & & & 3 & \\
& & & & & & 3
\end{array}\right)
$$

if $m_{A}(x)=(x-3)(x-2)$.
Exercise 1.2. For $n \in \mathbb{N}_{0}$ consider

$$
V_{n}:=\{p \in \mathbb{C}[x] \mid \operatorname{deg}(p) \leq n\}
$$

and let $\mathcal{B}_{n}:=\left(1, x, \ldots, x^{n}\right)$ be the standard basis of V_{n}. Define a linear map

$$
T_{n}: V_{n} \rightarrow V_{n}
$$

by

$$
T_{n} p(x):=p(x+1)-p(x)
$$

for $p \in V_{n}$. Now assume $n \geq 1$.
(a) Show that $\operatorname{im}\left(T_{n}\right) \subseteq V_{n-1}$ holds.
(b) Compute $\operatorname{ker}\left(T_{n}\right)$ and conclude that $\operatorname{im}\left(T_{n}\right)=V_{n-1}$ holds.
(c) Show that 0 is the only eigenvalue of T_{n} and find the Jordan normal form of T_{n}.
(d) Compute $\left[T_{4}\right]_{\mathcal{B}_{4}}^{\mathcal{B}_{4}}$.
(e) Find a polynomial $p \in V_{4}$ with $T_{4} p(x)=x^{3}$.
(f) Using (e), find an explicit formula for $\sum_{k=1}^{n} k^{3}$ in terms of $n \in \mathbb{N}_{0}$.

Solution.

(a) Proof. Let $p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in V_{n}$ be arbitrary and observe that

$$
\begin{aligned}
T_{n} p(x) & =p(x+1)-p(x)=\sum_{k=0}^{n}\left(a_{k}(x+1)^{k}-a_{k} x^{k}\right) \\
& =\sum_{k=0}^{n}\left(a_{k} \sum_{j=0}^{k}\binom{k}{j} x^{j}-a_{k} x^{k}\right) \\
& =\sum_{k=0}^{n}\left(\sum_{j=0}^{k-1}\binom{k}{j} a_{k} x^{j}+a_{k} x^{k}-a_{k} x^{k}\right) \\
& =\sum_{k=0}^{n} \sum_{j=0}^{k-1}\binom{k}{j} a_{k} x^{j},
\end{aligned}
$$

so $\operatorname{deg}\left(T_{n} p\right) \leq n-1$ which proves $\operatorname{im}\left(T_{n}\right) \subseteq V_{n-1}$.
(b) Proof. Continuing the computation from (a), we obtain

$$
\begin{aligned}
T_{n} p(x) & =\sum_{k=0}^{n} \sum_{j=0}^{k-1}\binom{k}{j} a_{k} x^{j} \\
& =\sum_{0 \leq j<k \leq n}\binom{k}{j} a_{k} x^{j} \\
& =\sum_{j=0}^{n-1}\left(\sum_{k=j+1}^{n}\binom{k}{j} a_{k}\right) x^{j} .
\end{aligned}
$$

Now assume that $T_{n} p=0$ which by the above implies

$$
\forall 0 \leq j<n: \quad \sum_{k=j+1}^{n}\binom{k}{j} a_{k}=0 .
$$

Hence for $j=n-1$ we get

$$
\binom{n}{n-1} a_{n}=0 \Longrightarrow a_{n}=0
$$

Now for $j=n-2$ we get

$$
\binom{n-1}{n-2} a_{n-1}+\binom{n}{n-2} a_{n}=0 \Longrightarrow a_{n-1}=0
$$

Similarly, this reasoning continuous until we achieve

$$
a_{n}=a_{n-1}=\ldots=a_{1}=0
$$

which proves $\operatorname{ker}\left(T_{n}\right) \subseteq V_{0}$. On the other hand, it is apparent that T_{n} sends all constant polynomials to 0 , which proves $\operatorname{ker}\left(T_{n}\right)=V_{0}$, which is a one-dimensional space. Hence

$$
\operatorname{dim}\left(\operatorname{im} T_{n}\right)=\operatorname{dim}\left(V_{n}\right)-\operatorname{dim}\left(\operatorname{ker} T_{n}\right)=n
$$

and thus by (a) we have $\operatorname{im}\left(T_{n}\right)=V_{n-1}$.
(c) Proof. We have already established that for any $p \in V_{n}$ we have

$$
\operatorname{deg}\left(T_{n} p\right)<\operatorname{deg}(p)
$$

Now assume that $p \neq 0$ and that there exists some $\lambda \in \mathbb{C}$ with $T_{n} p=\lambda p$. Then the formula above implies

$$
\operatorname{deg}(\lambda p)<\operatorname{deg}(p)
$$

so by comparing coefficients we obtain $\lambda=0$. Moreover, by (b) we know that

$$
g_{0}=\operatorname{dim}\left(\operatorname{ker} T_{n}\right)=1
$$

This tells us that the Jordan normal form of T_{n} has only one Jordan block corresponding to the only eigenvalue $\lambda=0$ and is thus equal to $J_{n+1}(0)$.
(d) Recall that $A:=[T]_{\mathcal{B}_{4}}^{\mathcal{B}_{4}} \in M_{5 \times 5}(\mathbb{C})$ is the unique matrix making the following diagram commute:

$$
\begin{array}{r}
V \xrightarrow{T_{4}} W \\
\varphi_{\mathcal{B}_{4}} \uparrow 2 \\
\varphi_{\mathcal{B}_{4}} \uparrow_{2} \\
\mathbb{C}^{5} \xrightarrow{L_{A}} \mathbb{C}^{5}
\end{array}
$$

Hence we compute:

This now yields

$$
A=\left(\begin{array}{lllll}
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 6 \\
0 & 0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(e) Using (d), finding a polynomial $p \in V_{4}$ with $T_{4} p(x)=x^{3}$ is reduced to solving

$$
A v=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right)
$$

for $v \in \mathbb{C}^{5}$. A possible solution is given by $v=\left(0,0, \frac{1}{4},-\frac{1}{2}, \frac{1}{4}\right)$ and thus the polynomial

$$
p(x)=\frac{1}{4} x^{2}-\frac{1}{x} x^{3}+\frac{1}{4} x^{4}
$$

fulfills $T_{4} p(x)=x^{3}$.
(f) Using the polynomial p found in (e), we may now write

$$
\begin{aligned}
\sum_{k=1}^{n} k^{3} & =\sum_{k=1}^{n} T_{4} p(k)=\sum_{k=1}^{n}(p(k+1)-p(k)) \\
& =p(n+1)-p(1)=\frac{1}{4}(n+1)^{2}-\frac{1}{2}(n+1)^{3}+\frac{1}{4}(n+1)^{4} \\
& =\frac{1}{4}(n+1)^{2}\left[1-2(n+1)+(n+1)^{2}\right]=\frac{1}{4}(n+1)^{2} n^{2} \\
& =\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} .
\end{aligned}
$$

Observe that this formula also holds for $n=0$.

